From 698f8c2f01ea549d77d7dc3338a12e04c11057b9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:02:58 +0200 Subject: Adding upstream version 1.64.0+dfsg1. Signed-off-by: Daniel Baumann --- compiler/rustc_infer/src/infer/outlives/verify.rs | 373 ++++++++++++++++++++++ 1 file changed, 373 insertions(+) create mode 100644 compiler/rustc_infer/src/infer/outlives/verify.rs (limited to 'compiler/rustc_infer/src/infer/outlives/verify.rs') diff --git a/compiler/rustc_infer/src/infer/outlives/verify.rs b/compiler/rustc_infer/src/infer/outlives/verify.rs new file mode 100644 index 000000000..c7d7ef40d --- /dev/null +++ b/compiler/rustc_infer/src/infer/outlives/verify.rs @@ -0,0 +1,373 @@ +use crate::infer::outlives::components::{compute_components_recursive, Component}; +use crate::infer::outlives::env::RegionBoundPairs; +use crate::infer::region_constraints::VerifyIfEq; +use crate::infer::{GenericKind, VerifyBound}; +use rustc_data_structures::captures::Captures; +use rustc_data_structures::sso::SsoHashSet; +use rustc_hir::def_id::DefId; +use rustc_middle::ty::subst::{GenericArg, Subst}; +use rustc_middle::ty::{self, EarlyBinder, OutlivesPredicate, Ty, TyCtxt}; + +use smallvec::smallvec; + +/// The `TypeOutlives` struct has the job of "lowering" a `T: 'a` +/// obligation into a series of `'a: 'b` constraints and "verifys", as +/// described on the module comment. The final constraints are emitted +/// via a "delegate" of type `D` -- this is usually the `infcx`, which +/// accrues them into the `region_obligations` code, but for NLL we +/// use something else. +pub struct VerifyBoundCx<'cx, 'tcx> { + tcx: TyCtxt<'tcx>, + region_bound_pairs: &'cx RegionBoundPairs<'tcx>, + /// During borrowck, if there are no outlives bounds on a generic + /// parameter `T`, we assume that `T: 'in_fn_body` holds. + /// + /// Outside of borrowck the only way to prove `T: '?0` is by + /// setting `'?0` to `'empty`. + implicit_region_bound: Option>, + param_env: ty::ParamEnv<'tcx>, +} + +impl<'cx, 'tcx> VerifyBoundCx<'cx, 'tcx> { + pub fn new( + tcx: TyCtxt<'tcx>, + region_bound_pairs: &'cx RegionBoundPairs<'tcx>, + implicit_region_bound: Option>, + param_env: ty::ParamEnv<'tcx>, + ) -> Self { + Self { tcx, region_bound_pairs, implicit_region_bound, param_env } + } + + /// Returns a "verify bound" that encodes what we know about + /// `generic` and the regions it outlives. + pub fn generic_bound(&self, generic: GenericKind<'tcx>) -> VerifyBound<'tcx> { + let mut visited = SsoHashSet::new(); + match generic { + GenericKind::Param(param_ty) => self.param_bound(param_ty), + GenericKind::Projection(projection_ty) => { + self.projection_bound(projection_ty, &mut visited) + } + } + } + + fn param_bound(&self, param_ty: ty::ParamTy) -> VerifyBound<'tcx> { + debug!("param_bound(param_ty={:?})", param_ty); + + // Start with anything like `T: 'a` we can scrape from the + // environment. If the environment contains something like + // `for<'a> T: 'a`, then we know that `T` outlives everything. + let declared_bounds_from_env = self.declared_generic_bounds_from_env(param_ty); + let mut param_bounds = vec![]; + for declared_bound in declared_bounds_from_env { + let bound_region = declared_bound.map_bound(|outlives| outlives.1); + if let Some(region) = bound_region.no_bound_vars() { + // This is `T: 'a` for some free region `'a`. + param_bounds.push(VerifyBound::OutlivedBy(region)); + } else { + // This is `for<'a> T: 'a`. This means that `T` outlives everything! All done here. + return VerifyBound::AllBounds(vec![]); + } + } + + // Add in the default bound of fn body that applies to all in + // scope type parameters: + if let Some(r) = self.implicit_region_bound { + param_bounds.push(VerifyBound::OutlivedBy(r)); + } + + if param_bounds.is_empty() { + // We know that all types `T` outlive `'empty`, so if we + // can find no other bound, then check that the region + // being tested is `'empty`. + VerifyBound::IsEmpty + } else if param_bounds.len() == 1 { + // Micro-opt: no need to store the vector if it's just len 1 + param_bounds.pop().unwrap() + } else { + // If we can find any other bound `R` such that `T: R`, then + // we don't need to check for `'empty`, because `R: 'empty`. + VerifyBound::AnyBound(param_bounds) + } + } + + /// Given a projection like `T::Item`, searches the environment + /// for where-clauses like `T::Item: 'a`. Returns the set of + /// regions `'a` that it finds. + /// + /// This is an "approximate" check -- it may not find all + /// applicable bounds, and not all the bounds it returns can be + /// relied upon. In particular, this check ignores region + /// identity. So, for example, if we have `>::Item` where `'0` is a region variable, and the + /// user has `>::Item: 'b` in the environment, then + /// the clause from the environment only applies if `'0 = 'a`, + /// which we don't know yet. But we would still include `'b` in + /// this list. + pub fn projection_approx_declared_bounds_from_env( + &self, + projection_ty: ty::ProjectionTy<'tcx>, + ) -> Vec, ty::Region<'tcx>>>> { + let projection_ty = GenericKind::Projection(projection_ty).to_ty(self.tcx); + let erased_projection_ty = self.tcx.erase_regions(projection_ty); + self.declared_generic_bounds_from_env_for_erased_ty(erased_projection_ty) + } + + /// Searches the where-clauses in scope for regions that + /// `projection_ty` is known to outlive. Currently requires an + /// exact match. + pub fn projection_declared_bounds_from_trait( + &self, + projection_ty: ty::ProjectionTy<'tcx>, + ) -> impl Iterator> + 'cx + Captures<'tcx> { + self.declared_projection_bounds_from_trait(projection_ty) + } + + pub fn projection_bound( + &self, + projection_ty: ty::ProjectionTy<'tcx>, + visited: &mut SsoHashSet>, + ) -> VerifyBound<'tcx> { + debug!("projection_bound(projection_ty={:?})", projection_ty); + + let projection_ty_as_ty = + self.tcx.mk_projection(projection_ty.item_def_id, projection_ty.substs); + + // Search the env for where clauses like `P: 'a`. + let env_bounds = self + .projection_approx_declared_bounds_from_env(projection_ty) + .into_iter() + .map(|binder| { + if let Some(ty::OutlivesPredicate(ty, r)) = binder.no_bound_vars() && ty == projection_ty_as_ty { + // Micro-optimize if this is an exact match (this + // occurs often when there are no region variables + // involved). + VerifyBound::OutlivedBy(r) + } else { + let verify_if_eq_b = binder.map_bound(|ty::OutlivesPredicate(ty, bound)| VerifyIfEq { ty, bound }); + VerifyBound::IfEq(verify_if_eq_b) + } + }); + + // Extend with bounds that we can find from the trait. + let trait_bounds = self + .projection_declared_bounds_from_trait(projection_ty) + .map(|r| VerifyBound::OutlivedBy(r)); + + // see the extensive comment in projection_must_outlive + let recursive_bound = { + let mut components = smallvec![]; + let ty = self.tcx.mk_projection(projection_ty.item_def_id, projection_ty.substs); + compute_components_recursive(self.tcx, ty.into(), &mut components, visited); + self.bound_from_components(&components, visited) + }; + + VerifyBound::AnyBound(env_bounds.chain(trait_bounds).collect()).or(recursive_bound) + } + + fn bound_from_components( + &self, + components: &[Component<'tcx>], + visited: &mut SsoHashSet>, + ) -> VerifyBound<'tcx> { + let mut bounds = components + .iter() + .map(|component| self.bound_from_single_component(component, visited)) + .filter(|bound| { + // Remove bounds that must hold, since they are not interesting. + !bound.must_hold() + }); + + match (bounds.next(), bounds.next()) { + (Some(first), None) => first, + (first, second) => { + VerifyBound::AllBounds(first.into_iter().chain(second).chain(bounds).collect()) + } + } + } + + fn bound_from_single_component( + &self, + component: &Component<'tcx>, + visited: &mut SsoHashSet>, + ) -> VerifyBound<'tcx> { + match *component { + Component::Region(lt) => VerifyBound::OutlivedBy(lt), + Component::Param(param_ty) => self.param_bound(param_ty), + Component::Projection(projection_ty) => self.projection_bound(projection_ty, visited), + Component::EscapingProjection(ref components) => { + self.bound_from_components(components, visited) + } + Component::UnresolvedInferenceVariable(v) => { + // ignore this, we presume it will yield an error + // later, since if a type variable is not resolved by + // this point it never will be + self.tcx.sess.delay_span_bug( + rustc_span::DUMMY_SP, + &format!("unresolved inference variable in outlives: {:?}", v), + ); + // add a bound that never holds + VerifyBound::AnyBound(vec![]) + } + } + } + + /// Searches the environment for where-clauses like `G: 'a` where + /// `G` is either some type parameter `T` or a projection like + /// `T::Item`. Returns a vector of the `'a` bounds it can find. + /// + /// This is a conservative check -- it may not find all applicable + /// bounds, but all the bounds it returns can be relied upon. + fn declared_generic_bounds_from_env( + &self, + param_ty: ty::ParamTy, + ) -> Vec, ty::Region<'tcx>>>> { + let generic_ty = param_ty.to_ty(self.tcx); + self.declared_generic_bounds_from_env_for_erased_ty(generic_ty) + } + + /// Searches the environment to find all bounds that apply to `erased_ty`. + /// Obviously these must be approximate -- they are in fact both *over* and + /// and *under* approximated: + /// + /// * Over-approximated because we erase regions, so + /// * Under-approximated because we look for syntactic equality and so for complex types + /// like `>::Item` or whatever we may fail to figure out + /// all the subtleties. + /// + /// In some cases, such as when `erased_ty` represents a `ty::Param`, however, + /// the result is precise. + fn declared_generic_bounds_from_env_for_erased_ty( + &self, + erased_ty: Ty<'tcx>, + ) -> Vec, ty::Region<'tcx>>>> { + let tcx = self.tcx; + + // To start, collect bounds from user environment. Note that + // parameter environments are already elaborated, so we don't + // have to worry about that. + let c_b = self.param_env.caller_bounds(); + let param_bounds = self.collect_outlives_from_predicate_list(erased_ty, c_b.into_iter()); + + // Next, collect regions we scraped from the well-formedness + // constraints in the fn signature. To do that, we walk the list + // of known relations from the fn ctxt. + // + // This is crucial because otherwise code like this fails: + // + // fn foo<'a, A>(x: &'a A) { x.bar() } + // + // The problem is that the type of `x` is `&'a A`. To be + // well-formed, then, A must outlive `'a`, but we don't know that + // this holds from first principles. + let from_region_bound_pairs = + self.region_bound_pairs.iter().filter_map(|&OutlivesPredicate(p, r)| { + debug!( + "declared_generic_bounds_from_env_for_erased_ty: region_bound_pair = {:?}", + (r, p) + ); + let p_ty = p.to_ty(tcx); + let erased_p_ty = self.tcx.erase_regions(p_ty); + (erased_p_ty == erased_ty) + .then_some(ty::Binder::dummy(ty::OutlivesPredicate(p.to_ty(tcx), r))) + }); + + param_bounds + .chain(from_region_bound_pairs) + .inspect(|bound| { + debug!( + "declared_generic_bounds_from_env_for_erased_ty: result predicate = {:?}", + bound + ) + }) + .collect() + } + + /// Given a projection like `>::Bar`, returns any bounds + /// declared in the trait definition. For example, if the trait were + /// + /// ```rust + /// trait Foo<'a> { + /// type Bar: 'a; + /// } + /// ``` + /// + /// then this function would return `'x`. This is subject to the + /// limitations around higher-ranked bounds described in + /// `region_bounds_declared_on_associated_item`. + fn declared_projection_bounds_from_trait( + &self, + projection_ty: ty::ProjectionTy<'tcx>, + ) -> impl Iterator> + 'cx + Captures<'tcx> { + debug!("projection_bounds(projection_ty={:?})", projection_ty); + let tcx = self.tcx; + self.region_bounds_declared_on_associated_item(projection_ty.item_def_id) + .map(move |r| EarlyBinder(r).subst(tcx, projection_ty.substs)) + } + + /// Given the `DefId` of an associated item, returns any region + /// bounds attached to that associated item from the trait definition. + /// + /// For example: + /// + /// ```rust + /// trait Foo<'a> { + /// type Bar: 'a; + /// } + /// ``` + /// + /// If we were given the `DefId` of `Foo::Bar`, we would return + /// `'a`. You could then apply the substitutions from the + /// projection to convert this into your namespace. This also + /// works if the user writes `where >::Bar: 'a` on + /// the trait. In fact, it works by searching for just such a + /// where-clause. + /// + /// It will not, however, work for higher-ranked bounds like: + /// + /// ```compile_fail,E0311 + /// trait Foo<'a, 'b> + /// where for<'x> >::Bar: 'x + /// { + /// type Bar; + /// } + /// ``` + /// + /// This is for simplicity, and because we are not really smart + /// enough to cope with such bounds anywhere. + fn region_bounds_declared_on_associated_item( + &self, + assoc_item_def_id: DefId, + ) -> impl Iterator> { + let tcx = self.tcx; + let bounds = tcx.item_bounds(assoc_item_def_id); + bounds + .into_iter() + .filter_map(|p| p.to_opt_type_outlives()) + .filter_map(|p| p.no_bound_vars()) + .map(|b| b.1) + } + + /// Searches through a predicate list for a predicate `T: 'a`. + /// + /// Careful: does not elaborate predicates, and just uses `==` + /// when comparing `ty` for equality, so `ty` must be something + /// that does not involve inference variables and where you + /// otherwise want a precise match. + fn collect_outlives_from_predicate_list( + &self, + erased_ty: Ty<'tcx>, + predicates: impl Iterator>, + ) -> impl Iterator, ty::Region<'tcx>>>> + { + let tcx = self.tcx; + let param_env = self.param_env; + predicates.filter_map(|p| p.to_opt_type_outlives()).filter(move |outlives_predicate| { + super::test_type_match::can_match_erased_ty( + tcx, + param_env, + *outlives_predicate, + erased_ty, + ) + }) + } +} -- cgit v1.2.3