From 698f8c2f01ea549d77d7dc3338a12e04c11057b9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:02:58 +0200 Subject: Adding upstream version 1.64.0+dfsg1. Signed-off-by: Daniel Baumann --- compiler/rustc_infer/src/infer/combine.rs | 1001 +++++++++++++++++++++++++++++ 1 file changed, 1001 insertions(+) create mode 100644 compiler/rustc_infer/src/infer/combine.rs (limited to 'compiler/rustc_infer/src/infer/combine.rs') diff --git a/compiler/rustc_infer/src/infer/combine.rs b/compiler/rustc_infer/src/infer/combine.rs new file mode 100644 index 000000000..8bf1de34a --- /dev/null +++ b/compiler/rustc_infer/src/infer/combine.rs @@ -0,0 +1,1001 @@ +//! There are four type combiners: [Equate], [Sub], [Lub], and [Glb]. +//! Each implements the trait [TypeRelation] and contains methods for +//! combining two instances of various things and yielding a new instance. +//! These combiner methods always yield a `Result`. To relate two +//! types, you can use `infcx.at(cause, param_env)` which then allows +//! you to use the relevant methods of [At](super::at::At). +//! +//! Combiners mostly do their specific behavior and then hand off the +//! bulk of the work to [InferCtxt::super_combine_tys] and +//! [InferCtxt::super_combine_consts]. +//! +//! Combining two types may have side-effects on the inference contexts +//! which can be undone by using snapshots. You probably want to use +//! either [InferCtxt::commit_if_ok] or [InferCtxt::probe]. +//! +//! On success, the LUB/GLB operations return the appropriate bound. The +//! return value of `Equate` or `Sub` shouldn't really be used. +//! +//! ## Contravariance +//! +//! We explicitly track which argument is expected using +//! [TypeRelation::a_is_expected], so when dealing with contravariance +//! this should be correctly updated. + +use super::equate::Equate; +use super::glb::Glb; +use super::lub::Lub; +use super::sub::Sub; +use super::type_variable::TypeVariableValue; +use super::{InferCtxt, MiscVariable, TypeTrace}; +use crate::traits::{Obligation, PredicateObligations}; +use rustc_data_structures::sso::SsoHashMap; +use rustc_hir::def_id::DefId; +use rustc_middle::infer::unify_key::{ConstVarValue, ConstVariableValue}; +use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind}; +use rustc_middle::traits::ObligationCause; +use rustc_middle::ty::error::{ExpectedFound, TypeError}; +use rustc_middle::ty::relate::{self, Relate, RelateResult, TypeRelation}; +use rustc_middle::ty::subst::SubstsRef; +use rustc_middle::ty::{self, InferConst, ToPredicate, Ty, TyCtxt, TypeVisitable}; +use rustc_middle::ty::{IntType, UintType}; +use rustc_span::{Span, DUMMY_SP}; + +#[derive(Clone)] +pub struct CombineFields<'infcx, 'tcx> { + pub infcx: &'infcx InferCtxt<'infcx, 'tcx>, + pub trace: TypeTrace<'tcx>, + pub cause: Option, + pub param_env: ty::ParamEnv<'tcx>, + pub obligations: PredicateObligations<'tcx>, + /// Whether we should define opaque types + /// or just treat them opaquely. + /// Currently only used to prevent predicate + /// matching from matching anything against opaque + /// types. + pub define_opaque_types: bool, +} + +#[derive(Copy, Clone, Debug)] +pub enum RelationDir { + SubtypeOf, + SupertypeOf, + EqTo, +} + +impl<'infcx, 'tcx> InferCtxt<'infcx, 'tcx> { + pub fn super_combine_tys( + &self, + relation: &mut R, + a: Ty<'tcx>, + b: Ty<'tcx>, + ) -> RelateResult<'tcx, Ty<'tcx>> + where + R: TypeRelation<'tcx>, + { + let a_is_expected = relation.a_is_expected(); + + match (a.kind(), b.kind()) { + // Relate integral variables to other types + (&ty::Infer(ty::IntVar(a_id)), &ty::Infer(ty::IntVar(b_id))) => { + self.inner + .borrow_mut() + .int_unification_table() + .unify_var_var(a_id, b_id) + .map_err(|e| int_unification_error(a_is_expected, e))?; + Ok(a) + } + (&ty::Infer(ty::IntVar(v_id)), &ty::Int(v)) => { + self.unify_integral_variable(a_is_expected, v_id, IntType(v)) + } + (&ty::Int(v), &ty::Infer(ty::IntVar(v_id))) => { + self.unify_integral_variable(!a_is_expected, v_id, IntType(v)) + } + (&ty::Infer(ty::IntVar(v_id)), &ty::Uint(v)) => { + self.unify_integral_variable(a_is_expected, v_id, UintType(v)) + } + (&ty::Uint(v), &ty::Infer(ty::IntVar(v_id))) => { + self.unify_integral_variable(!a_is_expected, v_id, UintType(v)) + } + + // Relate floating-point variables to other types + (&ty::Infer(ty::FloatVar(a_id)), &ty::Infer(ty::FloatVar(b_id))) => { + self.inner + .borrow_mut() + .float_unification_table() + .unify_var_var(a_id, b_id) + .map_err(|e| float_unification_error(relation.a_is_expected(), e))?; + Ok(a) + } + (&ty::Infer(ty::FloatVar(v_id)), &ty::Float(v)) => { + self.unify_float_variable(a_is_expected, v_id, v) + } + (&ty::Float(v), &ty::Infer(ty::FloatVar(v_id))) => { + self.unify_float_variable(!a_is_expected, v_id, v) + } + + // All other cases of inference are errors + (&ty::Infer(_), _) | (_, &ty::Infer(_)) => { + Err(TypeError::Sorts(ty::relate::expected_found(relation, a, b))) + } + + _ => ty::relate::super_relate_tys(relation, a, b), + } + } + + pub fn super_combine_consts( + &self, + relation: &mut R, + a: ty::Const<'tcx>, + b: ty::Const<'tcx>, + ) -> RelateResult<'tcx, ty::Const<'tcx>> + where + R: ConstEquateRelation<'tcx>, + { + debug!("{}.consts({:?}, {:?})", relation.tag(), a, b); + if a == b { + return Ok(a); + } + + let a = self.shallow_resolve(a); + let b = self.shallow_resolve(b); + + let a_is_expected = relation.a_is_expected(); + + match (a.kind(), b.kind()) { + ( + ty::ConstKind::Infer(InferConst::Var(a_vid)), + ty::ConstKind::Infer(InferConst::Var(b_vid)), + ) => { + self.inner + .borrow_mut() + .const_unification_table() + .unify_var_var(a_vid, b_vid) + .map_err(|e| const_unification_error(a_is_expected, e))?; + return Ok(a); + } + + // All other cases of inference with other variables are errors. + (ty::ConstKind::Infer(InferConst::Var(_)), ty::ConstKind::Infer(_)) + | (ty::ConstKind::Infer(_), ty::ConstKind::Infer(InferConst::Var(_))) => { + bug!("tried to combine ConstKind::Infer/ConstKind::Infer(InferConst::Var)") + } + + (ty::ConstKind::Infer(InferConst::Var(vid)), _) => { + return self.unify_const_variable(relation.param_env(), vid, b, a_is_expected); + } + + (_, ty::ConstKind::Infer(InferConst::Var(vid))) => { + return self.unify_const_variable(relation.param_env(), vid, a, !a_is_expected); + } + (ty::ConstKind::Unevaluated(..), _) if self.tcx.lazy_normalization() => { + // FIXME(#59490): Need to remove the leak check to accommodate + // escaping bound variables here. + if !a.has_escaping_bound_vars() && !b.has_escaping_bound_vars() { + relation.const_equate_obligation(a, b); + } + return Ok(b); + } + (_, ty::ConstKind::Unevaluated(..)) if self.tcx.lazy_normalization() => { + // FIXME(#59490): Need to remove the leak check to accommodate + // escaping bound variables here. + if !a.has_escaping_bound_vars() && !b.has_escaping_bound_vars() { + relation.const_equate_obligation(a, b); + } + return Ok(a); + } + _ => {} + } + + ty::relate::super_relate_consts(relation, a, b) + } + + /// Unifies the const variable `target_vid` with the given constant. + /// + /// This also tests if the given const `ct` contains an inference variable which was previously + /// unioned with `target_vid`. If this is the case, inferring `target_vid` to `ct` + /// would result in an infinite type as we continuously replace an inference variable + /// in `ct` with `ct` itself. + /// + /// This is especially important as unevaluated consts use their parents generics. + /// They therefore often contain unused substs, making these errors far more likely. + /// + /// A good example of this is the following: + /// + /// ```compile_fail,E0308 + /// #![feature(generic_const_exprs)] + /// + /// fn bind(value: [u8; N]) -> [u8; 3 + 4] { + /// todo!() + /// } + /// + /// fn main() { + /// let mut arr = Default::default(); + /// arr = bind(arr); + /// } + /// ``` + /// + /// Here `3 + 4` ends up as `ConstKind::Unevaluated` which uses the generics + /// of `fn bind` (meaning that its substs contain `N`). + /// + /// `bind(arr)` now infers that the type of `arr` must be `[u8; N]`. + /// The assignment `arr = bind(arr)` now tries to equate `N` with `3 + 4`. + /// + /// As `3 + 4` contains `N` in its substs, this must not succeed. + /// + /// See `src/test/ui/const-generics/occurs-check/` for more examples where this is relevant. + #[instrument(level = "debug", skip(self))] + fn unify_const_variable( + &self, + param_env: ty::ParamEnv<'tcx>, + target_vid: ty::ConstVid<'tcx>, + ct: ty::Const<'tcx>, + vid_is_expected: bool, + ) -> RelateResult<'tcx, ty::Const<'tcx>> { + let (for_universe, span) = { + let mut inner = self.inner.borrow_mut(); + let variable_table = &mut inner.const_unification_table(); + let var_value = variable_table.probe_value(target_vid); + match var_value.val { + ConstVariableValue::Known { value } => { + bug!("instantiating {:?} which has a known value {:?}", target_vid, value) + } + ConstVariableValue::Unknown { universe } => (universe, var_value.origin.span), + } + }; + let value = ConstInferUnifier { infcx: self, span, param_env, for_universe, target_vid } + .relate(ct, ct)?; + + self.inner + .borrow_mut() + .const_unification_table() + .unify_var_value( + target_vid, + ConstVarValue { + origin: ConstVariableOrigin { + kind: ConstVariableOriginKind::ConstInference, + span: DUMMY_SP, + }, + val: ConstVariableValue::Known { value }, + }, + ) + .map(|()| value) + .map_err(|e| const_unification_error(vid_is_expected, e)) + } + + fn unify_integral_variable( + &self, + vid_is_expected: bool, + vid: ty::IntVid, + val: ty::IntVarValue, + ) -> RelateResult<'tcx, Ty<'tcx>> { + self.inner + .borrow_mut() + .int_unification_table() + .unify_var_value(vid, Some(val)) + .map_err(|e| int_unification_error(vid_is_expected, e))?; + match val { + IntType(v) => Ok(self.tcx.mk_mach_int(v)), + UintType(v) => Ok(self.tcx.mk_mach_uint(v)), + } + } + + fn unify_float_variable( + &self, + vid_is_expected: bool, + vid: ty::FloatVid, + val: ty::FloatTy, + ) -> RelateResult<'tcx, Ty<'tcx>> { + self.inner + .borrow_mut() + .float_unification_table() + .unify_var_value(vid, Some(ty::FloatVarValue(val))) + .map_err(|e| float_unification_error(vid_is_expected, e))?; + Ok(self.tcx.mk_mach_float(val)) + } +} + +impl<'infcx, 'tcx> CombineFields<'infcx, 'tcx> { + pub fn tcx(&self) -> TyCtxt<'tcx> { + self.infcx.tcx + } + + pub fn equate<'a>(&'a mut self, a_is_expected: bool) -> Equate<'a, 'infcx, 'tcx> { + Equate::new(self, a_is_expected) + } + + pub fn sub<'a>(&'a mut self, a_is_expected: bool) -> Sub<'a, 'infcx, 'tcx> { + Sub::new(self, a_is_expected) + } + + pub fn lub<'a>(&'a mut self, a_is_expected: bool) -> Lub<'a, 'infcx, 'tcx> { + Lub::new(self, a_is_expected) + } + + pub fn glb<'a>(&'a mut self, a_is_expected: bool) -> Glb<'a, 'infcx, 'tcx> { + Glb::new(self, a_is_expected) + } + + /// Here, `dir` is either `EqTo`, `SubtypeOf`, or `SupertypeOf`. + /// The idea is that we should ensure that the type `a_ty` is equal + /// to, a subtype of, or a supertype of (respectively) the type + /// to which `b_vid` is bound. + /// + /// Since `b_vid` has not yet been instantiated with a type, we + /// will first instantiate `b_vid` with a *generalized* version + /// of `a_ty`. Generalization introduces other inference + /// variables wherever subtyping could occur. + #[instrument(skip(self), level = "debug")] + pub fn instantiate( + &mut self, + a_ty: Ty<'tcx>, + dir: RelationDir, + b_vid: ty::TyVid, + a_is_expected: bool, + ) -> RelateResult<'tcx, ()> { + use self::RelationDir::*; + + // Get the actual variable that b_vid has been inferred to + debug_assert!(self.infcx.inner.borrow_mut().type_variables().probe(b_vid).is_unknown()); + + // Generalize type of `a_ty` appropriately depending on the + // direction. As an example, assume: + // + // - `a_ty == &'x ?1`, where `'x` is some free region and `?1` is an + // inference variable, + // - and `dir` == `SubtypeOf`. + // + // Then the generalized form `b_ty` would be `&'?2 ?3`, where + // `'?2` and `?3` are fresh region/type inference + // variables. (Down below, we will relate `a_ty <: b_ty`, + // adding constraints like `'x: '?2` and `?1 <: ?3`.) + let Generalization { ty: b_ty, needs_wf } = self.generalize(a_ty, b_vid, dir)?; + debug!(?b_ty); + self.infcx.inner.borrow_mut().type_variables().instantiate(b_vid, b_ty); + + if needs_wf { + self.obligations.push(Obligation::new( + self.trace.cause.clone(), + self.param_env, + ty::Binder::dummy(ty::PredicateKind::WellFormed(b_ty.into())) + .to_predicate(self.infcx.tcx), + )); + } + + // Finally, relate `b_ty` to `a_ty`, as described in previous comment. + // + // FIXME(#16847): This code is non-ideal because all these subtype + // relations wind up attributed to the same spans. We need + // to associate causes/spans with each of the relations in + // the stack to get this right. + match dir { + EqTo => self.equate(a_is_expected).relate(a_ty, b_ty), + SubtypeOf => self.sub(a_is_expected).relate(a_ty, b_ty), + SupertypeOf => self.sub(a_is_expected).relate_with_variance( + ty::Contravariant, + ty::VarianceDiagInfo::default(), + a_ty, + b_ty, + ), + }?; + + Ok(()) + } + + /// Attempts to generalize `ty` for the type variable `for_vid`. + /// This checks for cycle -- that is, whether the type `ty` + /// references `for_vid`. The `dir` is the "direction" for which we + /// a performing the generalization (i.e., are we producing a type + /// that can be used as a supertype etc). + /// + /// Preconditions: + /// + /// - `for_vid` is a "root vid" + #[instrument(skip(self), level = "trace")] + fn generalize( + &self, + ty: Ty<'tcx>, + for_vid: ty::TyVid, + dir: RelationDir, + ) -> RelateResult<'tcx, Generalization<'tcx>> { + // Determine the ambient variance within which `ty` appears. + // The surrounding equation is: + // + // ty [op] ty2 + // + // where `op` is either `==`, `<:`, or `:>`. This maps quite + // naturally. + let ambient_variance = match dir { + RelationDir::EqTo => ty::Invariant, + RelationDir::SubtypeOf => ty::Covariant, + RelationDir::SupertypeOf => ty::Contravariant, + }; + + trace!(?ambient_variance); + + let for_universe = match self.infcx.inner.borrow_mut().type_variables().probe(for_vid) { + v @ TypeVariableValue::Known { .. } => { + bug!("instantiating {:?} which has a known value {:?}", for_vid, v,) + } + TypeVariableValue::Unknown { universe } => universe, + }; + + trace!(?for_universe); + trace!(?self.trace); + + let mut generalize = Generalizer { + infcx: self.infcx, + cause: &self.trace.cause, + for_vid_sub_root: self.infcx.inner.borrow_mut().type_variables().sub_root_var(for_vid), + for_universe, + ambient_variance, + needs_wf: false, + root_ty: ty, + param_env: self.param_env, + cache: SsoHashMap::new(), + }; + + let ty = match generalize.relate(ty, ty) { + Ok(ty) => ty, + Err(e) => { + debug!(?e, "failure"); + return Err(e); + } + }; + let needs_wf = generalize.needs_wf; + trace!(?ty, ?needs_wf, "success"); + Ok(Generalization { ty, needs_wf }) + } + + pub fn add_const_equate_obligation( + &mut self, + a_is_expected: bool, + a: ty::Const<'tcx>, + b: ty::Const<'tcx>, + ) { + let predicate = if a_is_expected { + ty::PredicateKind::ConstEquate(a, b) + } else { + ty::PredicateKind::ConstEquate(b, a) + }; + self.obligations.push(Obligation::new( + self.trace.cause.clone(), + self.param_env, + ty::Binder::dummy(predicate).to_predicate(self.tcx()), + )); + } +} + +struct Generalizer<'cx, 'tcx> { + infcx: &'cx InferCtxt<'cx, 'tcx>, + + /// The span, used when creating new type variables and things. + cause: &'cx ObligationCause<'tcx>, + + /// The vid of the type variable that is in the process of being + /// instantiated; if we find this within the type we are folding, + /// that means we would have created a cyclic type. + for_vid_sub_root: ty::TyVid, + + /// The universe of the type variable that is in the process of + /// being instantiated. Any fresh variables that we create in this + /// process should be in that same universe. + for_universe: ty::UniverseIndex, + + /// Track the variance as we descend into the type. + ambient_variance: ty::Variance, + + /// See the field `needs_wf` in `Generalization`. + needs_wf: bool, + + /// The root type that we are generalizing. Used when reporting cycles. + root_ty: Ty<'tcx>, + + param_env: ty::ParamEnv<'tcx>, + + cache: SsoHashMap, RelateResult<'tcx, Ty<'tcx>>>, +} + +/// Result from a generalization operation. This includes +/// not only the generalized type, but also a bool flag +/// indicating whether further WF checks are needed. +struct Generalization<'tcx> { + ty: Ty<'tcx>, + + /// If true, then the generalized type may not be well-formed, + /// even if the source type is well-formed, so we should add an + /// additional check to enforce that it is. This arises in + /// particular around 'bivariant' type parameters that are only + /// constrained by a where-clause. As an example, imagine a type: + /// + /// struct Foo where A: Iterator { + /// data: A + /// } + /// + /// here, `A` will be covariant, but `B` is + /// unconstrained. However, whatever it is, for `Foo` to be WF, it + /// must be equal to `A::Item`. If we have an input `Foo`, + /// then after generalization we will wind up with a type like + /// `Foo`. When we enforce that `Foo <: Foo` (or `>:`), we will wind up with the requirement that `?A + /// <: ?C`, but no particular relationship between `?B` and `?D` + /// (after all, we do not know the variance of the normalized form + /// of `A::Item` with respect to `A`). If we do nothing else, this + /// may mean that `?D` goes unconstrained (as in #41677). So, in + /// this scenario where we create a new type variable in a + /// bivariant context, we set the `needs_wf` flag to true. This + /// will force the calling code to check that `WF(Foo)` + /// holds, which in turn implies that `?C::Item == ?D`. So once + /// `?C` is constrained, that should suffice to restrict `?D`. + needs_wf: bool, +} + +impl<'tcx> TypeRelation<'tcx> for Generalizer<'_, 'tcx> { + fn tcx(&self) -> TyCtxt<'tcx> { + self.infcx.tcx + } + fn param_env(&self) -> ty::ParamEnv<'tcx> { + self.param_env + } + + fn tag(&self) -> &'static str { + "Generalizer" + } + + fn a_is_expected(&self) -> bool { + true + } + + fn binders( + &mut self, + a: ty::Binder<'tcx, T>, + b: ty::Binder<'tcx, T>, + ) -> RelateResult<'tcx, ty::Binder<'tcx, T>> + where + T: Relate<'tcx>, + { + Ok(a.rebind(self.relate(a.skip_binder(), b.skip_binder())?)) + } + + fn relate_item_substs( + &mut self, + item_def_id: DefId, + a_subst: SubstsRef<'tcx>, + b_subst: SubstsRef<'tcx>, + ) -> RelateResult<'tcx, SubstsRef<'tcx>> { + if self.ambient_variance == ty::Variance::Invariant { + // Avoid fetching the variance if we are in an invariant + // context; no need, and it can induce dependency cycles + // (e.g., #41849). + relate::relate_substs(self, a_subst, b_subst) + } else { + let tcx = self.tcx(); + let opt_variances = tcx.variances_of(item_def_id); + relate::relate_substs_with_variances( + self, + item_def_id, + &opt_variances, + a_subst, + b_subst, + ) + } + } + + fn relate_with_variance>( + &mut self, + variance: ty::Variance, + _info: ty::VarianceDiagInfo<'tcx>, + a: T, + b: T, + ) -> RelateResult<'tcx, T> { + let old_ambient_variance = self.ambient_variance; + self.ambient_variance = self.ambient_variance.xform(variance); + + let result = self.relate(a, b); + self.ambient_variance = old_ambient_variance; + result + } + + fn tys(&mut self, t: Ty<'tcx>, t2: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> { + assert_eq!(t, t2); // we are abusing TypeRelation here; both LHS and RHS ought to be == + + if let Some(result) = self.cache.get(&t) { + return result.clone(); + } + debug!("generalize: t={:?}", t); + + // Check to see whether the type we are generalizing references + // any other type variable related to `vid` via + // subtyping. This is basically our "occurs check", preventing + // us from creating infinitely sized types. + let result = match *t.kind() { + ty::Infer(ty::TyVar(vid)) => { + let vid = self.infcx.inner.borrow_mut().type_variables().root_var(vid); + let sub_vid = self.infcx.inner.borrow_mut().type_variables().sub_root_var(vid); + if sub_vid == self.for_vid_sub_root { + // If sub-roots are equal, then `for_vid` and + // `vid` are related via subtyping. + Err(TypeError::CyclicTy(self.root_ty)) + } else { + let probe = self.infcx.inner.borrow_mut().type_variables().probe(vid); + match probe { + TypeVariableValue::Known { value: u } => { + debug!("generalize: known value {:?}", u); + self.relate(u, u) + } + TypeVariableValue::Unknown { universe } => { + match self.ambient_variance { + // Invariant: no need to make a fresh type variable. + ty::Invariant => { + if self.for_universe.can_name(universe) { + return Ok(t); + } + } + + // Bivariant: make a fresh var, but we + // may need a WF predicate. See + // comment on `needs_wf` field for + // more info. + ty::Bivariant => self.needs_wf = true, + + // Co/contravariant: this will be + // sufficiently constrained later on. + ty::Covariant | ty::Contravariant => (), + } + + let origin = + *self.infcx.inner.borrow_mut().type_variables().var_origin(vid); + let new_var_id = self + .infcx + .inner + .borrow_mut() + .type_variables() + .new_var(self.for_universe, origin); + let u = self.tcx().mk_ty_var(new_var_id); + + // Record that we replaced `vid` with `new_var_id` as part of a generalization + // operation. This is needed to detect cyclic types. To see why, see the + // docs in the `type_variables` module. + self.infcx.inner.borrow_mut().type_variables().sub(vid, new_var_id); + debug!("generalize: replacing original vid={:?} with new={:?}", vid, u); + Ok(u) + } + } + } + } + ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => { + // No matter what mode we are in, + // integer/floating-point types must be equal to be + // relatable. + Ok(t) + } + _ => relate::super_relate_tys(self, t, t), + }; + + self.cache.insert(t, result.clone()); + return result; + } + + fn regions( + &mut self, + r: ty::Region<'tcx>, + r2: ty::Region<'tcx>, + ) -> RelateResult<'tcx, ty::Region<'tcx>> { + assert_eq!(r, r2); // we are abusing TypeRelation here; both LHS and RHS ought to be == + + debug!("generalize: regions r={:?}", r); + + match *r { + // Never make variables for regions bound within the type itself, + // nor for erased regions. + ty::ReLateBound(..) | ty::ReErased => { + return Ok(r); + } + + ty::RePlaceholder(..) + | ty::ReVar(..) + | ty::ReEmpty(_) + | ty::ReStatic + | ty::ReEarlyBound(..) + | ty::ReFree(..) => { + // see common code below + } + } + + // If we are in an invariant context, we can re-use the region + // as is, unless it happens to be in some universe that we + // can't name. (In the case of a region *variable*, we could + // use it if we promoted it into our universe, but we don't + // bother.) + if let ty::Invariant = self.ambient_variance { + let r_universe = self.infcx.universe_of_region(r); + if self.for_universe.can_name(r_universe) { + return Ok(r); + } + } + + // FIXME: This is non-ideal because we don't give a + // very descriptive origin for this region variable. + Ok(self.infcx.next_region_var_in_universe(MiscVariable(self.cause.span), self.for_universe)) + } + + fn consts( + &mut self, + c: ty::Const<'tcx>, + c2: ty::Const<'tcx>, + ) -> RelateResult<'tcx, ty::Const<'tcx>> { + assert_eq!(c, c2); // we are abusing TypeRelation here; both LHS and RHS ought to be == + + match c.kind() { + ty::ConstKind::Infer(InferConst::Var(vid)) => { + let mut inner = self.infcx.inner.borrow_mut(); + let variable_table = &mut inner.const_unification_table(); + let var_value = variable_table.probe_value(vid); + match var_value.val { + ConstVariableValue::Known { value: u } => { + drop(inner); + self.relate(u, u) + } + ConstVariableValue::Unknown { universe } => { + if self.for_universe.can_name(universe) { + Ok(c) + } else { + let new_var_id = variable_table.new_key(ConstVarValue { + origin: var_value.origin, + val: ConstVariableValue::Unknown { universe: self.for_universe }, + }); + Ok(self.tcx().mk_const_var(new_var_id, c.ty())) + } + } + } + } + ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted }) + if self.tcx().lazy_normalization() => + { + assert_eq!(promoted, None); + let substs = self.relate_with_variance( + ty::Variance::Invariant, + ty::VarianceDiagInfo::default(), + substs, + substs, + )?; + Ok(self.tcx().mk_const(ty::ConstS { + ty: c.ty(), + kind: ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted }), + })) + } + _ => relate::super_relate_consts(self, c, c), + } + } +} + +pub trait ConstEquateRelation<'tcx>: TypeRelation<'tcx> { + /// Register an obligation that both constants must be equal to each other. + /// + /// If they aren't equal then the relation doesn't hold. + fn const_equate_obligation(&mut self, a: ty::Const<'tcx>, b: ty::Const<'tcx>); +} + +pub fn const_unification_error<'tcx>( + a_is_expected: bool, + (a, b): (ty::Const<'tcx>, ty::Const<'tcx>), +) -> TypeError<'tcx> { + TypeError::ConstMismatch(ExpectedFound::new(a_is_expected, a, b)) +} + +fn int_unification_error<'tcx>( + a_is_expected: bool, + v: (ty::IntVarValue, ty::IntVarValue), +) -> TypeError<'tcx> { + let (a, b) = v; + TypeError::IntMismatch(ExpectedFound::new(a_is_expected, a, b)) +} + +fn float_unification_error<'tcx>( + a_is_expected: bool, + v: (ty::FloatVarValue, ty::FloatVarValue), +) -> TypeError<'tcx> { + let (ty::FloatVarValue(a), ty::FloatVarValue(b)) = v; + TypeError::FloatMismatch(ExpectedFound::new(a_is_expected, a, b)) +} + +struct ConstInferUnifier<'cx, 'tcx> { + infcx: &'cx InferCtxt<'cx, 'tcx>, + + span: Span, + + param_env: ty::ParamEnv<'tcx>, + + for_universe: ty::UniverseIndex, + + /// The vid of the const variable that is in the process of being + /// instantiated; if we find this within the const we are folding, + /// that means we would have created a cyclic const. + target_vid: ty::ConstVid<'tcx>, +} + +// We use `TypeRelation` here to propagate `RelateResult` upwards. +// +// Both inputs are expected to be the same. +impl<'tcx> TypeRelation<'tcx> for ConstInferUnifier<'_, 'tcx> { + fn tcx(&self) -> TyCtxt<'tcx> { + self.infcx.tcx + } + + fn param_env(&self) -> ty::ParamEnv<'tcx> { + self.param_env + } + + fn tag(&self) -> &'static str { + "ConstInferUnifier" + } + + fn a_is_expected(&self) -> bool { + true + } + + fn relate_with_variance>( + &mut self, + _variance: ty::Variance, + _info: ty::VarianceDiagInfo<'tcx>, + a: T, + b: T, + ) -> RelateResult<'tcx, T> { + // We don't care about variance here. + self.relate(a, b) + } + + fn binders( + &mut self, + a: ty::Binder<'tcx, T>, + b: ty::Binder<'tcx, T>, + ) -> RelateResult<'tcx, ty::Binder<'tcx, T>> + where + T: Relate<'tcx>, + { + Ok(a.rebind(self.relate(a.skip_binder(), b.skip_binder())?)) + } + + #[tracing::instrument(level = "debug", skip(self))] + fn tys(&mut self, t: Ty<'tcx>, _t: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> { + debug_assert_eq!(t, _t); + debug!("ConstInferUnifier: t={:?}", t); + + match t.kind() { + &ty::Infer(ty::TyVar(vid)) => { + let vid = self.infcx.inner.borrow_mut().type_variables().root_var(vid); + let probe = self.infcx.inner.borrow_mut().type_variables().probe(vid); + match probe { + TypeVariableValue::Known { value: u } => { + debug!("ConstOccursChecker: known value {:?}", u); + self.tys(u, u) + } + TypeVariableValue::Unknown { universe } => { + if self.for_universe.can_name(universe) { + return Ok(t); + } + + let origin = + *self.infcx.inner.borrow_mut().type_variables().var_origin(vid); + let new_var_id = self + .infcx + .inner + .borrow_mut() + .type_variables() + .new_var(self.for_universe, origin); + let u = self.tcx().mk_ty_var(new_var_id); + debug!( + "ConstInferUnifier: replacing original vid={:?} with new={:?}", + vid, u + ); + Ok(u) + } + } + } + ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => Ok(t), + _ => relate::super_relate_tys(self, t, t), + } + } + + fn regions( + &mut self, + r: ty::Region<'tcx>, + _r: ty::Region<'tcx>, + ) -> RelateResult<'tcx, ty::Region<'tcx>> { + debug_assert_eq!(r, _r); + debug!("ConstInferUnifier: r={:?}", r); + + match *r { + // Never make variables for regions bound within the type itself, + // nor for erased regions. + ty::ReLateBound(..) | ty::ReErased => { + return Ok(r); + } + + ty::RePlaceholder(..) + | ty::ReVar(..) + | ty::ReEmpty(_) + | ty::ReStatic + | ty::ReEarlyBound(..) + | ty::ReFree(..) => { + // see common code below + } + } + + let r_universe = self.infcx.universe_of_region(r); + if self.for_universe.can_name(r_universe) { + return Ok(r); + } else { + // FIXME: This is non-ideal because we don't give a + // very descriptive origin for this region variable. + Ok(self.infcx.next_region_var_in_universe(MiscVariable(self.span), self.for_universe)) + } + } + + #[tracing::instrument(level = "debug", skip(self))] + fn consts( + &mut self, + c: ty::Const<'tcx>, + _c: ty::Const<'tcx>, + ) -> RelateResult<'tcx, ty::Const<'tcx>> { + debug_assert_eq!(c, _c); + debug!("ConstInferUnifier: c={:?}", c); + + match c.kind() { + ty::ConstKind::Infer(InferConst::Var(vid)) => { + // Check if the current unification would end up + // unifying `target_vid` with a const which contains + // an inference variable which is unioned with `target_vid`. + // + // Not doing so can easily result in stack overflows. + if self + .infcx + .inner + .borrow_mut() + .const_unification_table() + .unioned(self.target_vid, vid) + { + return Err(TypeError::CyclicConst(c)); + } + + let var_value = + self.infcx.inner.borrow_mut().const_unification_table().probe_value(vid); + match var_value.val { + ConstVariableValue::Known { value: u } => self.consts(u, u), + ConstVariableValue::Unknown { universe } => { + if self.for_universe.can_name(universe) { + Ok(c) + } else { + let new_var_id = + self.infcx.inner.borrow_mut().const_unification_table().new_key( + ConstVarValue { + origin: var_value.origin, + val: ConstVariableValue::Unknown { + universe: self.for_universe, + }, + }, + ); + Ok(self.tcx().mk_const_var(new_var_id, c.ty())) + } + } + } + } + ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted }) + if self.tcx().lazy_normalization() => + { + assert_eq!(promoted, None); + let substs = self.relate_with_variance( + ty::Variance::Invariant, + ty::VarianceDiagInfo::default(), + substs, + substs, + )?; + Ok(self.tcx().mk_const(ty::ConstS { + ty: c.ty(), + kind: ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted }), + })) + } + _ => relate::super_relate_consts(self, c, c), + } + } +} -- cgit v1.2.3