From 94a0819fe3a0d679c3042a77bfe6a2afc505daea Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:11:28 +0200 Subject: Adding upstream version 1.66.0+dfsg1. Signed-off-by: Daniel Baumann --- .../rustc_hir_analysis/src/collect/lifetimes.rs | 1888 ++++++++++++++++++++ 1 file changed, 1888 insertions(+) create mode 100644 compiler/rustc_hir_analysis/src/collect/lifetimes.rs (limited to 'compiler/rustc_hir_analysis/src/collect/lifetimes.rs') diff --git a/compiler/rustc_hir_analysis/src/collect/lifetimes.rs b/compiler/rustc_hir_analysis/src/collect/lifetimes.rs new file mode 100644 index 000000000..3f263a6de --- /dev/null +++ b/compiler/rustc_hir_analysis/src/collect/lifetimes.rs @@ -0,0 +1,1888 @@ +//! Resolution of early vs late bound lifetimes. +//! +//! Name resolution for lifetimes is performed on the AST and embedded into HIR. From this +//! information, typechecking needs to transform the lifetime parameters into bound lifetimes. +//! Lifetimes can be early-bound or late-bound. Construction of typechecking terms needs to visit +//! the types in HIR to identify late-bound lifetimes and assign their Debruijn indices. This file +//! is also responsible for assigning their semantics to implicit lifetimes in trait objects. + +use rustc_ast::walk_list; +use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet}; +use rustc_errors::struct_span_err; +use rustc_hir as hir; +use rustc_hir::def::{DefKind, Res}; +use rustc_hir::def_id::LocalDefId; +use rustc_hir::intravisit::{self, Visitor}; +use rustc_hir::{GenericArg, GenericParam, GenericParamKind, HirIdMap, LifetimeName, Node}; +use rustc_middle::bug; +use rustc_middle::hir::map::Map; +use rustc_middle::hir::nested_filter; +use rustc_middle::middle::resolve_lifetime::*; +use rustc_middle::ty::{self, DefIdTree, TyCtxt}; +use rustc_span::def_id::DefId; +use rustc_span::symbol::{sym, Ident}; +use rustc_span::Span; +use std::fmt; + +trait RegionExt { + fn early(hir_map: Map<'_>, param: &GenericParam<'_>) -> (LocalDefId, Region); + + fn late(index: u32, hir_map: Map<'_>, param: &GenericParam<'_>) -> (LocalDefId, Region); + + fn id(&self) -> Option; + + fn shifted(self, amount: u32) -> Region; +} + +impl RegionExt for Region { + fn early(hir_map: Map<'_>, param: &GenericParam<'_>) -> (LocalDefId, Region) { + let def_id = hir_map.local_def_id(param.hir_id); + debug!("Region::early: def_id={:?}", def_id); + (def_id, Region::EarlyBound(def_id.to_def_id())) + } + + fn late(idx: u32, hir_map: Map<'_>, param: &GenericParam<'_>) -> (LocalDefId, Region) { + let depth = ty::INNERMOST; + let def_id = hir_map.local_def_id(param.hir_id); + debug!( + "Region::late: idx={:?}, param={:?} depth={:?} def_id={:?}", + idx, param, depth, def_id, + ); + (def_id, Region::LateBound(depth, idx, def_id.to_def_id())) + } + + fn id(&self) -> Option { + match *self { + Region::Static => None, + + Region::EarlyBound(id) | Region::LateBound(_, _, id) | Region::Free(_, id) => Some(id), + } + } + + fn shifted(self, amount: u32) -> Region { + match self { + Region::LateBound(debruijn, idx, id) => { + Region::LateBound(debruijn.shifted_in(amount), idx, id) + } + _ => self, + } + } +} + +/// Maps the id of each lifetime reference to the lifetime decl +/// that it corresponds to. +/// +/// FIXME. This struct gets converted to a `ResolveLifetimes` for +/// actual use. It has the same data, but indexed by `LocalDefId`. This +/// is silly. +#[derive(Debug, Default)] +struct NamedRegionMap { + // maps from every use of a named (not anonymous) lifetime to a + // `Region` describing how that region is bound + defs: HirIdMap, + + // Maps relevant hir items to the bound vars on them. These include: + // - function defs + // - function pointers + // - closures + // - trait refs + // - bound types (like `T` in `for<'a> T<'a>: Foo`) + late_bound_vars: HirIdMap>, +} + +struct LifetimeContext<'a, 'tcx> { + tcx: TyCtxt<'tcx>, + map: &'a mut NamedRegionMap, + scope: ScopeRef<'a>, + + /// Indicates that we only care about the definition of a trait. This should + /// be false if the `Item` we are resolving lifetimes for is not a trait or + /// we eventually need lifetimes resolve for trait items. + trait_definition_only: bool, +} + +#[derive(Debug)] +enum Scope<'a> { + /// Declares lifetimes, and each can be early-bound or late-bound. + /// The `DebruijnIndex` of late-bound lifetimes starts at `1` and + /// it should be shifted by the number of `Binder`s in between the + /// declaration `Binder` and the location it's referenced from. + Binder { + /// We use an IndexMap here because we want these lifetimes in order + /// for diagnostics. + lifetimes: FxIndexMap, + + scope_type: BinderScopeType, + + /// The late bound vars for a given item are stored by `HirId` to be + /// queried later. However, if we enter an elision scope, we have to + /// later append the elided bound vars to the list and need to know what + /// to append to. + hir_id: hir::HirId, + + s: ScopeRef<'a>, + + /// If this binder comes from a where clause, specify how it was created. + /// This is used to diagnose inaccessible lifetimes in APIT: + /// ```ignore (illustrative) + /// fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {} + /// ``` + where_bound_origin: Option, + }, + + /// Lifetimes introduced by a fn are scoped to the call-site for that fn, + /// if this is a fn body, otherwise the original definitions are used. + /// Unspecified lifetimes are inferred, unless an elision scope is nested, + /// e.g., `(&T, fn(&T) -> &T);` becomes `(&'_ T, for<'a> fn(&'a T) -> &'a T)`. + Body { + id: hir::BodyId, + s: ScopeRef<'a>, + }, + + /// A scope which either determines unspecified lifetimes or errors + /// on them (e.g., due to ambiguity). + Elision { + s: ScopeRef<'a>, + }, + + /// Use a specific lifetime (if `Some`) or leave it unset (to be + /// inferred in a function body or potentially error outside one), + /// for the default choice of lifetime in a trait object type. + ObjectLifetimeDefault { + lifetime: Option, + s: ScopeRef<'a>, + }, + + /// When we have nested trait refs, we concatenate late bound vars for inner + /// trait refs from outer ones. But we also need to include any HRTB + /// lifetimes encountered when identifying the trait that an associated type + /// is declared on. + Supertrait { + lifetimes: Vec, + s: ScopeRef<'a>, + }, + + TraitRefBoundary { + s: ScopeRef<'a>, + }, + + Root, +} + +#[derive(Copy, Clone, Debug)] +enum BinderScopeType { + /// Any non-concatenating binder scopes. + Normal, + /// Within a syntactic trait ref, there may be multiple poly trait refs that + /// are nested (under the `associated_type_bounds` feature). The binders of + /// the inner poly trait refs are extended from the outer poly trait refs + /// and don't increase the late bound depth. If you had + /// `T: for<'a> Foo Baz<'a, 'b>>`, then the `for<'b>` scope + /// would be `Concatenating`. This also used in trait refs in where clauses + /// where we have two binders `for<> T: for<> Foo` (I've intentionally left + /// out any lifetimes because they aren't needed to show the two scopes). + /// The inner `for<>` has a scope of `Concatenating`. + Concatenating, +} + +// A helper struct for debugging scopes without printing parent scopes +struct TruncatedScopeDebug<'a>(&'a Scope<'a>); + +impl<'a> fmt::Debug for TruncatedScopeDebug<'a> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + match self.0 { + Scope::Binder { lifetimes, scope_type, hir_id, where_bound_origin, s: _ } => f + .debug_struct("Binder") + .field("lifetimes", lifetimes) + .field("scope_type", scope_type) + .field("hir_id", hir_id) + .field("where_bound_origin", where_bound_origin) + .field("s", &"..") + .finish(), + Scope::Body { id, s: _ } => { + f.debug_struct("Body").field("id", id).field("s", &"..").finish() + } + Scope::Elision { s: _ } => f.debug_struct("Elision").field("s", &"..").finish(), + Scope::ObjectLifetimeDefault { lifetime, s: _ } => f + .debug_struct("ObjectLifetimeDefault") + .field("lifetime", lifetime) + .field("s", &"..") + .finish(), + Scope::Supertrait { lifetimes, s: _ } => f + .debug_struct("Supertrait") + .field("lifetimes", lifetimes) + .field("s", &"..") + .finish(), + Scope::TraitRefBoundary { s: _ } => f.debug_struct("TraitRefBoundary").finish(), + Scope::Root => f.debug_struct("Root").finish(), + } + } +} + +type ScopeRef<'a> = &'a Scope<'a>; + +const ROOT_SCOPE: ScopeRef<'static> = &Scope::Root; + +pub(crate) fn provide(providers: &mut ty::query::Providers) { + *providers = ty::query::Providers { + resolve_lifetimes_trait_definition, + resolve_lifetimes, + + named_region_map: |tcx, id| resolve_lifetimes_for(tcx, id).defs.get(&id), + is_late_bound_map, + object_lifetime_default, + late_bound_vars_map: |tcx, id| resolve_lifetimes_for(tcx, id).late_bound_vars.get(&id), + + ..*providers + }; +} + +/// Like `resolve_lifetimes`, but does not resolve lifetimes for trait items. +/// Also does not generate any diagnostics. +/// +/// This is ultimately a subset of the `resolve_lifetimes` work. It effectively +/// resolves lifetimes only within the trait "header" -- that is, the trait +/// and supertrait list. In contrast, `resolve_lifetimes` resolves all the +/// lifetimes within the trait and its items. There is room to refactor this, +/// for example to resolve lifetimes for each trait item in separate queries, +/// but it's convenient to do the entire trait at once because the lifetimes +/// from the trait definition are in scope within the trait items as well. +/// +/// The reason for this separate call is to resolve what would otherwise +/// be a cycle. Consider this example: +/// +/// ```ignore UNSOLVED (maybe @jackh726 knows what lifetime parameter to give Sub) +/// trait Base<'a> { +/// type BaseItem; +/// } +/// trait Sub<'b>: for<'a> Base<'a> { +/// type SubItem: Sub; +/// } +/// ``` +/// +/// When we resolve `Sub` and all its items, we also have to resolve `Sub`. +/// To figure out the index of `'b`, we have to know about the supertraits +/// of `Sub` so that we can determine that the `for<'a>` will be in scope. +/// (This is because we -- currently at least -- flatten all the late-bound +/// lifetimes into a single binder.) This requires us to resolve the +/// *trait definition* of `Sub`; basically just enough lifetime information +/// to look at the supertraits. +#[instrument(level = "debug", skip(tcx))] +fn resolve_lifetimes_trait_definition( + tcx: TyCtxt<'_>, + local_def_id: LocalDefId, +) -> ResolveLifetimes { + convert_named_region_map(do_resolve(tcx, local_def_id, true)) +} + +/// Computes the `ResolveLifetimes` map that contains data for an entire `Item`. +/// You should not read the result of this query directly, but rather use +/// `named_region_map`, `is_late_bound_map`, etc. +#[instrument(level = "debug", skip(tcx))] +fn resolve_lifetimes(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> ResolveLifetimes { + convert_named_region_map(do_resolve(tcx, local_def_id, false)) +} + +fn do_resolve( + tcx: TyCtxt<'_>, + local_def_id: LocalDefId, + trait_definition_only: bool, +) -> NamedRegionMap { + let item = tcx.hir().expect_item(local_def_id); + let mut named_region_map = + NamedRegionMap { defs: Default::default(), late_bound_vars: Default::default() }; + let mut visitor = LifetimeContext { + tcx, + map: &mut named_region_map, + scope: ROOT_SCOPE, + trait_definition_only, + }; + visitor.visit_item(item); + + named_region_map +} + +fn convert_named_region_map(named_region_map: NamedRegionMap) -> ResolveLifetimes { + let mut rl = ResolveLifetimes::default(); + + for (hir_id, v) in named_region_map.defs { + let map = rl.defs.entry(hir_id.owner).or_default(); + map.insert(hir_id.local_id, v); + } + for (hir_id, v) in named_region_map.late_bound_vars { + let map = rl.late_bound_vars.entry(hir_id.owner).or_default(); + map.insert(hir_id.local_id, v); + } + + debug!(?rl.defs); + debug!(?rl.late_bound_vars); + rl +} + +/// Given `any` owner (structs, traits, trait methods, etc.), does lifetime resolution. +/// There are two important things this does. +/// First, we have to resolve lifetimes for +/// the entire *`Item`* that contains this owner, because that's the largest "scope" +/// where we can have relevant lifetimes. +/// Second, if we are asking for lifetimes in a trait *definition*, we use `resolve_lifetimes_trait_definition` +/// instead of `resolve_lifetimes`, which does not descend into the trait items and does not emit diagnostics. +/// This allows us to avoid cycles. Importantly, if we ask for lifetimes for lifetimes that have an owner +/// other than the trait itself (like the trait methods or associated types), then we just use the regular +/// `resolve_lifetimes`. +fn resolve_lifetimes_for<'tcx>(tcx: TyCtxt<'tcx>, def_id: hir::OwnerId) -> &'tcx ResolveLifetimes { + let item_id = item_for(tcx, def_id.def_id); + let local_def_id = item_id.owner_id.def_id; + if item_id.owner_id == def_id { + let item = tcx.hir().item(item_id); + match item.kind { + hir::ItemKind::Trait(..) => tcx.resolve_lifetimes_trait_definition(local_def_id), + _ => tcx.resolve_lifetimes(local_def_id), + } + } else { + tcx.resolve_lifetimes(local_def_id) + } +} + +/// Finds the `Item` that contains the given `LocalDefId` +fn item_for(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> hir::ItemId { + match tcx.hir().find_by_def_id(local_def_id) { + Some(Node::Item(item)) => { + return item.item_id(); + } + _ => {} + } + let item = { + let hir_id = tcx.hir().local_def_id_to_hir_id(local_def_id); + let mut parent_iter = tcx.hir().parent_iter(hir_id); + loop { + let node = parent_iter.next().map(|n| n.1); + match node { + Some(hir::Node::Item(item)) => break item.item_id(), + Some(hir::Node::Crate(_)) | None => bug!("Called `item_for` on an Item."), + _ => {} + } + } + }; + item +} + +fn late_region_as_bound_region<'tcx>(tcx: TyCtxt<'tcx>, region: &Region) -> ty::BoundVariableKind { + match region { + Region::LateBound(_, _, def_id) => { + let name = tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id.expect_local())); + ty::BoundVariableKind::Region(ty::BrNamed(*def_id, name)) + } + _ => bug!("{:?} is not a late region", region), + } +} + +impl<'a, 'tcx> LifetimeContext<'a, 'tcx> { + /// Returns the binders in scope and the type of `Binder` that should be created for a poly trait ref. + fn poly_trait_ref_binder_info(&mut self) -> (Vec, BinderScopeType) { + let mut scope = self.scope; + let mut supertrait_lifetimes = vec![]; + loop { + match scope { + Scope::Body { .. } | Scope::Root => { + break (vec![], BinderScopeType::Normal); + } + + Scope::Elision { s, .. } | Scope::ObjectLifetimeDefault { s, .. } => { + scope = s; + } + + Scope::Supertrait { s, lifetimes } => { + supertrait_lifetimes = lifetimes.clone(); + scope = s; + } + + Scope::TraitRefBoundary { .. } => { + // We should only see super trait lifetimes if there is a `Binder` above + assert!(supertrait_lifetimes.is_empty()); + break (vec![], BinderScopeType::Normal); + } + + Scope::Binder { hir_id, .. } => { + // Nested poly trait refs have the binders concatenated + let mut full_binders = + self.map.late_bound_vars.entry(*hir_id).or_default().clone(); + full_binders.extend(supertrait_lifetimes.into_iter()); + break (full_binders, BinderScopeType::Concatenating); + } + } + } + } +} +impl<'a, 'tcx> Visitor<'tcx> for LifetimeContext<'a, 'tcx> { + type NestedFilter = nested_filter::All; + + fn nested_visit_map(&mut self) -> Self::Map { + self.tcx.hir() + } + + // We want to nest trait/impl items in their parent, but nothing else. + fn visit_nested_item(&mut self, _: hir::ItemId) {} + + fn visit_trait_item_ref(&mut self, ii: &'tcx hir::TraitItemRef) { + if !self.trait_definition_only { + intravisit::walk_trait_item_ref(self, ii) + } + } + + fn visit_nested_body(&mut self, body: hir::BodyId) { + let body = self.tcx.hir().body(body); + self.with(Scope::Body { id: body.id(), s: self.scope }, |this| { + this.visit_body(body); + }); + } + + fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) { + if let hir::ExprKind::Closure(hir::Closure { + binder, bound_generic_params, fn_decl, .. + }) = e.kind + { + if let &hir::ClosureBinder::For { span: for_sp, .. } = binder { + fn span_of_infer(ty: &hir::Ty<'_>) -> Option { + struct V(Option); + + impl<'v> Visitor<'v> for V { + fn visit_ty(&mut self, t: &'v hir::Ty<'v>) { + match t.kind { + _ if self.0.is_some() => (), + hir::TyKind::Infer => { + self.0 = Some(t.span); + } + _ => intravisit::walk_ty(self, t), + } + } + } + + let mut v = V(None); + v.visit_ty(ty); + v.0 + } + + let infer_in_rt_sp = match fn_decl.output { + hir::FnRetTy::DefaultReturn(sp) => Some(sp), + hir::FnRetTy::Return(ty) => span_of_infer(ty), + }; + + let infer_spans = fn_decl + .inputs + .into_iter() + .filter_map(span_of_infer) + .chain(infer_in_rt_sp) + .collect::>(); + + if !infer_spans.is_empty() { + self.tcx.sess + .struct_span_err( + infer_spans, + "implicit types in closure signatures are forbidden when `for<...>` is present", + ) + .span_label(for_sp, "`for<...>` is here") + .emit(); + } + } + + let (lifetimes, binders): (FxIndexMap, Vec<_>) = + bound_generic_params + .iter() + .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. })) + .enumerate() + .map(|(late_bound_idx, param)| { + let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param); + let r = late_region_as_bound_region(self.tcx, &pair.1); + (pair, r) + }) + .unzip(); + + self.record_late_bound_vars(e.hir_id, binders); + let scope = Scope::Binder { + hir_id: e.hir_id, + lifetimes, + s: self.scope, + scope_type: BinderScopeType::Normal, + where_bound_origin: None, + }; + + self.with(scope, |this| { + // a closure has no bounds, so everything + // contained within is scoped within its binder. + intravisit::walk_expr(this, e) + }); + } else { + intravisit::walk_expr(self, e) + } + } + + #[instrument(level = "debug", skip(self))] + fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { + match &item.kind { + hir::ItemKind::Impl(hir::Impl { of_trait, .. }) => { + if let Some(of_trait) = of_trait { + self.record_late_bound_vars(of_trait.hir_ref_id, Vec::default()); + } + } + _ => {} + } + match item.kind { + hir::ItemKind::Fn(_, ref generics, _) => { + self.visit_early_late(item.hir_id(), generics, |this| { + intravisit::walk_item(this, item); + }); + } + + hir::ItemKind::ExternCrate(_) + | hir::ItemKind::Use(..) + | hir::ItemKind::Macro(..) + | hir::ItemKind::Mod(..) + | hir::ItemKind::ForeignMod { .. } + | hir::ItemKind::GlobalAsm(..) => { + // These sorts of items have no lifetime parameters at all. + intravisit::walk_item(self, item); + } + hir::ItemKind::Static(..) | hir::ItemKind::Const(..) => { + // No lifetime parameters, but implied 'static. + self.with(Scope::Elision { s: self.scope }, |this| { + intravisit::walk_item(this, item) + }); + } + hir::ItemKind::OpaqueTy(hir::OpaqueTy { .. }) => { + // Opaque types are visited when we visit the + // `TyKind::OpaqueDef`, so that they have the lifetimes from + // their parent opaque_ty in scope. + // + // The core idea here is that since OpaqueTys are generated with the impl Trait as + // their owner, we can keep going until we find the Item that owns that. We then + // conservatively add all resolved lifetimes. Otherwise we run into problems in + // cases like `type Foo<'a> = impl Bar`. + for (_hir_id, node) in self.tcx.hir().parent_iter(item.owner_id.into()) { + match node { + hir::Node::Item(parent_item) => { + let resolved_lifetimes: &ResolveLifetimes = self.tcx.resolve_lifetimes( + item_for(self.tcx, parent_item.owner_id.def_id).owner_id.def_id, + ); + // We need to add *all* deps, since opaque tys may want them from *us* + for (&owner, defs) in resolved_lifetimes.defs.iter() { + defs.iter().for_each(|(&local_id, region)| { + self.map.defs.insert(hir::HirId { owner, local_id }, *region); + }); + } + for (&owner, late_bound_vars) in + resolved_lifetimes.late_bound_vars.iter() + { + late_bound_vars.iter().for_each(|(&local_id, late_bound_vars)| { + self.record_late_bound_vars( + hir::HirId { owner, local_id }, + late_bound_vars.clone(), + ); + }); + } + break; + } + hir::Node::Crate(_) => bug!("No Item about an OpaqueTy"), + _ => {} + } + } + } + hir::ItemKind::TyAlias(_, ref generics) + | hir::ItemKind::Enum(_, ref generics) + | hir::ItemKind::Struct(_, ref generics) + | hir::ItemKind::Union(_, ref generics) + | hir::ItemKind::Trait(_, _, ref generics, ..) + | hir::ItemKind::TraitAlias(ref generics, ..) + | hir::ItemKind::Impl(hir::Impl { ref generics, .. }) => { + // These kinds of items have only early-bound lifetime parameters. + let lifetimes = generics + .params + .iter() + .filter_map(|param| match param.kind { + GenericParamKind::Lifetime { .. } => { + Some(Region::early(self.tcx.hir(), param)) + } + GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => None, + }) + .collect(); + self.record_late_bound_vars(item.hir_id(), vec![]); + let scope = Scope::Binder { + hir_id: item.hir_id(), + lifetimes, + scope_type: BinderScopeType::Normal, + s: ROOT_SCOPE, + where_bound_origin: None, + }; + self.with(scope, |this| { + let scope = Scope::TraitRefBoundary { s: this.scope }; + this.with(scope, |this| { + intravisit::walk_item(this, item); + }); + }); + } + } + } + + fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) { + match item.kind { + hir::ForeignItemKind::Fn(_, _, ref generics) => { + self.visit_early_late(item.hir_id(), generics, |this| { + intravisit::walk_foreign_item(this, item); + }) + } + hir::ForeignItemKind::Static(..) => { + intravisit::walk_foreign_item(self, item); + } + hir::ForeignItemKind::Type => { + intravisit::walk_foreign_item(self, item); + } + } + } + + #[instrument(level = "debug", skip(self))] + fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) { + match ty.kind { + hir::TyKind::BareFn(ref c) => { + let (lifetimes, binders): (FxIndexMap, Vec<_>) = c + .generic_params + .iter() + .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. })) + .enumerate() + .map(|(late_bound_idx, param)| { + let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param); + let r = late_region_as_bound_region(self.tcx, &pair.1); + (pair, r) + }) + .unzip(); + self.record_late_bound_vars(ty.hir_id, binders); + let scope = Scope::Binder { + hir_id: ty.hir_id, + lifetimes, + s: self.scope, + scope_type: BinderScopeType::Normal, + where_bound_origin: None, + }; + self.with(scope, |this| { + // a bare fn has no bounds, so everything + // contained within is scoped within its binder. + intravisit::walk_ty(this, ty); + }); + } + hir::TyKind::TraitObject(bounds, ref lifetime, _) => { + debug!(?bounds, ?lifetime, "TraitObject"); + let scope = Scope::TraitRefBoundary { s: self.scope }; + self.with(scope, |this| { + for bound in bounds { + this.visit_poly_trait_ref(bound); + } + }); + match lifetime.name { + LifetimeName::ImplicitObjectLifetimeDefault => { + // If the user does not write *anything*, we + // use the object lifetime defaulting + // rules. So e.g., `Box` becomes + // `Box`. + self.resolve_object_lifetime_default(lifetime) + } + LifetimeName::Infer => { + // If the user writes `'_`, we use the *ordinary* elision + // rules. So the `'_` in e.g., `Box` will be + // resolved the same as the `'_` in `&'_ Foo`. + // + // cc #48468 + } + LifetimeName::Param(..) | LifetimeName::Static => { + // If the user wrote an explicit name, use that. + self.visit_lifetime(lifetime); + } + LifetimeName::Error => {} + } + } + hir::TyKind::Rptr(ref lifetime_ref, ref mt) => { + self.visit_lifetime(lifetime_ref); + let scope = Scope::ObjectLifetimeDefault { + lifetime: self.map.defs.get(&lifetime_ref.hir_id).cloned(), + s: self.scope, + }; + self.with(scope, |this| this.visit_ty(&mt.ty)); + } + hir::TyKind::OpaqueDef(item_id, lifetimes, _in_trait) => { + // Resolve the lifetimes in the bounds to the lifetime defs in the generics. + // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to + // `type MyAnonTy<'b> = impl MyTrait<'b>;` + // ^ ^ this gets resolved in the scope of + // the opaque_ty generics + let opaque_ty = self.tcx.hir().item(item_id); + let (generics, bounds) = match opaque_ty.kind { + hir::ItemKind::OpaqueTy(hir::OpaqueTy { + origin: hir::OpaqueTyOrigin::TyAlias, + .. + }) => { + intravisit::walk_ty(self, ty); + + // Elided lifetimes are not allowed in non-return + // position impl Trait + let scope = Scope::TraitRefBoundary { s: self.scope }; + self.with(scope, |this| { + let scope = Scope::Elision { s: this.scope }; + this.with(scope, |this| { + intravisit::walk_item(this, opaque_ty); + }) + }); + + return; + } + hir::ItemKind::OpaqueTy(hir::OpaqueTy { + origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..), + ref generics, + bounds, + .. + }) => (generics, bounds), + ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i), + }; + + // Resolve the lifetimes that are applied to the opaque type. + // These are resolved in the current scope. + // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to + // `fn foo<'a>() -> MyAnonTy<'a> { ... }` + // ^ ^this gets resolved in the current scope + for lifetime in lifetimes { + let hir::GenericArg::Lifetime(lifetime) = lifetime else { + continue + }; + self.visit_lifetime(lifetime); + + // Check for predicates like `impl for<'a> Trait>` + // and ban them. Type variables instantiated inside binders aren't + // well-supported at the moment, so this doesn't work. + // In the future, this should be fixed and this error should be removed. + let def = self.map.defs.get(&lifetime.hir_id).cloned(); + let Some(Region::LateBound(_, _, def_id)) = def else { + continue + }; + let Some(def_id) = def_id.as_local() else { + continue + }; + let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id); + // Ensure that the parent of the def is an item, not HRTB + let parent_id = self.tcx.hir().get_parent_node(hir_id); + if !parent_id.is_owner() { + if !self.trait_definition_only { + struct_span_err!( + self.tcx.sess, + lifetime.span, + E0657, + "`impl Trait` can only capture lifetimes \ + bound at the fn or impl level" + ) + .emit(); + } + self.uninsert_lifetime_on_error(lifetime, def.unwrap()); + } + if let hir::Node::Item(hir::Item { + kind: hir::ItemKind::OpaqueTy { .. }, .. + }) = self.tcx.hir().get(parent_id) + { + if !self.trait_definition_only { + let mut err = self.tcx.sess.struct_span_err( + lifetime.span, + "higher kinded lifetime bounds on nested opaque types are not supported yet", + ); + err.span_note(self.tcx.def_span(def_id), "lifetime declared here"); + err.emit(); + } + self.uninsert_lifetime_on_error(lifetime, def.unwrap()); + } + } + + // We want to start our early-bound indices at the end of the parent scope, + // not including any parent `impl Trait`s. + let mut lifetimes = FxIndexMap::default(); + debug!(?generics.params); + for param in generics.params { + match param.kind { + GenericParamKind::Lifetime { .. } => { + let (def_id, reg) = Region::early(self.tcx.hir(), ¶m); + lifetimes.insert(def_id, reg); + } + GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {} + } + } + self.record_late_bound_vars(ty.hir_id, vec![]); + + let scope = Scope::Binder { + hir_id: ty.hir_id, + lifetimes, + s: self.scope, + scope_type: BinderScopeType::Normal, + where_bound_origin: None, + }; + self.with(scope, |this| { + let scope = Scope::TraitRefBoundary { s: this.scope }; + this.with(scope, |this| { + this.visit_generics(generics); + for bound in bounds { + this.visit_param_bound(bound); + } + }) + }); + } + _ => intravisit::walk_ty(self, ty), + } + } + + #[instrument(level = "debug", skip(self))] + fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) { + use self::hir::TraitItemKind::*; + match trait_item.kind { + Fn(_, _) => { + self.visit_early_late(trait_item.hir_id(), &trait_item.generics, |this| { + intravisit::walk_trait_item(this, trait_item) + }); + } + Type(bounds, ref ty) => { + let generics = &trait_item.generics; + let lifetimes = generics + .params + .iter() + .filter_map(|param| match param.kind { + GenericParamKind::Lifetime { .. } => { + Some(Region::early(self.tcx.hir(), param)) + } + GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => None, + }) + .collect(); + self.record_late_bound_vars(trait_item.hir_id(), vec![]); + let scope = Scope::Binder { + hir_id: trait_item.hir_id(), + lifetimes, + s: self.scope, + scope_type: BinderScopeType::Normal, + where_bound_origin: None, + }; + self.with(scope, |this| { + let scope = Scope::TraitRefBoundary { s: this.scope }; + this.with(scope, |this| { + this.visit_generics(generics); + for bound in bounds { + this.visit_param_bound(bound); + } + if let Some(ty) = ty { + this.visit_ty(ty); + } + }) + }); + } + Const(_, _) => { + // Only methods and types support generics. + assert!(trait_item.generics.params.is_empty()); + intravisit::walk_trait_item(self, trait_item); + } + } + } + + #[instrument(level = "debug", skip(self))] + fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) { + use self::hir::ImplItemKind::*; + match impl_item.kind { + Fn(..) => self.visit_early_late(impl_item.hir_id(), &impl_item.generics, |this| { + intravisit::walk_impl_item(this, impl_item) + }), + Type(ref ty) => { + let generics = &impl_item.generics; + let lifetimes: FxIndexMap = generics + .params + .iter() + .filter_map(|param| match param.kind { + GenericParamKind::Lifetime { .. } => { + Some(Region::early(self.tcx.hir(), param)) + } + GenericParamKind::Const { .. } | GenericParamKind::Type { .. } => None, + }) + .collect(); + self.record_late_bound_vars(impl_item.hir_id(), vec![]); + let scope = Scope::Binder { + hir_id: impl_item.hir_id(), + lifetimes, + s: self.scope, + scope_type: BinderScopeType::Normal, + where_bound_origin: None, + }; + self.with(scope, |this| { + let scope = Scope::TraitRefBoundary { s: this.scope }; + this.with(scope, |this| { + this.visit_generics(generics); + this.visit_ty(ty); + }) + }); + } + Const(_, _) => { + // Only methods and types support generics. + assert!(impl_item.generics.params.is_empty()); + intravisit::walk_impl_item(self, impl_item); + } + } + } + + #[instrument(level = "debug", skip(self))] + fn visit_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime) { + match lifetime_ref.name { + hir::LifetimeName::Static => self.insert_lifetime(lifetime_ref, Region::Static), + hir::LifetimeName::Param(param_def_id, _) => { + self.resolve_lifetime_ref(param_def_id, lifetime_ref) + } + // If we've already reported an error, just ignore `lifetime_ref`. + hir::LifetimeName::Error => {} + // Those will be resolved by typechecking. + hir::LifetimeName::ImplicitObjectLifetimeDefault | hir::LifetimeName::Infer => {} + } + } + + fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, _: hir::HirId) { + for (i, segment) in path.segments.iter().enumerate() { + let depth = path.segments.len() - i - 1; + if let Some(ref args) = segment.args { + self.visit_segment_args(path.res, depth, args); + } + } + } + + fn visit_fn( + &mut self, + fk: intravisit::FnKind<'tcx>, + fd: &'tcx hir::FnDecl<'tcx>, + body_id: hir::BodyId, + _: Span, + _: hir::HirId, + ) { + let output = match fd.output { + hir::FnRetTy::DefaultReturn(_) => None, + hir::FnRetTy::Return(ref ty) => Some(&**ty), + }; + self.visit_fn_like_elision(&fd.inputs, output, matches!(fk, intravisit::FnKind::Closure)); + intravisit::walk_fn_kind(self, fk); + self.visit_nested_body(body_id) + } + + fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) { + let scope = Scope::TraitRefBoundary { s: self.scope }; + self.with(scope, |this| { + for param in generics.params { + match param.kind { + GenericParamKind::Lifetime { .. } => {} + GenericParamKind::Type { ref default, .. } => { + if let Some(ref ty) = default { + this.visit_ty(&ty); + } + } + GenericParamKind::Const { ref ty, default } => { + this.visit_ty(&ty); + if let Some(default) = default { + this.visit_body(this.tcx.hir().body(default.body)); + } + } + } + } + for predicate in generics.predicates { + match predicate { + &hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate { + hir_id, + ref bounded_ty, + bounds, + ref bound_generic_params, + origin, + .. + }) => { + let lifetimes: FxIndexMap = + bound_generic_params + .iter() + .filter(|param| { + matches!(param.kind, GenericParamKind::Lifetime { .. }) + }) + .enumerate() + .map(|(late_bound_idx, param)| { + Region::late(late_bound_idx as u32, this.tcx.hir(), param) + }) + .collect(); + let binders: Vec<_> = + lifetimes + .iter() + .map(|(_, region)| { + late_region_as_bound_region(this.tcx, region) + }) + .collect(); + this.record_late_bound_vars(hir_id, binders.clone()); + // Even if there are no lifetimes defined here, we still wrap it in a binder + // scope. If there happens to be a nested poly trait ref (an error), that + // will be `Concatenating` anyways, so we don't have to worry about the depth + // being wrong. + let scope = Scope::Binder { + hir_id, + lifetimes, + s: this.scope, + scope_type: BinderScopeType::Normal, + where_bound_origin: Some(origin), + }; + this.with(scope, |this| { + this.visit_ty(&bounded_ty); + walk_list!(this, visit_param_bound, bounds); + }) + } + &hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate { + ref lifetime, + bounds, + .. + }) => { + this.visit_lifetime(lifetime); + walk_list!(this, visit_param_bound, bounds); + + if lifetime.name != hir::LifetimeName::Static { + for bound in bounds { + let hir::GenericBound::Outlives(ref lt) = bound else { + continue; + }; + if lt.name != hir::LifetimeName::Static { + continue; + } + this.insert_lifetime(lt, Region::Static); + this.tcx + .sess + .struct_span_warn( + lifetime.span, + &format!( + "unnecessary lifetime parameter `{}`", + lifetime.name.ident(), + ), + ) + .help(&format!( + "you can use the `'static` lifetime directly, in place of `{}`", + lifetime.name.ident(), + )) + .emit(); + } + } + } + &hir::WherePredicate::EqPredicate(hir::WhereEqPredicate { + ref lhs_ty, + ref rhs_ty, + .. + }) => { + this.visit_ty(lhs_ty); + this.visit_ty(rhs_ty); + } + } + } + }) + } + + fn visit_param_bound(&mut self, bound: &'tcx hir::GenericBound<'tcx>) { + match bound { + hir::GenericBound::LangItemTrait(_, _, hir_id, _) => { + // FIXME(jackh726): This is pretty weird. `LangItemTrait` doesn't go + // through the regular poly trait ref code, so we don't get another + // chance to introduce a binder. For now, I'm keeping the existing logic + // of "if there isn't a Binder scope above us, add one", but I + // imagine there's a better way to go about this. + let (binders, scope_type) = self.poly_trait_ref_binder_info(); + + self.record_late_bound_vars(*hir_id, binders); + let scope = Scope::Binder { + hir_id: *hir_id, + lifetimes: FxIndexMap::default(), + s: self.scope, + scope_type, + where_bound_origin: None, + }; + self.with(scope, |this| { + intravisit::walk_param_bound(this, bound); + }); + } + _ => intravisit::walk_param_bound(self, bound), + } + } + + fn visit_poly_trait_ref(&mut self, trait_ref: &'tcx hir::PolyTraitRef<'tcx>) { + debug!("visit_poly_trait_ref(trait_ref={:?})", trait_ref); + + let (mut binders, scope_type) = self.poly_trait_ref_binder_info(); + + let initial_bound_vars = binders.len() as u32; + let mut lifetimes: FxIndexMap = FxIndexMap::default(); + let binders_iter = trait_ref + .bound_generic_params + .iter() + .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. })) + .enumerate() + .map(|(late_bound_idx, param)| { + let pair = + Region::late(initial_bound_vars + late_bound_idx as u32, self.tcx.hir(), param); + let r = late_region_as_bound_region(self.tcx, &pair.1); + lifetimes.insert(pair.0, pair.1); + r + }); + binders.extend(binders_iter); + + debug!(?binders); + self.record_late_bound_vars(trait_ref.trait_ref.hir_ref_id, binders); + + // Always introduce a scope here, even if this is in a where clause and + // we introduced the binders around the bounded Ty. In that case, we + // just reuse the concatenation functionality also present in nested trait + // refs. + let scope = Scope::Binder { + hir_id: trait_ref.trait_ref.hir_ref_id, + lifetimes, + s: self.scope, + scope_type, + where_bound_origin: None, + }; + self.with(scope, |this| { + walk_list!(this, visit_generic_param, trait_ref.bound_generic_params); + this.visit_trait_ref(&trait_ref.trait_ref); + }); + } +} + +fn object_lifetime_default<'tcx>(tcx: TyCtxt<'tcx>, param_def_id: DefId) -> ObjectLifetimeDefault { + debug_assert_eq!(tcx.def_kind(param_def_id), DefKind::TyParam); + let param_def_id = param_def_id.expect_local(); + let parent_def_id = tcx.local_parent(param_def_id); + let generics = tcx.hir().get_generics(parent_def_id).unwrap(); + let param_hir_id = tcx.local_def_id_to_hir_id(param_def_id); + let param = generics.params.iter().find(|p| p.hir_id == param_hir_id).unwrap(); + + // Scan the bounds and where-clauses on parameters to extract bounds + // of the form `T:'a` so as to determine the `ObjectLifetimeDefault` + // for each type parameter. + match param.kind { + GenericParamKind::Type { .. } => { + let mut set = Set1::Empty; + + // Look for `type: ...` where clauses. + for bound in generics.bounds_for_param(param_def_id) { + // Ignore `for<'a> type: ...` as they can change what + // lifetimes mean (although we could "just" handle it). + if !bound.bound_generic_params.is_empty() { + continue; + } + + for bound in bound.bounds { + if let hir::GenericBound::Outlives(ref lifetime) = *bound { + set.insert(lifetime.name.normalize_to_macros_2_0()); + } + } + } + + match set { + Set1::Empty => ObjectLifetimeDefault::Empty, + Set1::One(hir::LifetimeName::Static) => ObjectLifetimeDefault::Static, + Set1::One(hir::LifetimeName::Param(param_def_id, _)) => { + ObjectLifetimeDefault::Param(param_def_id.to_def_id()) + } + _ => ObjectLifetimeDefault::Ambiguous, + } + } + _ => { + bug!("object_lifetime_default_raw must only be called on a type parameter") + } + } +} + +impl<'a, 'tcx> LifetimeContext<'a, 'tcx> { + fn with(&mut self, wrap_scope: Scope<'_>, f: F) + where + F: for<'b> FnOnce(&mut LifetimeContext<'b, 'tcx>), + { + let LifetimeContext { tcx, map, .. } = self; + let mut this = LifetimeContext { + tcx: *tcx, + map, + scope: &wrap_scope, + trait_definition_only: self.trait_definition_only, + }; + let span = debug_span!("scope", scope = ?TruncatedScopeDebug(&this.scope)); + { + let _enter = span.enter(); + f(&mut this); + } + } + + fn record_late_bound_vars(&mut self, hir_id: hir::HirId, binder: Vec) { + if let Some(old) = self.map.late_bound_vars.insert(hir_id, binder) { + bug!( + "overwrote bound vars for {hir_id:?}:\nold={old:?}\nnew={:?}", + self.map.late_bound_vars[&hir_id] + ) + } + } + + /// Visits self by adding a scope and handling recursive walk over the contents with `walk`. + /// + /// Handles visiting fns and methods. These are a bit complicated because we must distinguish + /// early- vs late-bound lifetime parameters. We do this by checking which lifetimes appear + /// within type bounds; those are early bound lifetimes, and the rest are late bound. + /// + /// For example: + /// + /// fn foo<'a,'b,'c,T:Trait<'b>>(...) + /// + /// Here `'a` and `'c` are late bound but `'b` is early bound. Note that early- and late-bound + /// lifetimes may be interspersed together. + /// + /// If early bound lifetimes are present, we separate them into their own list (and likewise + /// for late bound). They will be numbered sequentially, starting from the lowest index that is + /// already in scope (for a fn item, that will be 0, but for a method it might not be). Late + /// bound lifetimes are resolved by name and associated with a binder ID (`binder_id`), so the + /// ordering is not important there. + fn visit_early_late( + &mut self, + hir_id: hir::HirId, + generics: &'tcx hir::Generics<'tcx>, + walk: F, + ) where + F: for<'b, 'c> FnOnce(&'b mut LifetimeContext<'c, 'tcx>), + { + let mut named_late_bound_vars = 0; + let lifetimes: FxIndexMap = generics + .params + .iter() + .filter_map(|param| match param.kind { + GenericParamKind::Lifetime { .. } => { + if self.tcx.is_late_bound(param.hir_id) { + let late_bound_idx = named_late_bound_vars; + named_late_bound_vars += 1; + Some(Region::late(late_bound_idx, self.tcx.hir(), param)) + } else { + Some(Region::early(self.tcx.hir(), param)) + } + } + GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => None, + }) + .collect(); + + let binders: Vec<_> = generics + .params + .iter() + .filter(|param| { + matches!(param.kind, GenericParamKind::Lifetime { .. }) + && self.tcx.is_late_bound(param.hir_id) + }) + .enumerate() + .map(|(late_bound_idx, param)| { + let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param); + late_region_as_bound_region(self.tcx, &pair.1) + }) + .collect(); + self.record_late_bound_vars(hir_id, binders); + let scope = Scope::Binder { + hir_id, + lifetimes, + s: self.scope, + scope_type: BinderScopeType::Normal, + where_bound_origin: None, + }; + self.with(scope, walk); + } + + #[instrument(level = "debug", skip(self))] + fn resolve_lifetime_ref( + &mut self, + region_def_id: LocalDefId, + lifetime_ref: &'tcx hir::Lifetime, + ) { + // Walk up the scope chain, tracking the number of fn scopes + // that we pass through, until we find a lifetime with the + // given name or we run out of scopes. + // search. + let mut late_depth = 0; + let mut scope = self.scope; + let mut outermost_body = None; + let result = loop { + match *scope { + Scope::Body { id, s } => { + outermost_body = Some(id); + scope = s; + } + + Scope::Root => { + break None; + } + + Scope::Binder { ref lifetimes, scope_type, s, where_bound_origin, .. } => { + if let Some(&def) = lifetimes.get(®ion_def_id) { + break Some(def.shifted(late_depth)); + } + match scope_type { + BinderScopeType::Normal => late_depth += 1, + BinderScopeType::Concatenating => {} + } + // Fresh lifetimes in APIT used to be allowed in async fns and forbidden in + // regular fns. + if let Some(hir::PredicateOrigin::ImplTrait) = where_bound_origin + && let hir::LifetimeName::Param(_, hir::ParamName::Fresh) = lifetime_ref.name + && let hir::IsAsync::NotAsync = self.tcx.asyncness(lifetime_ref.hir_id.owner.def_id) + && !self.tcx.features().anonymous_lifetime_in_impl_trait + { + let mut diag = rustc_session::parse::feature_err( + &self.tcx.sess.parse_sess, + sym::anonymous_lifetime_in_impl_trait, + lifetime_ref.span, + "anonymous lifetimes in `impl Trait` are unstable", + ); + + match self.tcx.hir().get_generics(lifetime_ref.hir_id.owner.def_id) { + Some(generics) => { + + let new_param_sugg_tuple; + + new_param_sugg_tuple = match generics.span_for_param_suggestion() { + Some(_) => { + Some((self.tcx.sess.source_map().span_through_char(generics.span, '<').shrink_to_hi(), "'a, ".to_owned())) + }, + None => Some((generics.span, "<'a>".to_owned())) + }; + + let mut multi_sugg_vec = vec![(lifetime_ref.span.shrink_to_hi(), "'a ".to_owned())]; + + if let Some(new_tuple) = new_param_sugg_tuple{ + multi_sugg_vec.push(new_tuple); + } + + diag.span_label(lifetime_ref.span, "expected named lifetime parameter"); + diag.multipart_suggestion("consider introducing a named lifetime parameter", + multi_sugg_vec, + rustc_errors::Applicability::MaybeIncorrect); + + }, + None => { } + } + + diag.emit(); + return; + } + scope = s; + } + + Scope::Elision { s, .. } + | Scope::ObjectLifetimeDefault { s, .. } + | Scope::Supertrait { s, .. } + | Scope::TraitRefBoundary { s, .. } => { + scope = s; + } + } + }; + + if let Some(mut def) = result { + if let Region::EarlyBound(..) = def { + // Do not free early-bound regions, only late-bound ones. + } else if let Some(body_id) = outermost_body { + let fn_id = self.tcx.hir().body_owner(body_id); + match self.tcx.hir().get(fn_id) { + Node::Item(&hir::Item { kind: hir::ItemKind::Fn(..), .. }) + | Node::TraitItem(&hir::TraitItem { + kind: hir::TraitItemKind::Fn(..), .. + }) + | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) => { + let scope = self.tcx.hir().local_def_id(fn_id); + def = Region::Free(scope.to_def_id(), def.id().unwrap()); + } + _ => {} + } + } + + self.insert_lifetime(lifetime_ref, def); + return; + } + + // We may fail to resolve higher-ranked lifetimes that are mentioned by APIT. + // AST-based resolution does not care for impl-trait desugaring, which are the + // responibility of lowering. This may create a mismatch between the resolution + // AST found (`region_def_id`) which points to HRTB, and what HIR allows. + // ``` + // fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {} + // ``` + // + // In such case, walk back the binders to diagnose it properly. + let mut scope = self.scope; + loop { + match *scope { + Scope::Binder { + where_bound_origin: Some(hir::PredicateOrigin::ImplTrait), .. + } => { + let mut err = self.tcx.sess.struct_span_err( + lifetime_ref.span, + "`impl Trait` can only mention lifetimes bound at the fn or impl level", + ); + err.span_note(self.tcx.def_span(region_def_id), "lifetime declared here"); + err.emit(); + return; + } + Scope::Root => break, + Scope::Binder { s, .. } + | Scope::Body { s, .. } + | Scope::Elision { s, .. } + | Scope::ObjectLifetimeDefault { s, .. } + | Scope::Supertrait { s, .. } + | Scope::TraitRefBoundary { s, .. } => { + scope = s; + } + } + } + + self.tcx.sess.delay_span_bug( + lifetime_ref.span, + &format!("Could not resolve {:?} in scope {:#?}", lifetime_ref, self.scope,), + ); + } + + #[instrument(level = "debug", skip(self))] + fn visit_segment_args( + &mut self, + res: Res, + depth: usize, + generic_args: &'tcx hir::GenericArgs<'tcx>, + ) { + if generic_args.parenthesized { + self.visit_fn_like_elision( + generic_args.inputs(), + Some(generic_args.bindings[0].ty()), + false, + ); + return; + } + + for arg in generic_args.args { + if let hir::GenericArg::Lifetime(lt) = arg { + self.visit_lifetime(lt); + } + } + + // Figure out if this is a type/trait segment, + // which requires object lifetime defaults. + let type_def_id = match res { + Res::Def(DefKind::AssocTy, def_id) if depth == 1 => Some(self.tcx.parent(def_id)), + Res::Def(DefKind::Variant, def_id) if depth == 0 => Some(self.tcx.parent(def_id)), + Res::Def( + DefKind::Struct + | DefKind::Union + | DefKind::Enum + | DefKind::TyAlias + | DefKind::Trait, + def_id, + ) if depth == 0 => Some(def_id), + _ => None, + }; + + debug!(?type_def_id); + + // Compute a vector of defaults, one for each type parameter, + // per the rules given in RFCs 599 and 1156. Example: + // + // ```rust + // struct Foo<'a, T: 'a, U> { } + // ``` + // + // If you have `Foo<'x, dyn Bar, dyn Baz>`, we want to default + // `dyn Bar` to `dyn Bar + 'x` (because of the `T: 'a` bound) + // and `dyn Baz` to `dyn Baz + 'static` (because there is no + // such bound). + // + // Therefore, we would compute `object_lifetime_defaults` to a + // vector like `['x, 'static]`. Note that the vector only + // includes type parameters. + let object_lifetime_defaults = type_def_id.map_or_else(Vec::new, |def_id| { + let in_body = { + let mut scope = self.scope; + loop { + match *scope { + Scope::Root => break false, + + Scope::Body { .. } => break true, + + Scope::Binder { s, .. } + | Scope::Elision { s, .. } + | Scope::ObjectLifetimeDefault { s, .. } + | Scope::Supertrait { s, .. } + | Scope::TraitRefBoundary { s, .. } => { + scope = s; + } + } + } + }; + + let map = &self.map; + let generics = self.tcx.generics_of(def_id); + + // `type_def_id` points to an item, so there is nothing to inherit generics from. + debug_assert_eq!(generics.parent_count, 0); + + let set_to_region = |set: ObjectLifetimeDefault| match set { + ObjectLifetimeDefault::Empty => { + if in_body { + None + } else { + Some(Region::Static) + } + } + ObjectLifetimeDefault::Static => Some(Region::Static), + ObjectLifetimeDefault::Param(param_def_id) => { + // This index can be used with `generic_args` since `parent_count == 0`. + let index = generics.param_def_id_to_index[¶m_def_id] as usize; + generic_args.args.get(index).and_then(|arg| match arg { + GenericArg::Lifetime(lt) => map.defs.get(<.hir_id).copied(), + _ => None, + }) + } + ObjectLifetimeDefault::Ambiguous => None, + }; + generics + .params + .iter() + .filter_map(|param| { + match self.tcx.def_kind(param.def_id) { + // Generic consts don't impose any constraints. + // + // We still store a dummy value here to allow generic parameters + // in an arbitrary order. + DefKind::ConstParam => Some(ObjectLifetimeDefault::Empty), + DefKind::TyParam => Some(self.tcx.object_lifetime_default(param.def_id)), + // We may also get a `Trait` or `TraitAlias` because of how generics `Self` parameter + // works. Ignore it because it can't have a meaningful lifetime default. + DefKind::LifetimeParam | DefKind::Trait | DefKind::TraitAlias => None, + dk => bug!("unexpected def_kind {:?}", dk), + } + }) + .map(set_to_region) + .collect() + }); + + debug!(?object_lifetime_defaults); + + let mut i = 0; + for arg in generic_args.args { + match arg { + GenericArg::Lifetime(_) => {} + GenericArg::Type(ty) => { + if let Some(<) = object_lifetime_defaults.get(i) { + let scope = Scope::ObjectLifetimeDefault { lifetime: lt, s: self.scope }; + self.with(scope, |this| this.visit_ty(ty)); + } else { + self.visit_ty(ty); + } + i += 1; + } + GenericArg::Const(ct) => { + self.visit_anon_const(&ct.value); + i += 1; + } + GenericArg::Infer(inf) => { + self.visit_id(inf.hir_id); + i += 1; + } + } + } + + // Hack: when resolving the type `XX` in binding like `dyn + // Foo<'b, Item = XX>`, the current object-lifetime default + // would be to examine the trait `Foo` to check whether it has + // a lifetime bound declared on `Item`. e.g., if `Foo` is + // declared like so, then the default object lifetime bound in + // `XX` should be `'b`: + // + // ```rust + // trait Foo<'a> { + // type Item: 'a; + // } + // ``` + // + // but if we just have `type Item;`, then it would be + // `'static`. However, we don't get all of this logic correct. + // + // Instead, we do something hacky: if there are no lifetime parameters + // to the trait, then we simply use a default object lifetime + // bound of `'static`, because there is no other possibility. On the other hand, + // if there ARE lifetime parameters, then we require the user to give an + // explicit bound for now. + // + // This is intended to leave room for us to implement the + // correct behavior in the future. + let has_lifetime_parameter = + generic_args.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_))); + + // Resolve lifetimes found in the bindings, so either in the type `XX` in `Item = XX` or + // in the trait ref `YY<...>` in `Item: YY<...>`. + for binding in generic_args.bindings { + let scope = Scope::ObjectLifetimeDefault { + lifetime: if has_lifetime_parameter { None } else { Some(Region::Static) }, + s: self.scope, + }; + if let Some(type_def_id) = type_def_id { + let lifetimes = LifetimeContext::supertrait_hrtb_lifetimes( + self.tcx, + type_def_id, + binding.ident, + ); + self.with(scope, |this| { + let scope = Scope::Supertrait { + lifetimes: lifetimes.unwrap_or_default(), + s: this.scope, + }; + this.with(scope, |this| this.visit_assoc_type_binding(binding)); + }); + } else { + self.with(scope, |this| this.visit_assoc_type_binding(binding)); + } + } + } + + /// Returns all the late-bound vars that come into scope from supertrait HRTBs, based on the + /// associated type name and starting trait. + /// For example, imagine we have + /// ```ignore (illustrative) + /// trait Foo<'a, 'b> { + /// type As; + /// } + /// trait Bar<'b>: for<'a> Foo<'a, 'b> {} + /// trait Bar: for<'b> Bar<'b> {} + /// ``` + /// In this case, if we wanted to the supertrait HRTB lifetimes for `As` on + /// the starting trait `Bar`, we would return `Some(['b, 'a])`. + fn supertrait_hrtb_lifetimes( + tcx: TyCtxt<'tcx>, + def_id: DefId, + assoc_name: Ident, + ) -> Option> { + let trait_defines_associated_type_named = |trait_def_id: DefId| { + tcx.associated_items(trait_def_id) + .find_by_name_and_kind(tcx, assoc_name, ty::AssocKind::Type, trait_def_id) + .is_some() + }; + + use smallvec::{smallvec, SmallVec}; + let mut stack: SmallVec<[(DefId, SmallVec<[ty::BoundVariableKind; 8]>); 8]> = + smallvec![(def_id, smallvec![])]; + let mut visited: FxHashSet = FxHashSet::default(); + loop { + let Some((def_id, bound_vars)) = stack.pop() else { + break None; + }; + // See issue #83753. If someone writes an associated type on a non-trait, just treat it as + // there being no supertrait HRTBs. + match tcx.def_kind(def_id) { + DefKind::Trait | DefKind::TraitAlias | DefKind::Impl => {} + _ => break None, + } + + if trait_defines_associated_type_named(def_id) { + break Some(bound_vars.into_iter().collect()); + } + let predicates = + tcx.super_predicates_that_define_assoc_type((def_id, Some(assoc_name))); + let obligations = predicates.predicates.iter().filter_map(|&(pred, _)| { + let bound_predicate = pred.kind(); + match bound_predicate.skip_binder() { + ty::PredicateKind::Trait(data) => { + // The order here needs to match what we would get from `subst_supertrait` + let pred_bound_vars = bound_predicate.bound_vars(); + let mut all_bound_vars = bound_vars.clone(); + all_bound_vars.extend(pred_bound_vars.iter()); + let super_def_id = data.trait_ref.def_id; + Some((super_def_id, all_bound_vars)) + } + _ => None, + } + }); + + let obligations = obligations.filter(|o| visited.insert(o.0)); + stack.extend(obligations); + } + } + + #[instrument(level = "debug", skip(self))] + fn visit_fn_like_elision( + &mut self, + inputs: &'tcx [hir::Ty<'tcx>], + output: Option<&'tcx hir::Ty<'tcx>>, + in_closure: bool, + ) { + self.with(Scope::Elision { s: self.scope }, |this| { + for input in inputs { + this.visit_ty(input); + } + if !in_closure && let Some(output) = output { + this.visit_ty(output); + } + }); + if in_closure && let Some(output) = output { + self.visit_ty(output); + } + } + + fn resolve_object_lifetime_default(&mut self, lifetime_ref: &'tcx hir::Lifetime) { + debug!("resolve_object_lifetime_default(lifetime_ref={:?})", lifetime_ref); + let mut late_depth = 0; + let mut scope = self.scope; + let lifetime = loop { + match *scope { + Scope::Binder { s, scope_type, .. } => { + match scope_type { + BinderScopeType::Normal => late_depth += 1, + BinderScopeType::Concatenating => {} + } + scope = s; + } + + Scope::Root | Scope::Elision { .. } => break Region::Static, + + Scope::Body { .. } | Scope::ObjectLifetimeDefault { lifetime: None, .. } => return, + + Scope::ObjectLifetimeDefault { lifetime: Some(l), .. } => break l, + + Scope::Supertrait { s, .. } | Scope::TraitRefBoundary { s, .. } => { + scope = s; + } + } + }; + self.insert_lifetime(lifetime_ref, lifetime.shifted(late_depth)); + } + + #[instrument(level = "debug", skip(self))] + fn insert_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime, def: Region) { + debug!( + node = ?self.tcx.hir().node_to_string(lifetime_ref.hir_id), + span = ?self.tcx.sess.source_map().span_to_diagnostic_string(lifetime_ref.span) + ); + self.map.defs.insert(lifetime_ref.hir_id, def); + } + + /// Sometimes we resolve a lifetime, but later find that it is an + /// error (esp. around impl trait). In that case, we remove the + /// entry into `map.defs` so as not to confuse later code. + fn uninsert_lifetime_on_error(&mut self, lifetime_ref: &'tcx hir::Lifetime, bad_def: Region) { + let old_value = self.map.defs.remove(&lifetime_ref.hir_id); + assert_eq!(old_value, Some(bad_def)); + } +} + +/// Detects late-bound lifetimes and inserts them into +/// `late_bound`. +/// +/// A region declared on a fn is **late-bound** if: +/// - it is constrained by an argument type; +/// - it does not appear in a where-clause. +/// +/// "Constrained" basically means that it appears in any type but +/// not amongst the inputs to a projection. In other words, `<&'a +/// T as Trait<''b>>::Foo` does not constrain `'a` or `'b`. +fn is_late_bound_map(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option<&FxIndexSet> { + let hir_id = tcx.hir().local_def_id_to_hir_id(def_id); + let decl = tcx.hir().fn_decl_by_hir_id(hir_id)?; + let generics = tcx.hir().get_generics(def_id)?; + + let mut late_bound = FxIndexSet::default(); + + let mut constrained_by_input = ConstrainedCollector::default(); + for arg_ty in decl.inputs { + constrained_by_input.visit_ty(arg_ty); + } + + let mut appears_in_output = AllCollector::default(); + intravisit::walk_fn_ret_ty(&mut appears_in_output, &decl.output); + + debug!(?constrained_by_input.regions); + + // Walk the lifetimes that appear in where clauses. + // + // Subtle point: because we disallow nested bindings, we can just + // ignore binders here and scrape up all names we see. + let mut appears_in_where_clause = AllCollector::default(); + appears_in_where_clause.visit_generics(generics); + debug!(?appears_in_where_clause.regions); + + // Late bound regions are those that: + // - appear in the inputs + // - do not appear in the where-clauses + // - are not implicitly captured by `impl Trait` + for param in generics.params { + match param.kind { + hir::GenericParamKind::Lifetime { .. } => { /* fall through */ } + + // Neither types nor consts are late-bound. + hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => continue, + } + + let param_def_id = tcx.hir().local_def_id(param.hir_id); + + // appears in the where clauses? early-bound. + if appears_in_where_clause.regions.contains(¶m_def_id) { + continue; + } + + // does not appear in the inputs, but appears in the return type? early-bound. + if !constrained_by_input.regions.contains(¶m_def_id) + && appears_in_output.regions.contains(¶m_def_id) + { + continue; + } + + debug!("lifetime {:?} with id {:?} is late-bound", param.name.ident(), param.hir_id); + + let inserted = late_bound.insert(param_def_id); + assert!(inserted, "visited lifetime {:?} twice", param.hir_id); + } + + debug!(?late_bound); + return Some(tcx.arena.alloc(late_bound)); + + #[derive(Default)] + struct ConstrainedCollector { + regions: FxHashSet, + } + + impl<'v> Visitor<'v> for ConstrainedCollector { + fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) { + match ty.kind { + hir::TyKind::Path( + hir::QPath::Resolved(Some(_), _) | hir::QPath::TypeRelative(..), + ) => { + // ignore lifetimes appearing in associated type + // projections, as they are not *constrained* + // (defined above) + } + + hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => { + // consider only the lifetimes on the final + // segment; I am not sure it's even currently + // valid to have them elsewhere, but even if it + // is, those would be potentially inputs to + // projections + if let Some(last_segment) = path.segments.last() { + self.visit_path_segment(last_segment); + } + } + + _ => { + intravisit::walk_ty(self, ty); + } + } + } + + fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) { + if let hir::LifetimeName::Param(def_id, _) = lifetime_ref.name { + self.regions.insert(def_id); + } + } + } + + #[derive(Default)] + struct AllCollector { + regions: FxHashSet, + } + + impl<'v> Visitor<'v> for AllCollector { + fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) { + if let hir::LifetimeName::Param(def_id, _) = lifetime_ref.name { + self.regions.insert(def_id); + } + } + } +} -- cgit v1.2.3