From 698f8c2f01ea549d77d7dc3338a12e04c11057b9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:02:58 +0200 Subject: Adding upstream version 1.64.0+dfsg1. Signed-off-by: Daniel Baumann --- compiler/rustc_middle/src/ty/layout.rs | 3504 ++++++++++++++++++++++++++++++++ 1 file changed, 3504 insertions(+) create mode 100644 compiler/rustc_middle/src/ty/layout.rs (limited to 'compiler/rustc_middle/src/ty/layout.rs') diff --git a/compiler/rustc_middle/src/ty/layout.rs b/compiler/rustc_middle/src/ty/layout.rs new file mode 100644 index 000000000..ad78d24e9 --- /dev/null +++ b/compiler/rustc_middle/src/ty/layout.rs @@ -0,0 +1,3504 @@ +use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags; +use crate::mir::{GeneratorLayout, GeneratorSavedLocal}; +use crate::ty::normalize_erasing_regions::NormalizationError; +use crate::ty::subst::Subst; +use crate::ty::{self, subst::SubstsRef, EarlyBinder, ReprOptions, Ty, TyCtxt, TypeVisitable}; +use rustc_ast as ast; +use rustc_attr as attr; +use rustc_hir as hir; +use rustc_hir::def_id::DefId; +use rustc_hir::lang_items::LangItem; +use rustc_index::bit_set::BitSet; +use rustc_index::vec::{Idx, IndexVec}; +use rustc_session::{config::OptLevel, DataTypeKind, FieldInfo, SizeKind, VariantInfo}; +use rustc_span::symbol::Symbol; +use rustc_span::{Span, DUMMY_SP}; +use rustc_target::abi::call::{ + ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind, +}; +use rustc_target::abi::*; +use rustc_target::spec::{abi::Abi as SpecAbi, HasTargetSpec, PanicStrategy, Target}; + +use std::cmp; +use std::fmt; +use std::iter; +use std::num::NonZeroUsize; +use std::ops::Bound; + +use rand::{seq::SliceRandom, SeedableRng}; +use rand_xoshiro::Xoshiro128StarStar; + +pub fn provide(providers: &mut ty::query::Providers) { + *providers = + ty::query::Providers { layout_of, fn_abi_of_fn_ptr, fn_abi_of_instance, ..*providers }; +} + +pub trait IntegerExt { + fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx>; + fn from_attr(cx: &C, ity: attr::IntType) -> Integer; + fn from_int_ty(cx: &C, ity: ty::IntTy) -> Integer; + fn from_uint_ty(cx: &C, uty: ty::UintTy) -> Integer; + fn repr_discr<'tcx>( + tcx: TyCtxt<'tcx>, + ty: Ty<'tcx>, + repr: &ReprOptions, + min: i128, + max: i128, + ) -> (Integer, bool); +} + +impl IntegerExt for Integer { + #[inline] + fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx> { + match (*self, signed) { + (I8, false) => tcx.types.u8, + (I16, false) => tcx.types.u16, + (I32, false) => tcx.types.u32, + (I64, false) => tcx.types.u64, + (I128, false) => tcx.types.u128, + (I8, true) => tcx.types.i8, + (I16, true) => tcx.types.i16, + (I32, true) => tcx.types.i32, + (I64, true) => tcx.types.i64, + (I128, true) => tcx.types.i128, + } + } + + /// Gets the Integer type from an attr::IntType. + fn from_attr(cx: &C, ity: attr::IntType) -> Integer { + let dl = cx.data_layout(); + + match ity { + attr::SignedInt(ast::IntTy::I8) | attr::UnsignedInt(ast::UintTy::U8) => I8, + attr::SignedInt(ast::IntTy::I16) | attr::UnsignedInt(ast::UintTy::U16) => I16, + attr::SignedInt(ast::IntTy::I32) | attr::UnsignedInt(ast::UintTy::U32) => I32, + attr::SignedInt(ast::IntTy::I64) | attr::UnsignedInt(ast::UintTy::U64) => I64, + attr::SignedInt(ast::IntTy::I128) | attr::UnsignedInt(ast::UintTy::U128) => I128, + attr::SignedInt(ast::IntTy::Isize) | attr::UnsignedInt(ast::UintTy::Usize) => { + dl.ptr_sized_integer() + } + } + } + + fn from_int_ty(cx: &C, ity: ty::IntTy) -> Integer { + match ity { + ty::IntTy::I8 => I8, + ty::IntTy::I16 => I16, + ty::IntTy::I32 => I32, + ty::IntTy::I64 => I64, + ty::IntTy::I128 => I128, + ty::IntTy::Isize => cx.data_layout().ptr_sized_integer(), + } + } + fn from_uint_ty(cx: &C, ity: ty::UintTy) -> Integer { + match ity { + ty::UintTy::U8 => I8, + ty::UintTy::U16 => I16, + ty::UintTy::U32 => I32, + ty::UintTy::U64 => I64, + ty::UintTy::U128 => I128, + ty::UintTy::Usize => cx.data_layout().ptr_sized_integer(), + } + } + + /// Finds the appropriate Integer type and signedness for the given + /// signed discriminant range and `#[repr]` attribute. + /// N.B.: `u128` values above `i128::MAX` will be treated as signed, but + /// that shouldn't affect anything, other than maybe debuginfo. + fn repr_discr<'tcx>( + tcx: TyCtxt<'tcx>, + ty: Ty<'tcx>, + repr: &ReprOptions, + min: i128, + max: i128, + ) -> (Integer, bool) { + // Theoretically, negative values could be larger in unsigned representation + // than the unsigned representation of the signed minimum. However, if there + // are any negative values, the only valid unsigned representation is u128 + // which can fit all i128 values, so the result remains unaffected. + let unsigned_fit = Integer::fit_unsigned(cmp::max(min as u128, max as u128)); + let signed_fit = cmp::max(Integer::fit_signed(min), Integer::fit_signed(max)); + + if let Some(ity) = repr.int { + let discr = Integer::from_attr(&tcx, ity); + let fit = if ity.is_signed() { signed_fit } else { unsigned_fit }; + if discr < fit { + bug!( + "Integer::repr_discr: `#[repr]` hint too small for \ + discriminant range of enum `{}", + ty + ) + } + return (discr, ity.is_signed()); + } + + let at_least = if repr.c() { + // This is usually I32, however it can be different on some platforms, + // notably hexagon and arm-none/thumb-none + tcx.data_layout().c_enum_min_size + } else { + // repr(Rust) enums try to be as small as possible + I8 + }; + + // If there are no negative values, we can use the unsigned fit. + if min >= 0 { + (cmp::max(unsigned_fit, at_least), false) + } else { + (cmp::max(signed_fit, at_least), true) + } + } +} + +pub trait PrimitiveExt { + fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>; + fn to_int_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>; +} + +impl PrimitiveExt for Primitive { + #[inline] + fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { + match *self { + Int(i, signed) => i.to_ty(tcx, signed), + F32 => tcx.types.f32, + F64 => tcx.types.f64, + Pointer => tcx.mk_mut_ptr(tcx.mk_unit()), + } + } + + /// Return an *integer* type matching this primitive. + /// Useful in particular when dealing with enum discriminants. + #[inline] + fn to_int_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { + match *self { + Int(i, signed) => i.to_ty(tcx, signed), + Pointer => tcx.types.usize, + F32 | F64 => bug!("floats do not have an int type"), + } + } +} + +/// The first half of a fat pointer. +/// +/// - For a trait object, this is the address of the box. +/// - For a slice, this is the base address. +pub const FAT_PTR_ADDR: usize = 0; + +/// The second half of a fat pointer. +/// +/// - For a trait object, this is the address of the vtable. +/// - For a slice, this is the length. +pub const FAT_PTR_EXTRA: usize = 1; + +/// The maximum supported number of lanes in a SIMD vector. +/// +/// This value is selected based on backend support: +/// * LLVM does not appear to have a vector width limit. +/// * Cranelift stores the base-2 log of the lane count in a 4 bit integer. +pub const MAX_SIMD_LANES: u64 = 1 << 0xF; + +#[derive(Copy, Clone, Debug, HashStable, TyEncodable, TyDecodable)] +pub enum LayoutError<'tcx> { + Unknown(Ty<'tcx>), + SizeOverflow(Ty<'tcx>), + NormalizationFailure(Ty<'tcx>, NormalizationError<'tcx>), +} + +impl<'tcx> fmt::Display for LayoutError<'tcx> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + match *self { + LayoutError::Unknown(ty) => write!(f, "the type `{}` has an unknown layout", ty), + LayoutError::SizeOverflow(ty) => { + write!(f, "values of the type `{}` are too big for the current architecture", ty) + } + LayoutError::NormalizationFailure(t, e) => write!( + f, + "unable to determine layout for `{}` because `{}` cannot be normalized", + t, + e.get_type_for_failure() + ), + } + } +} + +/// Enforce some basic invariants on layouts. +fn sanity_check_layout<'tcx>( + tcx: TyCtxt<'tcx>, + param_env: ty::ParamEnv<'tcx>, + layout: &TyAndLayout<'tcx>, +) { + // Type-level uninhabitedness should always imply ABI uninhabitedness. + if tcx.conservative_is_privately_uninhabited(param_env.and(layout.ty)) { + assert!(layout.abi.is_uninhabited()); + } + + if layout.size.bytes() % layout.align.abi.bytes() != 0 { + bug!("size is not a multiple of align, in the following layout:\n{layout:#?}"); + } + + if cfg!(debug_assertions) { + fn check_layout_abi<'tcx>(tcx: TyCtxt<'tcx>, layout: Layout<'tcx>) { + match layout.abi() { + Abi::Scalar(scalar) => { + // No padding in scalars. + assert_eq!( + layout.align().abi, + scalar.align(&tcx).abi, + "alignment mismatch between ABI and layout in {layout:#?}" + ); + assert_eq!( + layout.size(), + scalar.size(&tcx), + "size mismatch between ABI and layout in {layout:#?}" + ); + } + Abi::Vector { count, element } => { + // No padding in vectors. Alignment can be strengthened, though. + assert!( + layout.align().abi >= element.align(&tcx).abi, + "alignment mismatch between ABI and layout in {layout:#?}" + ); + let size = element.size(&tcx) * count; + assert_eq!( + layout.size(), + size.align_to(tcx.data_layout().vector_align(size).abi), + "size mismatch between ABI and layout in {layout:#?}" + ); + } + Abi::ScalarPair(scalar1, scalar2) => { + // Sanity-check scalar pairs. These are a bit more flexible and support + // padding, but we can at least ensure both fields actually fit into the layout + // and the alignment requirement has not been weakened. + let align1 = scalar1.align(&tcx).abi; + let align2 = scalar2.align(&tcx).abi; + assert!( + layout.align().abi >= cmp::max(align1, align2), + "alignment mismatch between ABI and layout in {layout:#?}", + ); + let field2_offset = scalar1.size(&tcx).align_to(align2); + assert!( + layout.size() >= field2_offset + scalar2.size(&tcx), + "size mismatch between ABI and layout in {layout:#?}" + ); + } + Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check. + } + } + + check_layout_abi(tcx, layout.layout); + + if let Variants::Multiple { variants, .. } = &layout.variants { + for variant in variants { + check_layout_abi(tcx, *variant); + // No nested "multiple". + assert!(matches!(variant.variants(), Variants::Single { .. })); + // Skip empty variants. + if variant.size() == Size::ZERO + || variant.fields().count() == 0 + || variant.abi().is_uninhabited() + { + // These are never actually accessed anyway, so we can skip them. (Note that + // sometimes, variants with fields have size 0, and sometimes, variants without + // fields have non-0 size.) + continue; + } + // Variants should have the same or a smaller size as the full thing. + if variant.size() > layout.size { + bug!( + "Type with size {} bytes has variant with size {} bytes: {layout:#?}", + layout.size.bytes(), + variant.size().bytes(), + ) + } + // The top-level ABI and the ABI of the variants should be coherent. + let abi_coherent = match (layout.abi, variant.abi()) { + (Abi::Scalar(..), Abi::Scalar(..)) => true, + (Abi::ScalarPair(..), Abi::ScalarPair(..)) => true, + (Abi::Uninhabited, _) => true, + (Abi::Aggregate { .. }, _) => true, + _ => false, + }; + if !abi_coherent { + bug!( + "Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}", + variant + ); + } + } + } + } +} + +#[instrument(skip(tcx, query), level = "debug")] +fn layout_of<'tcx>( + tcx: TyCtxt<'tcx>, + query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, +) -> Result, LayoutError<'tcx>> { + ty::tls::with_related_context(tcx, move |icx| { + let (param_env, ty) = query.into_parts(); + debug!(?ty); + + if !tcx.recursion_limit().value_within_limit(icx.layout_depth) { + tcx.sess.fatal(&format!("overflow representing the type `{}`", ty)); + } + + // Update the ImplicitCtxt to increase the layout_depth + let icx = ty::tls::ImplicitCtxt { layout_depth: icx.layout_depth + 1, ..icx.clone() }; + + ty::tls::enter_context(&icx, |_| { + let param_env = param_env.with_reveal_all_normalized(tcx); + let unnormalized_ty = ty; + + // FIXME: We might want to have two different versions of `layout_of`: + // One that can be called after typecheck has completed and can use + // `normalize_erasing_regions` here and another one that can be called + // before typecheck has completed and uses `try_normalize_erasing_regions`. + let ty = match tcx.try_normalize_erasing_regions(param_env, ty) { + Ok(t) => t, + Err(normalization_error) => { + return Err(LayoutError::NormalizationFailure(ty, normalization_error)); + } + }; + + if ty != unnormalized_ty { + // Ensure this layout is also cached for the normalized type. + return tcx.layout_of(param_env.and(ty)); + } + + let cx = LayoutCx { tcx, param_env }; + + let layout = cx.layout_of_uncached(ty)?; + let layout = TyAndLayout { ty, layout }; + + cx.record_layout_for_printing(layout); + + sanity_check_layout(tcx, param_env, &layout); + + Ok(layout) + }) + }) +} + +pub struct LayoutCx<'tcx, C> { + pub tcx: C, + pub param_env: ty::ParamEnv<'tcx>, +} + +#[derive(Copy, Clone, Debug)] +enum StructKind { + /// A tuple, closure, or univariant which cannot be coerced to unsized. + AlwaysSized, + /// A univariant, the last field of which may be coerced to unsized. + MaybeUnsized, + /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag). + Prefixed(Size, Align), +} + +// Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`. +// This is used to go between `memory_index` (source field order to memory order) +// and `inverse_memory_index` (memory order to source field order). +// See also `FieldsShape::Arbitrary::memory_index` for more details. +// FIXME(eddyb) build a better abstraction for permutations, if possible. +fn invert_mapping(map: &[u32]) -> Vec { + let mut inverse = vec![0; map.len()]; + for i in 0..map.len() { + inverse[map[i] as usize] = i as u32; + } + inverse +} + +impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> { + fn scalar_pair(&self, a: Scalar, b: Scalar) -> LayoutS<'tcx> { + let dl = self.data_layout(); + let b_align = b.align(dl); + let align = a.align(dl).max(b_align).max(dl.aggregate_align); + let b_offset = a.size(dl).align_to(b_align.abi); + let size = (b_offset + b.size(dl)).align_to(align.abi); + + // HACK(nox): We iter on `b` and then `a` because `max_by_key` + // returns the last maximum. + let largest_niche = Niche::from_scalar(dl, b_offset, b) + .into_iter() + .chain(Niche::from_scalar(dl, Size::ZERO, a)) + .max_by_key(|niche| niche.available(dl)); + + LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Arbitrary { + offsets: vec![Size::ZERO, b_offset], + memory_index: vec![0, 1], + }, + abi: Abi::ScalarPair(a, b), + largest_niche, + align, + size, + } + } + + fn univariant_uninterned( + &self, + ty: Ty<'tcx>, + fields: &[TyAndLayout<'_>], + repr: &ReprOptions, + kind: StructKind, + ) -> Result, LayoutError<'tcx>> { + let dl = self.data_layout(); + let pack = repr.pack; + if pack.is_some() && repr.align.is_some() { + self.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned"); + return Err(LayoutError::Unknown(ty)); + } + + let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align }; + + let mut inverse_memory_index: Vec = (0..fields.len() as u32).collect(); + + let optimize = !repr.inhibit_struct_field_reordering_opt(); + if optimize { + let end = + if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() }; + let optimizing = &mut inverse_memory_index[..end]; + let field_align = |f: &TyAndLayout<'_>| { + if let Some(pack) = pack { f.align.abi.min(pack) } else { f.align.abi } + }; + + // If `-Z randomize-layout` was enabled for the type definition we can shuffle + // the field ordering to try and catch some code making assumptions about layouts + // we don't guarantee + if repr.can_randomize_type_layout() { + // `ReprOptions.layout_seed` is a deterministic seed that we can use to + // randomize field ordering with + let mut rng = Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed); + + // Shuffle the ordering of the fields + optimizing.shuffle(&mut rng); + + // Otherwise we just leave things alone and actually optimize the type's fields + } else { + match kind { + StructKind::AlwaysSized | StructKind::MaybeUnsized => { + optimizing.sort_by_key(|&x| { + // Place ZSTs first to avoid "interesting offsets", + // especially with only one or two non-ZST fields. + let f = &fields[x as usize]; + (!f.is_zst(), cmp::Reverse(field_align(f))) + }); + } + + StructKind::Prefixed(..) => { + // Sort in ascending alignment so that the layout stays optimal + // regardless of the prefix + optimizing.sort_by_key(|&x| field_align(&fields[x as usize])); + } + } + + // FIXME(Kixiron): We can always shuffle fields within a given alignment class + // regardless of the status of `-Z randomize-layout` + } + } + + // inverse_memory_index holds field indices by increasing memory offset. + // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5. + // We now write field offsets to the corresponding offset slot; + // field 5 with offset 0 puts 0 in offsets[5]. + // At the bottom of this function, we invert `inverse_memory_index` to + // produce `memory_index` (see `invert_mapping`). + + let mut sized = true; + let mut offsets = vec![Size::ZERO; fields.len()]; + let mut offset = Size::ZERO; + let mut largest_niche = None; + let mut largest_niche_available = 0; + + if let StructKind::Prefixed(prefix_size, prefix_align) = kind { + let prefix_align = + if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align }; + align = align.max(AbiAndPrefAlign::new(prefix_align)); + offset = prefix_size.align_to(prefix_align); + } + + for &i in &inverse_memory_index { + let field = fields[i as usize]; + if !sized { + self.tcx.sess.delay_span_bug( + DUMMY_SP, + &format!( + "univariant: field #{} of `{}` comes after unsized field", + offsets.len(), + ty + ), + ); + } + + if field.is_unsized() { + sized = false; + } + + // Invariant: offset < dl.obj_size_bound() <= 1<<61 + let field_align = if let Some(pack) = pack { + field.align.min(AbiAndPrefAlign::new(pack)) + } else { + field.align + }; + offset = offset.align_to(field_align.abi); + align = align.max(field_align); + + debug!("univariant offset: {:?} field: {:#?}", offset, field); + offsets[i as usize] = offset; + + if let Some(mut niche) = field.largest_niche { + let available = niche.available(dl); + if available > largest_niche_available { + largest_niche_available = available; + niche.offset += offset; + largest_niche = Some(niche); + } + } + + offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow(ty))?; + } + + if let Some(repr_align) = repr.align { + align = align.max(AbiAndPrefAlign::new(repr_align)); + } + + debug!("univariant min_size: {:?}", offset); + let min_size = offset; + + // As stated above, inverse_memory_index holds field indices by increasing offset. + // This makes it an already-sorted view of the offsets vec. + // To invert it, consider: + // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0. + // Field 5 would be the first element, so memory_index is i: + // Note: if we didn't optimize, it's already right. + + let memory_index = + if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index }; + + let size = min_size.align_to(align.abi); + let mut abi = Abi::Aggregate { sized }; + + // Unpack newtype ABIs and find scalar pairs. + if sized && size.bytes() > 0 { + // All other fields must be ZSTs. + let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst()); + + match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) { + // We have exactly one non-ZST field. + (Some((i, field)), None, None) => { + // Field fills the struct and it has a scalar or scalar pair ABI. + if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size + { + match field.abi { + // For plain scalars, or vectors of them, we can't unpack + // newtypes for `#[repr(C)]`, as that affects C ABIs. + Abi::Scalar(_) | Abi::Vector { .. } if optimize => { + abi = field.abi; + } + // But scalar pairs are Rust-specific and get + // treated as aggregates by C ABIs anyway. + Abi::ScalarPair(..) => { + abi = field.abi; + } + _ => {} + } + } + } + + // Two non-ZST fields, and they're both scalars. + (Some((i, a)), Some((j, b)), None) => { + match (a.abi, b.abi) { + (Abi::Scalar(a), Abi::Scalar(b)) => { + // Order by the memory placement, not source order. + let ((i, a), (j, b)) = if offsets[i] < offsets[j] { + ((i, a), (j, b)) + } else { + ((j, b), (i, a)) + }; + let pair = self.scalar_pair(a, b); + let pair_offsets = match pair.fields { + FieldsShape::Arbitrary { ref offsets, ref memory_index } => { + assert_eq!(memory_index, &[0, 1]); + offsets + } + _ => bug!(), + }; + if offsets[i] == pair_offsets[0] + && offsets[j] == pair_offsets[1] + && align == pair.align + && size == pair.size + { + // We can use `ScalarPair` only when it matches our + // already computed layout (including `#[repr(C)]`). + abi = pair.abi; + } + } + _ => {} + } + } + + _ => {} + } + } + + if fields.iter().any(|f| f.abi.is_uninhabited()) { + abi = Abi::Uninhabited; + } + + Ok(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Arbitrary { offsets, memory_index }, + abi, + largest_niche, + align, + size, + }) + } + + fn layout_of_uncached(&self, ty: Ty<'tcx>) -> Result, LayoutError<'tcx>> { + let tcx = self.tcx; + let param_env = self.param_env; + let dl = self.data_layout(); + let scalar_unit = |value: Primitive| { + let size = value.size(dl); + assert!(size.bits() <= 128); + Scalar::Initialized { value, valid_range: WrappingRange::full(size) } + }; + let scalar = + |value: Primitive| tcx.intern_layout(LayoutS::scalar(self, scalar_unit(value))); + + let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| { + Ok(tcx.intern_layout(self.univariant_uninterned(ty, fields, repr, kind)?)) + }; + debug_assert!(!ty.has_infer_types_or_consts()); + + Ok(match *ty.kind() { + // Basic scalars. + ty::Bool => tcx.intern_layout(LayoutS::scalar( + self, + Scalar::Initialized { + value: Int(I8, false), + valid_range: WrappingRange { start: 0, end: 1 }, + }, + )), + ty::Char => tcx.intern_layout(LayoutS::scalar( + self, + Scalar::Initialized { + value: Int(I32, false), + valid_range: WrappingRange { start: 0, end: 0x10FFFF }, + }, + )), + ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)), + ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)), + ty::Float(fty) => scalar(match fty { + ty::FloatTy::F32 => F32, + ty::FloatTy::F64 => F64, + }), + ty::FnPtr(_) => { + let mut ptr = scalar_unit(Pointer); + ptr.valid_range_mut().start = 1; + tcx.intern_layout(LayoutS::scalar(self, ptr)) + } + + // The never type. + ty::Never => tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Primitive, + abi: Abi::Uninhabited, + largest_niche: None, + align: dl.i8_align, + size: Size::ZERO, + }), + + // Potentially-wide pointers. + ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { + let mut data_ptr = scalar_unit(Pointer); + if !ty.is_unsafe_ptr() { + data_ptr.valid_range_mut().start = 1; + } + + let pointee = tcx.normalize_erasing_regions(param_env, pointee); + if pointee.is_sized(tcx.at(DUMMY_SP), param_env) { + return Ok(tcx.intern_layout(LayoutS::scalar(self, data_ptr))); + } + + let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env); + let metadata = match unsized_part.kind() { + ty::Foreign(..) => { + return Ok(tcx.intern_layout(LayoutS::scalar(self, data_ptr))); + } + ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)), + ty::Dynamic(..) => { + let mut vtable = scalar_unit(Pointer); + vtable.valid_range_mut().start = 1; + vtable + } + _ => return Err(LayoutError::Unknown(unsized_part)), + }; + + // Effectively a (ptr, meta) tuple. + tcx.intern_layout(self.scalar_pair(data_ptr, metadata)) + } + + // Arrays and slices. + ty::Array(element, mut count) => { + if count.has_projections() { + count = tcx.normalize_erasing_regions(param_env, count); + if count.has_projections() { + return Err(LayoutError::Unknown(ty)); + } + } + + let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?; + let element = self.layout_of(element)?; + let size = + element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?; + + let abi = + if count != 0 && tcx.conservative_is_privately_uninhabited(param_env.and(ty)) { + Abi::Uninhabited + } else { + Abi::Aggregate { sized: true } + }; + + let largest_niche = if count != 0 { element.largest_niche } else { None }; + + tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: element.size, count }, + abi, + largest_niche, + align: element.align, + size, + }) + } + ty::Slice(element) => { + let element = self.layout_of(element)?; + tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: element.size, count: 0 }, + abi: Abi::Aggregate { sized: false }, + largest_niche: None, + align: element.align, + size: Size::ZERO, + }) + } + ty::Str => tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 }, + abi: Abi::Aggregate { sized: false }, + largest_niche: None, + align: dl.i8_align, + size: Size::ZERO, + }), + + // Odd unit types. + ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?, + ty::Dynamic(..) | ty::Foreign(..) => { + let mut unit = self.univariant_uninterned( + ty, + &[], + &ReprOptions::default(), + StructKind::AlwaysSized, + )?; + match unit.abi { + Abi::Aggregate { ref mut sized } => *sized = false, + _ => bug!(), + } + tcx.intern_layout(unit) + } + + ty::Generator(def_id, substs, _) => self.generator_layout(ty, def_id, substs)?, + + ty::Closure(_, ref substs) => { + let tys = substs.as_closure().upvar_tys(); + univariant( + &tys.map(|ty| self.layout_of(ty)).collect::, _>>()?, + &ReprOptions::default(), + StructKind::AlwaysSized, + )? + } + + ty::Tuple(tys) => { + let kind = + if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized }; + + univariant( + &tys.iter().map(|k| self.layout_of(k)).collect::, _>>()?, + &ReprOptions::default(), + kind, + )? + } + + // SIMD vector types. + ty::Adt(def, substs) if def.repr().simd() => { + if !def.is_struct() { + // Should have yielded E0517 by now. + tcx.sess.delay_span_bug( + DUMMY_SP, + "#[repr(simd)] was applied to an ADT that is not a struct", + ); + return Err(LayoutError::Unknown(ty)); + } + + // Supported SIMD vectors are homogeneous ADTs with at least one field: + // + // * #[repr(simd)] struct S(T, T, T, T); + // * #[repr(simd)] struct S { x: T, y: T, z: T, w: T } + // * #[repr(simd)] struct S([T; 4]) + // + // where T is a primitive scalar (integer/float/pointer). + + // SIMD vectors with zero fields are not supported. + // (should be caught by typeck) + if def.non_enum_variant().fields.is_empty() { + tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty)); + } + + // Type of the first ADT field: + let f0_ty = def.non_enum_variant().fields[0].ty(tcx, substs); + + // Heterogeneous SIMD vectors are not supported: + // (should be caught by typeck) + for fi in &def.non_enum_variant().fields { + if fi.ty(tcx, substs) != f0_ty { + tcx.sess.fatal(&format!("monomorphising heterogeneous SIMD type `{}`", ty)); + } + } + + // The element type and number of elements of the SIMD vector + // are obtained from: + // + // * the element type and length of the single array field, if + // the first field is of array type, or + // + // * the homogenous field type and the number of fields. + let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() { + // First ADT field is an array: + + // SIMD vectors with multiple array fields are not supported: + // (should be caught by typeck) + if def.non_enum_variant().fields.len() != 1 { + tcx.sess.fatal(&format!( + "monomorphising SIMD type `{}` with more than one array field", + ty + )); + } + + // Extract the number of elements from the layout of the array field: + let FieldsShape::Array { count, .. } = self.layout_of(f0_ty)?.layout.fields() else { + return Err(LayoutError::Unknown(ty)); + }; + + (*e_ty, *count, true) + } else { + // First ADT field is not an array: + (f0_ty, def.non_enum_variant().fields.len() as _, false) + }; + + // SIMD vectors of zero length are not supported. + // Additionally, lengths are capped at 2^16 as a fixed maximum backends must + // support. + // + // Can't be caught in typeck if the array length is generic. + if e_len == 0 { + tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty)); + } else if e_len > MAX_SIMD_LANES { + tcx.sess.fatal(&format!( + "monomorphising SIMD type `{}` of length greater than {}", + ty, MAX_SIMD_LANES, + )); + } + + // Compute the ABI of the element type: + let e_ly = self.layout_of(e_ty)?; + let Abi::Scalar(e_abi) = e_ly.abi else { + // This error isn't caught in typeck, e.g., if + // the element type of the vector is generic. + tcx.sess.fatal(&format!( + "monomorphising SIMD type `{}` with a non-primitive-scalar \ + (integer/float/pointer) element type `{}`", + ty, e_ty + )) + }; + + // Compute the size and alignment of the vector: + let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?; + let align = dl.vector_align(size); + let size = size.align_to(align.abi); + + // Compute the placement of the vector fields: + let fields = if is_array { + FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] } + } else { + FieldsShape::Array { stride: e_ly.size, count: e_len } + }; + + tcx.intern_layout(LayoutS { + variants: Variants::Single { index: VariantIdx::new(0) }, + fields, + abi: Abi::Vector { element: e_abi, count: e_len }, + largest_niche: e_ly.largest_niche, + size, + align, + }) + } + + // ADTs. + ty::Adt(def, substs) => { + // Cache the field layouts. + let variants = def + .variants() + .iter() + .map(|v| { + v.fields + .iter() + .map(|field| self.layout_of(field.ty(tcx, substs))) + .collect::, _>>() + }) + .collect::, _>>()?; + + if def.is_union() { + if def.repr().pack.is_some() && def.repr().align.is_some() { + self.tcx.sess.delay_span_bug( + tcx.def_span(def.did()), + "union cannot be packed and aligned", + ); + return Err(LayoutError::Unknown(ty)); + } + + let mut align = + if def.repr().pack.is_some() { dl.i8_align } else { dl.aggregate_align }; + + if let Some(repr_align) = def.repr().align { + align = align.max(AbiAndPrefAlign::new(repr_align)); + } + + let optimize = !def.repr().inhibit_union_abi_opt(); + let mut size = Size::ZERO; + let mut abi = Abi::Aggregate { sized: true }; + let index = VariantIdx::new(0); + for field in &variants[index] { + assert!(!field.is_unsized()); + align = align.max(field.align); + + // If all non-ZST fields have the same ABI, forward this ABI + if optimize && !field.is_zst() { + // Discard valid range information and allow undef + let field_abi = match field.abi { + Abi::Scalar(x) => Abi::Scalar(x.to_union()), + Abi::ScalarPair(x, y) => { + Abi::ScalarPair(x.to_union(), y.to_union()) + } + Abi::Vector { element: x, count } => { + Abi::Vector { element: x.to_union(), count } + } + Abi::Uninhabited | Abi::Aggregate { .. } => { + Abi::Aggregate { sized: true } + } + }; + + if size == Size::ZERO { + // first non ZST: initialize 'abi' + abi = field_abi; + } else if abi != field_abi { + // different fields have different ABI: reset to Aggregate + abi = Abi::Aggregate { sized: true }; + } + } + + size = cmp::max(size, field.size); + } + + if let Some(pack) = def.repr().pack { + align = align.min(AbiAndPrefAlign::new(pack)); + } + + return Ok(tcx.intern_layout(LayoutS { + variants: Variants::Single { index }, + fields: FieldsShape::Union( + NonZeroUsize::new(variants[index].len()) + .ok_or(LayoutError::Unknown(ty))?, + ), + abi, + largest_niche: None, + align, + size: size.align_to(align.abi), + })); + } + + // A variant is absent if it's uninhabited and only has ZST fields. + // Present uninhabited variants only require space for their fields, + // but *not* an encoding of the discriminant (e.g., a tag value). + // See issue #49298 for more details on the need to leave space + // for non-ZST uninhabited data (mostly partial initialization). + let absent = |fields: &[TyAndLayout<'_>]| { + let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited()); + let is_zst = fields.iter().all(|f| f.is_zst()); + uninhabited && is_zst + }; + let (present_first, present_second) = { + let mut present_variants = variants + .iter_enumerated() + .filter_map(|(i, v)| if absent(v) { None } else { Some(i) }); + (present_variants.next(), present_variants.next()) + }; + let present_first = match present_first { + Some(present_first) => present_first, + // Uninhabited because it has no variants, or only absent ones. + None if def.is_enum() => { + return Ok(tcx.layout_of(param_env.and(tcx.types.never))?.layout); + } + // If it's a struct, still compute a layout so that we can still compute the + // field offsets. + None => VariantIdx::new(0), + }; + + let is_struct = !def.is_enum() || + // Only one variant is present. + (present_second.is_none() && + // Representation optimizations are allowed. + !def.repr().inhibit_enum_layout_opt()); + if is_struct { + // Struct, or univariant enum equivalent to a struct. + // (Typechecking will reject discriminant-sizing attrs.) + + let v = present_first; + let kind = if def.is_enum() || variants[v].is_empty() { + StructKind::AlwaysSized + } else { + let param_env = tcx.param_env(def.did()); + let last_field = def.variant(v).fields.last().unwrap(); + let always_sized = + tcx.type_of(last_field.did).is_sized(tcx.at(DUMMY_SP), param_env); + if !always_sized { + StructKind::MaybeUnsized + } else { + StructKind::AlwaysSized + } + }; + + let mut st = self.univariant_uninterned(ty, &variants[v], &def.repr(), kind)?; + st.variants = Variants::Single { index: v }; + + if def.is_unsafe_cell() { + let hide_niches = |scalar: &mut _| match scalar { + Scalar::Initialized { value, valid_range } => { + *valid_range = WrappingRange::full(value.size(dl)) + } + // Already doesn't have any niches + Scalar::Union { .. } => {} + }; + match &mut st.abi { + Abi::Uninhabited => {} + Abi::Scalar(scalar) => hide_niches(scalar), + Abi::ScalarPair(a, b) => { + hide_niches(a); + hide_niches(b); + } + Abi::Vector { element, count: _ } => hide_niches(element), + Abi::Aggregate { sized: _ } => {} + } + st.largest_niche = None; + return Ok(tcx.intern_layout(st)); + } + + let (start, end) = self.tcx.layout_scalar_valid_range(def.did()); + match st.abi { + Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => { + // the asserts ensure that we are not using the + // `#[rustc_layout_scalar_valid_range(n)]` + // attribute to widen the range of anything as that would probably + // result in UB somewhere + // FIXME(eddyb) the asserts are probably not needed, + // as larger validity ranges would result in missed + // optimizations, *not* wrongly assuming the inner + // value is valid. e.g. unions enlarge validity ranges, + // because the values may be uninitialized. + if let Bound::Included(start) = start { + // FIXME(eddyb) this might be incorrect - it doesn't + // account for wrap-around (end < start) ranges. + let valid_range = scalar.valid_range_mut(); + assert!(valid_range.start <= start); + valid_range.start = start; + } + if let Bound::Included(end) = end { + // FIXME(eddyb) this might be incorrect - it doesn't + // account for wrap-around (end < start) ranges. + let valid_range = scalar.valid_range_mut(); + assert!(valid_range.end >= end); + valid_range.end = end; + } + + // Update `largest_niche` if we have introduced a larger niche. + let niche = Niche::from_scalar(dl, Size::ZERO, *scalar); + if let Some(niche) = niche { + match st.largest_niche { + Some(largest_niche) => { + // Replace the existing niche even if they're equal, + // because this one is at a lower offset. + if largest_niche.available(dl) <= niche.available(dl) { + st.largest_niche = Some(niche); + } + } + None => st.largest_niche = Some(niche), + } + } + } + _ => assert!( + start == Bound::Unbounded && end == Bound::Unbounded, + "nonscalar layout for layout_scalar_valid_range type {:?}: {:#?}", + def, + st, + ), + } + + return Ok(tcx.intern_layout(st)); + } + + // At this point, we have handled all unions and + // structs. (We have also handled univariant enums + // that allow representation optimization.) + assert!(def.is_enum()); + + // The current code for niche-filling relies on variant indices + // instead of actual discriminants, so dataful enums with + // explicit discriminants (RFC #2363) would misbehave. + let no_explicit_discriminants = def + .variants() + .iter_enumerated() + .all(|(i, v)| v.discr == ty::VariantDiscr::Relative(i.as_u32())); + + let mut niche_filling_layout = None; + + // Niche-filling enum optimization. + if !def.repr().inhibit_enum_layout_opt() && no_explicit_discriminants { + let mut dataful_variant = None; + let mut niche_variants = VariantIdx::MAX..=VariantIdx::new(0); + + // Find one non-ZST variant. + 'variants: for (v, fields) in variants.iter_enumerated() { + if absent(fields) { + continue 'variants; + } + for f in fields { + if !f.is_zst() { + if dataful_variant.is_none() { + dataful_variant = Some(v); + continue 'variants; + } else { + dataful_variant = None; + break 'variants; + } + } + } + niche_variants = *niche_variants.start().min(&v)..=v; + } + + if niche_variants.start() > niche_variants.end() { + dataful_variant = None; + } + + if let Some(i) = dataful_variant { + let count = (niche_variants.end().as_u32() + - niche_variants.start().as_u32() + + 1) as u128; + + // Find the field with the largest niche + let niche_candidate = variants[i] + .iter() + .enumerate() + .filter_map(|(j, field)| Some((j, field.largest_niche?))) + .max_by_key(|(_, niche)| niche.available(dl)); + + if let Some((field_index, niche, (niche_start, niche_scalar))) = + niche_candidate.and_then(|(field_index, niche)| { + Some((field_index, niche, niche.reserve(self, count)?)) + }) + { + let mut align = dl.aggregate_align; + let st = variants + .iter_enumerated() + .map(|(j, v)| { + let mut st = self.univariant_uninterned( + ty, + v, + &def.repr(), + StructKind::AlwaysSized, + )?; + st.variants = Variants::Single { index: j }; + + align = align.max(st.align); + + Ok(tcx.intern_layout(st)) + }) + .collect::, _>>()?; + + let offset = st[i].fields().offset(field_index) + niche.offset; + + // Align the total size to the largest alignment. + let size = st[i].size().align_to(align.abi); + + let abi = if st.iter().all(|v| v.abi().is_uninhabited()) { + Abi::Uninhabited + } else if align == st[i].align() && size == st[i].size() { + // When the total alignment and size match, we can use the + // same ABI as the scalar variant with the reserved niche. + match st[i].abi() { + Abi::Scalar(_) => Abi::Scalar(niche_scalar), + Abi::ScalarPair(first, second) => { + // Only the niche is guaranteed to be initialised, + // so use union layout for the other primitive. + if offset.bytes() == 0 { + Abi::ScalarPair(niche_scalar, second.to_union()) + } else { + Abi::ScalarPair(first.to_union(), niche_scalar) + } + } + _ => Abi::Aggregate { sized: true }, + } + } else { + Abi::Aggregate { sized: true } + }; + + let largest_niche = Niche::from_scalar(dl, offset, niche_scalar); + + niche_filling_layout = Some(LayoutS { + variants: Variants::Multiple { + tag: niche_scalar, + tag_encoding: TagEncoding::Niche { + dataful_variant: i, + niche_variants, + niche_start, + }, + tag_field: 0, + variants: st, + }, + fields: FieldsShape::Arbitrary { + offsets: vec![offset], + memory_index: vec![0], + }, + abi, + largest_niche, + size, + align, + }); + } + } + } + + let (mut min, mut max) = (i128::MAX, i128::MIN); + let discr_type = def.repr().discr_type(); + let bits = Integer::from_attr(self, discr_type).size().bits(); + for (i, discr) in def.discriminants(tcx) { + if variants[i].iter().any(|f| f.abi.is_uninhabited()) { + continue; + } + let mut x = discr.val as i128; + if discr_type.is_signed() { + // sign extend the raw representation to be an i128 + x = (x << (128 - bits)) >> (128 - bits); + } + if x < min { + min = x; + } + if x > max { + max = x; + } + } + // We might have no inhabited variants, so pretend there's at least one. + if (min, max) == (i128::MAX, i128::MIN) { + min = 0; + max = 0; + } + assert!(min <= max, "discriminant range is {}...{}", min, max); + let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr(), min, max); + + let mut align = dl.aggregate_align; + let mut size = Size::ZERO; + + // We're interested in the smallest alignment, so start large. + let mut start_align = Align::from_bytes(256).unwrap(); + assert_eq!(Integer::for_align(dl, start_align), None); + + // repr(C) on an enum tells us to make a (tag, union) layout, + // so we need to grow the prefix alignment to be at least + // the alignment of the union. (This value is used both for + // determining the alignment of the overall enum, and the + // determining the alignment of the payload after the tag.) + let mut prefix_align = min_ity.align(dl).abi; + if def.repr().c() { + for fields in &variants { + for field in fields { + prefix_align = prefix_align.max(field.align.abi); + } + } + } + + // Create the set of structs that represent each variant. + let mut layout_variants = variants + .iter_enumerated() + .map(|(i, field_layouts)| { + let mut st = self.univariant_uninterned( + ty, + &field_layouts, + &def.repr(), + StructKind::Prefixed(min_ity.size(), prefix_align), + )?; + st.variants = Variants::Single { index: i }; + // Find the first field we can't move later + // to make room for a larger discriminant. + for field in + st.fields.index_by_increasing_offset().map(|j| field_layouts[j]) + { + if !field.is_zst() || field.align.abi.bytes() != 1 { + start_align = start_align.min(field.align.abi); + break; + } + } + size = cmp::max(size, st.size); + align = align.max(st.align); + Ok(st) + }) + .collect::, _>>()?; + + // Align the maximum variant size to the largest alignment. + size = size.align_to(align.abi); + + if size.bytes() >= dl.obj_size_bound() { + return Err(LayoutError::SizeOverflow(ty)); + } + + let typeck_ity = Integer::from_attr(dl, def.repr().discr_type()); + if typeck_ity < min_ity { + // It is a bug if Layout decided on a greater discriminant size than typeck for + // some reason at this point (based on values discriminant can take on). Mostly + // because this discriminant will be loaded, and then stored into variable of + // type calculated by typeck. Consider such case (a bug): typeck decided on + // byte-sized discriminant, but layout thinks we need a 16-bit to store all + // discriminant values. That would be a bug, because then, in codegen, in order + // to store this 16-bit discriminant into 8-bit sized temporary some of the + // space necessary to represent would have to be discarded (or layout is wrong + // on thinking it needs 16 bits) + bug!( + "layout decided on a larger discriminant type ({:?}) than typeck ({:?})", + min_ity, + typeck_ity + ); + // However, it is fine to make discr type however large (as an optimisation) + // after this point – we’ll just truncate the value we load in codegen. + } + + // Check to see if we should use a different type for the + // discriminant. We can safely use a type with the same size + // as the alignment of the first field of each variant. + // We increase the size of the discriminant to avoid LLVM copying + // padding when it doesn't need to. This normally causes unaligned + // load/stores and excessive memcpy/memset operations. By using a + // bigger integer size, LLVM can be sure about its contents and + // won't be so conservative. + + // Use the initial field alignment + let mut ity = if def.repr().c() || def.repr().int.is_some() { + min_ity + } else { + Integer::for_align(dl, start_align).unwrap_or(min_ity) + }; + + // If the alignment is not larger than the chosen discriminant size, + // don't use the alignment as the final size. + if ity <= min_ity { + ity = min_ity; + } else { + // Patch up the variants' first few fields. + let old_ity_size = min_ity.size(); + let new_ity_size = ity.size(); + for variant in &mut layout_variants { + match variant.fields { + FieldsShape::Arbitrary { ref mut offsets, .. } => { + for i in offsets { + if *i <= old_ity_size { + assert_eq!(*i, old_ity_size); + *i = new_ity_size; + } + } + // We might be making the struct larger. + if variant.size <= old_ity_size { + variant.size = new_ity_size; + } + } + _ => bug!(), + } + } + } + + let tag_mask = ity.size().unsigned_int_max(); + let tag = Scalar::Initialized { + value: Int(ity, signed), + valid_range: WrappingRange { + start: (min as u128 & tag_mask), + end: (max as u128 & tag_mask), + }, + }; + let mut abi = Abi::Aggregate { sized: true }; + + if layout_variants.iter().all(|v| v.abi.is_uninhabited()) { + abi = Abi::Uninhabited; + } else if tag.size(dl) == size { + // Make sure we only use scalar layout when the enum is entirely its + // own tag (i.e. it has no padding nor any non-ZST variant fields). + abi = Abi::Scalar(tag); + } else { + // Try to use a ScalarPair for all tagged enums. + let mut common_prim = None; + let mut common_prim_initialized_in_all_variants = true; + for (field_layouts, layout_variant) in iter::zip(&variants, &layout_variants) { + let FieldsShape::Arbitrary { ref offsets, .. } = layout_variant.fields else { + bug!(); + }; + let mut fields = + iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst()); + let (field, offset) = match (fields.next(), fields.next()) { + (None, None) => { + common_prim_initialized_in_all_variants = false; + continue; + } + (Some(pair), None) => pair, + _ => { + common_prim = None; + break; + } + }; + let prim = match field.abi { + Abi::Scalar(scalar) => { + common_prim_initialized_in_all_variants &= + matches!(scalar, Scalar::Initialized { .. }); + scalar.primitive() + } + _ => { + common_prim = None; + break; + } + }; + if let Some(pair) = common_prim { + // This is pretty conservative. We could go fancier + // by conflating things like i32 and u32, or even + // realising that (u8, u8) could just cohabit with + // u16 or even u32. + if pair != (prim, offset) { + common_prim = None; + break; + } + } else { + common_prim = Some((prim, offset)); + } + } + if let Some((prim, offset)) = common_prim { + let prim_scalar = if common_prim_initialized_in_all_variants { + scalar_unit(prim) + } else { + // Common prim might be uninit. + Scalar::Union { value: prim } + }; + let pair = self.scalar_pair(tag, prim_scalar); + let pair_offsets = match pair.fields { + FieldsShape::Arbitrary { ref offsets, ref memory_index } => { + assert_eq!(memory_index, &[0, 1]); + offsets + } + _ => bug!(), + }; + if pair_offsets[0] == Size::ZERO + && pair_offsets[1] == *offset + && align == pair.align + && size == pair.size + { + // We can use `ScalarPair` only when it matches our + // already computed layout (including `#[repr(C)]`). + abi = pair.abi; + } + } + } + + // If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the + // variants to ensure they are consistent. This is because a downcast is + // semantically a NOP, and thus should not affect layout. + if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) { + for variant in &mut layout_variants { + // We only do this for variants with fields; the others are not accessed anyway. + // Also do not overwrite any already existing "clever" ABIs. + if variant.fields.count() > 0 + && matches!(variant.abi, Abi::Aggregate { .. }) + { + variant.abi = abi; + // Also need to bump up the size and alignment, so that the entire value fits in here. + variant.size = cmp::max(variant.size, size); + variant.align.abi = cmp::max(variant.align.abi, align.abi); + } + } + } + + let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag); + + let layout_variants = + layout_variants.into_iter().map(|v| tcx.intern_layout(v)).collect(); + + let tagged_layout = LayoutS { + variants: Variants::Multiple { + tag, + tag_encoding: TagEncoding::Direct, + tag_field: 0, + variants: layout_variants, + }, + fields: FieldsShape::Arbitrary { + offsets: vec![Size::ZERO], + memory_index: vec![0], + }, + largest_niche, + abi, + align, + size, + }; + + let best_layout = match (tagged_layout, niche_filling_layout) { + (tagged_layout, Some(niche_filling_layout)) => { + // Pick the smaller layout; otherwise, + // pick the layout with the larger niche; otherwise, + // pick tagged as it has simpler codegen. + cmp::min_by_key(tagged_layout, niche_filling_layout, |layout| { + let niche_size = layout.largest_niche.map_or(0, |n| n.available(dl)); + (layout.size, cmp::Reverse(niche_size)) + }) + } + (tagged_layout, None) => tagged_layout, + }; + + tcx.intern_layout(best_layout) + } + + // Types with no meaningful known layout. + ty::Projection(_) | ty::Opaque(..) => { + // NOTE(eddyb) `layout_of` query should've normalized these away, + // if that was possible, so there's no reason to try again here. + return Err(LayoutError::Unknown(ty)); + } + + ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => { + bug!("Layout::compute: unexpected type `{}`", ty) + } + + ty::Bound(..) | ty::Param(_) | ty::Error(_) => { + return Err(LayoutError::Unknown(ty)); + } + }) + } +} + +/// Overlap eligibility and variant assignment for each GeneratorSavedLocal. +#[derive(Clone, Debug, PartialEq)] +enum SavedLocalEligibility { + Unassigned, + Assigned(VariantIdx), + // FIXME: Use newtype_index so we aren't wasting bytes + Ineligible(Option), +} + +// When laying out generators, we divide our saved local fields into two +// categories: overlap-eligible and overlap-ineligible. +// +// Those fields which are ineligible for overlap go in a "prefix" at the +// beginning of the layout, and always have space reserved for them. +// +// Overlap-eligible fields are only assigned to one variant, so we lay +// those fields out for each variant and put them right after the +// prefix. +// +// Finally, in the layout details, we point to the fields from the +// variants they are assigned to. It is possible for some fields to be +// included in multiple variants. No field ever "moves around" in the +// layout; its offset is always the same. +// +// Also included in the layout are the upvars and the discriminant. +// These are included as fields on the "outer" layout; they are not part +// of any variant. +impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> { + /// Compute the eligibility and assignment of each local. + fn generator_saved_local_eligibility( + &self, + info: &GeneratorLayout<'tcx>, + ) -> (BitSet, IndexVec) { + use SavedLocalEligibility::*; + + let mut assignments: IndexVec = + IndexVec::from_elem_n(Unassigned, info.field_tys.len()); + + // The saved locals not eligible for overlap. These will get + // "promoted" to the prefix of our generator. + let mut ineligible_locals = BitSet::new_empty(info.field_tys.len()); + + // Figure out which of our saved locals are fields in only + // one variant. The rest are deemed ineligible for overlap. + for (variant_index, fields) in info.variant_fields.iter_enumerated() { + for local in fields { + match assignments[*local] { + Unassigned => { + assignments[*local] = Assigned(variant_index); + } + Assigned(idx) => { + // We've already seen this local at another suspension + // point, so it is no longer a candidate. + trace!( + "removing local {:?} in >1 variant ({:?}, {:?})", + local, + variant_index, + idx + ); + ineligible_locals.insert(*local); + assignments[*local] = Ineligible(None); + } + Ineligible(_) => {} + } + } + } + + // Next, check every pair of eligible locals to see if they + // conflict. + for local_a in info.storage_conflicts.rows() { + let conflicts_a = info.storage_conflicts.count(local_a); + if ineligible_locals.contains(local_a) { + continue; + } + + for local_b in info.storage_conflicts.iter(local_a) { + // local_a and local_b are storage live at the same time, therefore they + // cannot overlap in the generator layout. The only way to guarantee + // this is if they are in the same variant, or one is ineligible + // (which means it is stored in every variant). + if ineligible_locals.contains(local_b) + || assignments[local_a] == assignments[local_b] + { + continue; + } + + // If they conflict, we will choose one to make ineligible. + // This is not always optimal; it's just a greedy heuristic that + // seems to produce good results most of the time. + let conflicts_b = info.storage_conflicts.count(local_b); + let (remove, other) = + if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) }; + ineligible_locals.insert(remove); + assignments[remove] = Ineligible(None); + trace!("removing local {:?} due to conflict with {:?}", remove, other); + } + } + + // Count the number of variants in use. If only one of them, then it is + // impossible to overlap any locals in our layout. In this case it's + // always better to make the remaining locals ineligible, so we can + // lay them out with the other locals in the prefix and eliminate + // unnecessary padding bytes. + { + let mut used_variants = BitSet::new_empty(info.variant_fields.len()); + for assignment in &assignments { + if let Assigned(idx) = assignment { + used_variants.insert(*idx); + } + } + if used_variants.count() < 2 { + for assignment in assignments.iter_mut() { + *assignment = Ineligible(None); + } + ineligible_locals.insert_all(); + } + } + + // Write down the order of our locals that will be promoted to the prefix. + { + for (idx, local) in ineligible_locals.iter().enumerate() { + assignments[local] = Ineligible(Some(idx as u32)); + } + } + debug!("generator saved local assignments: {:?}", assignments); + + (ineligible_locals, assignments) + } + + /// Compute the full generator layout. + fn generator_layout( + &self, + ty: Ty<'tcx>, + def_id: hir::def_id::DefId, + substs: SubstsRef<'tcx>, + ) -> Result, LayoutError<'tcx>> { + use SavedLocalEligibility::*; + let tcx = self.tcx; + let subst_field = |ty: Ty<'tcx>| EarlyBinder(ty).subst(tcx, substs); + + let Some(info) = tcx.generator_layout(def_id) else { + return Err(LayoutError::Unknown(ty)); + }; + let (ineligible_locals, assignments) = self.generator_saved_local_eligibility(&info); + + // Build a prefix layout, including "promoting" all ineligible + // locals as part of the prefix. We compute the layout of all of + // these fields at once to get optimal packing. + let tag_index = substs.as_generator().prefix_tys().count(); + + // `info.variant_fields` already accounts for the reserved variants, so no need to add them. + let max_discr = (info.variant_fields.len() - 1) as u128; + let discr_int = Integer::fit_unsigned(max_discr); + let discr_int_ty = discr_int.to_ty(tcx, false); + let tag = Scalar::Initialized { + value: Primitive::Int(discr_int, false), + valid_range: WrappingRange { start: 0, end: max_discr }, + }; + let tag_layout = self.tcx.intern_layout(LayoutS::scalar(self, tag)); + let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout }; + + let promoted_layouts = ineligible_locals + .iter() + .map(|local| subst_field(info.field_tys[local])) + .map(|ty| tcx.mk_maybe_uninit(ty)) + .map(|ty| self.layout_of(ty)); + let prefix_layouts = substs + .as_generator() + .prefix_tys() + .map(|ty| self.layout_of(ty)) + .chain(iter::once(Ok(tag_layout))) + .chain(promoted_layouts) + .collect::, _>>()?; + let prefix = self.univariant_uninterned( + ty, + &prefix_layouts, + &ReprOptions::default(), + StructKind::AlwaysSized, + )?; + + let (prefix_size, prefix_align) = (prefix.size, prefix.align); + + // Split the prefix layout into the "outer" fields (upvars and + // discriminant) and the "promoted" fields. Promoted fields will + // get included in each variant that requested them in + // GeneratorLayout. + debug!("prefix = {:#?}", prefix); + let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields { + FieldsShape::Arbitrary { mut offsets, memory_index } => { + let mut inverse_memory_index = invert_mapping(&memory_index); + + // "a" (`0..b_start`) and "b" (`b_start..`) correspond to + // "outer" and "promoted" fields respectively. + let b_start = (tag_index + 1) as u32; + let offsets_b = offsets.split_off(b_start as usize); + let offsets_a = offsets; + + // Disentangle the "a" and "b" components of `inverse_memory_index` + // by preserving the order but keeping only one disjoint "half" each. + // FIXME(eddyb) build a better abstraction for permutations, if possible. + let inverse_memory_index_b: Vec<_> = + inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect(); + inverse_memory_index.retain(|&i| i < b_start); + let inverse_memory_index_a = inverse_memory_index; + + // Since `inverse_memory_index_{a,b}` each only refer to their + // respective fields, they can be safely inverted + let memory_index_a = invert_mapping(&inverse_memory_index_a); + let memory_index_b = invert_mapping(&inverse_memory_index_b); + + let outer_fields = + FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a }; + (outer_fields, offsets_b, memory_index_b) + } + _ => bug!(), + }; + + let mut size = prefix.size; + let mut align = prefix.align; + let variants = info + .variant_fields + .iter_enumerated() + .map(|(index, variant_fields)| { + // Only include overlap-eligible fields when we compute our variant layout. + let variant_only_tys = variant_fields + .iter() + .filter(|local| match assignments[**local] { + Unassigned => bug!(), + Assigned(v) if v == index => true, + Assigned(_) => bug!("assignment does not match variant"), + Ineligible(_) => false, + }) + .map(|local| subst_field(info.field_tys[*local])); + + let mut variant = self.univariant_uninterned( + ty, + &variant_only_tys + .map(|ty| self.layout_of(ty)) + .collect::, _>>()?, + &ReprOptions::default(), + StructKind::Prefixed(prefix_size, prefix_align.abi), + )?; + variant.variants = Variants::Single { index }; + + let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else { + bug!(); + }; + + // Now, stitch the promoted and variant-only fields back together in + // the order they are mentioned by our GeneratorLayout. + // Because we only use some subset (that can differ between variants) + // of the promoted fields, we can't just pick those elements of the + // `promoted_memory_index` (as we'd end up with gaps). + // So instead, we build an "inverse memory_index", as if all of the + // promoted fields were being used, but leave the elements not in the + // subset as `INVALID_FIELD_IDX`, which we can filter out later to + // obtain a valid (bijective) mapping. + const INVALID_FIELD_IDX: u32 = !0; + let mut combined_inverse_memory_index = + vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()]; + let mut offsets_and_memory_index = iter::zip(offsets, memory_index); + let combined_offsets = variant_fields + .iter() + .enumerate() + .map(|(i, local)| { + let (offset, memory_index) = match assignments[*local] { + Unassigned => bug!(), + Assigned(_) => { + let (offset, memory_index) = + offsets_and_memory_index.next().unwrap(); + (offset, promoted_memory_index.len() as u32 + memory_index) + } + Ineligible(field_idx) => { + let field_idx = field_idx.unwrap() as usize; + (promoted_offsets[field_idx], promoted_memory_index[field_idx]) + } + }; + combined_inverse_memory_index[memory_index as usize] = i as u32; + offset + }) + .collect(); + + // Remove the unused slots and invert the mapping to obtain the + // combined `memory_index` (also see previous comment). + combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX); + let combined_memory_index = invert_mapping(&combined_inverse_memory_index); + + variant.fields = FieldsShape::Arbitrary { + offsets: combined_offsets, + memory_index: combined_memory_index, + }; + + size = size.max(variant.size); + align = align.max(variant.align); + Ok(tcx.intern_layout(variant)) + }) + .collect::, _>>()?; + + size = size.align_to(align.abi); + + let abi = + if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi().is_uninhabited()) { + Abi::Uninhabited + } else { + Abi::Aggregate { sized: true } + }; + + let layout = tcx.intern_layout(LayoutS { + variants: Variants::Multiple { + tag, + tag_encoding: TagEncoding::Direct, + tag_field: tag_index, + variants, + }, + fields: outer_fields, + abi, + largest_niche: prefix.largest_niche, + size, + align, + }); + debug!("generator layout ({:?}): {:#?}", ty, layout); + Ok(layout) + } + + /// This is invoked by the `layout_of` query to record the final + /// layout of each type. + #[inline(always)] + fn record_layout_for_printing(&self, layout: TyAndLayout<'tcx>) { + // If we are running with `-Zprint-type-sizes`, maybe record layouts + // for dumping later. + if self.tcx.sess.opts.unstable_opts.print_type_sizes { + self.record_layout_for_printing_outlined(layout) + } + } + + fn record_layout_for_printing_outlined(&self, layout: TyAndLayout<'tcx>) { + // Ignore layouts that are done with non-empty environments or + // non-monomorphic layouts, as the user only wants to see the stuff + // resulting from the final codegen session. + if layout.ty.has_param_types_or_consts() || !self.param_env.caller_bounds().is_empty() { + return; + } + + // (delay format until we actually need it) + let record = |kind, packed, opt_discr_size, variants| { + let type_desc = format!("{:?}", layout.ty); + self.tcx.sess.code_stats.record_type_size( + kind, + type_desc, + layout.align.abi, + layout.size, + packed, + opt_discr_size, + variants, + ); + }; + + let adt_def = match *layout.ty.kind() { + ty::Adt(ref adt_def, _) => { + debug!("print-type-size t: `{:?}` process adt", layout.ty); + adt_def + } + + ty::Closure(..) => { + debug!("print-type-size t: `{:?}` record closure", layout.ty); + record(DataTypeKind::Closure, false, None, vec![]); + return; + } + + _ => { + debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty); + return; + } + }; + + let adt_kind = adt_def.adt_kind(); + let adt_packed = adt_def.repr().pack.is_some(); + + let build_variant_info = |n: Option, flds: &[Symbol], layout: TyAndLayout<'tcx>| { + let mut min_size = Size::ZERO; + let field_info: Vec<_> = flds + .iter() + .enumerate() + .map(|(i, &name)| { + let field_layout = layout.field(self, i); + let offset = layout.fields.offset(i); + let field_end = offset + field_layout.size; + if min_size < field_end { + min_size = field_end; + } + FieldInfo { + name, + offset: offset.bytes(), + size: field_layout.size.bytes(), + align: field_layout.align.abi.bytes(), + } + }) + .collect(); + + VariantInfo { + name: n, + kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact }, + align: layout.align.abi.bytes(), + size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() }, + fields: field_info, + } + }; + + match layout.variants { + Variants::Single { index } => { + if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive { + debug!( + "print-type-size `{:#?}` variant {}", + layout, + adt_def.variant(index).name + ); + let variant_def = &adt_def.variant(index); + let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect(); + record( + adt_kind.into(), + adt_packed, + None, + vec![build_variant_info(Some(variant_def.name), &fields, layout)], + ); + } else { + // (This case arises for *empty* enums; so give it + // zero variants.) + record(adt_kind.into(), adt_packed, None, vec![]); + } + } + + Variants::Multiple { tag, ref tag_encoding, .. } => { + debug!( + "print-type-size `{:#?}` adt general variants def {}", + layout.ty, + adt_def.variants().len() + ); + let variant_infos: Vec<_> = adt_def + .variants() + .iter_enumerated() + .map(|(i, variant_def)| { + let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect(); + build_variant_info( + Some(variant_def.name), + &fields, + layout.for_variant(self, i), + ) + }) + .collect(); + record( + adt_kind.into(), + adt_packed, + match tag_encoding { + TagEncoding::Direct => Some(tag.size(self)), + _ => None, + }, + variant_infos, + ); + } + } + } +} + +/// Type size "skeleton", i.e., the only information determining a type's size. +/// While this is conservative, (aside from constant sizes, only pointers, +/// newtypes thereof and null pointer optimized enums are allowed), it is +/// enough to statically check common use cases of transmute. +#[derive(Copy, Clone, Debug)] +pub enum SizeSkeleton<'tcx> { + /// Any statically computable Layout. + Known(Size), + + /// A potentially-fat pointer. + Pointer { + /// If true, this pointer is never null. + non_zero: bool, + /// The type which determines the unsized metadata, if any, + /// of this pointer. Either a type parameter or a projection + /// depending on one, with regions erased. + tail: Ty<'tcx>, + }, +} + +impl<'tcx> SizeSkeleton<'tcx> { + pub fn compute( + ty: Ty<'tcx>, + tcx: TyCtxt<'tcx>, + param_env: ty::ParamEnv<'tcx>, + ) -> Result, LayoutError<'tcx>> { + debug_assert!(!ty.has_infer_types_or_consts()); + + // First try computing a static layout. + let err = match tcx.layout_of(param_env.and(ty)) { + Ok(layout) => { + return Ok(SizeSkeleton::Known(layout.size)); + } + Err(err) => err, + }; + + match *ty.kind() { + ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { + let non_zero = !ty.is_unsafe_ptr(); + let tail = tcx.struct_tail_erasing_lifetimes(pointee, param_env); + match tail.kind() { + ty::Param(_) | ty::Projection(_) => { + debug_assert!(tail.has_param_types_or_consts()); + Ok(SizeSkeleton::Pointer { non_zero, tail: tcx.erase_regions(tail) }) + } + _ => bug!( + "SizeSkeleton::compute({}): layout errored ({}), yet \ + tail `{}` is not a type parameter or a projection", + ty, + err, + tail + ), + } + } + + ty::Adt(def, substs) => { + // Only newtypes and enums w/ nullable pointer optimization. + if def.is_union() || def.variants().is_empty() || def.variants().len() > 2 { + return Err(err); + } + + // Get a zero-sized variant or a pointer newtype. + let zero_or_ptr_variant = |i| { + let i = VariantIdx::new(i); + let fields = + def.variant(i).fields.iter().map(|field| { + SizeSkeleton::compute(field.ty(tcx, substs), tcx, param_env) + }); + let mut ptr = None; + for field in fields { + let field = field?; + match field { + SizeSkeleton::Known(size) => { + if size.bytes() > 0 { + return Err(err); + } + } + SizeSkeleton::Pointer { .. } => { + if ptr.is_some() { + return Err(err); + } + ptr = Some(field); + } + } + } + Ok(ptr) + }; + + let v0 = zero_or_ptr_variant(0)?; + // Newtype. + if def.variants().len() == 1 { + if let Some(SizeSkeleton::Pointer { non_zero, tail }) = v0 { + return Ok(SizeSkeleton::Pointer { + non_zero: non_zero + || match tcx.layout_scalar_valid_range(def.did()) { + (Bound::Included(start), Bound::Unbounded) => start > 0, + (Bound::Included(start), Bound::Included(end)) => { + 0 < start && start < end + } + _ => false, + }, + tail, + }); + } else { + return Err(err); + } + } + + let v1 = zero_or_ptr_variant(1)?; + // Nullable pointer enum optimization. + match (v0, v1) { + (Some(SizeSkeleton::Pointer { non_zero: true, tail }), None) + | (None, Some(SizeSkeleton::Pointer { non_zero: true, tail })) => { + Ok(SizeSkeleton::Pointer { non_zero: false, tail }) + } + _ => Err(err), + } + } + + ty::Projection(_) | ty::Opaque(..) => { + let normalized = tcx.normalize_erasing_regions(param_env, ty); + if ty == normalized { + Err(err) + } else { + SizeSkeleton::compute(normalized, tcx, param_env) + } + } + + _ => Err(err), + } + } + + pub fn same_size(self, other: SizeSkeleton<'tcx>) -> bool { + match (self, other) { + (SizeSkeleton::Known(a), SizeSkeleton::Known(b)) => a == b, + (SizeSkeleton::Pointer { tail: a, .. }, SizeSkeleton::Pointer { tail: b, .. }) => { + a == b + } + _ => false, + } + } +} + +pub trait HasTyCtxt<'tcx>: HasDataLayout { + fn tcx(&self) -> TyCtxt<'tcx>; +} + +pub trait HasParamEnv<'tcx> { + fn param_env(&self) -> ty::ParamEnv<'tcx>; +} + +impl<'tcx> HasDataLayout for TyCtxt<'tcx> { + #[inline] + fn data_layout(&self) -> &TargetDataLayout { + &self.data_layout + } +} + +impl<'tcx> HasTargetSpec for TyCtxt<'tcx> { + fn target_spec(&self) -> &Target { + &self.sess.target + } +} + +impl<'tcx> HasTyCtxt<'tcx> for TyCtxt<'tcx> { + #[inline] + fn tcx(&self) -> TyCtxt<'tcx> { + *self + } +} + +impl<'tcx> HasDataLayout for ty::query::TyCtxtAt<'tcx> { + #[inline] + fn data_layout(&self) -> &TargetDataLayout { + &self.data_layout + } +} + +impl<'tcx> HasTargetSpec for ty::query::TyCtxtAt<'tcx> { + fn target_spec(&self) -> &Target { + &self.sess.target + } +} + +impl<'tcx> HasTyCtxt<'tcx> for ty::query::TyCtxtAt<'tcx> { + #[inline] + fn tcx(&self) -> TyCtxt<'tcx> { + **self + } +} + +impl<'tcx, C> HasParamEnv<'tcx> for LayoutCx<'tcx, C> { + fn param_env(&self) -> ty::ParamEnv<'tcx> { + self.param_env + } +} + +impl<'tcx, T: HasDataLayout> HasDataLayout for LayoutCx<'tcx, T> { + fn data_layout(&self) -> &TargetDataLayout { + self.tcx.data_layout() + } +} + +impl<'tcx, T: HasTargetSpec> HasTargetSpec for LayoutCx<'tcx, T> { + fn target_spec(&self) -> &Target { + self.tcx.target_spec() + } +} + +impl<'tcx, T: HasTyCtxt<'tcx>> HasTyCtxt<'tcx> for LayoutCx<'tcx, T> { + fn tcx(&self) -> TyCtxt<'tcx> { + self.tcx.tcx() + } +} + +pub trait MaybeResult { + type Error; + + fn from(x: Result) -> Self; + fn to_result(self) -> Result; +} + +impl MaybeResult for T { + type Error = !; + + fn from(Ok(x): Result) -> Self { + x + } + fn to_result(self) -> Result { + Ok(self) + } +} + +impl MaybeResult for Result { + type Error = E; + + fn from(x: Result) -> Self { + x + } + fn to_result(self) -> Result { + self + } +} + +pub type TyAndLayout<'tcx> = rustc_target::abi::TyAndLayout<'tcx, Ty<'tcx>>; + +/// Trait for contexts that want to be able to compute layouts of types. +/// This automatically gives access to `LayoutOf`, through a blanket `impl`. +pub trait LayoutOfHelpers<'tcx>: HasDataLayout + HasTyCtxt<'tcx> + HasParamEnv<'tcx> { + /// The `TyAndLayout`-wrapping type (or `TyAndLayout` itself), which will be + /// returned from `layout_of` (see also `handle_layout_err`). + type LayoutOfResult: MaybeResult>; + + /// `Span` to use for `tcx.at(span)`, from `layout_of`. + // FIXME(eddyb) perhaps make this mandatory to get contexts to track it better? + #[inline] + fn layout_tcx_at_span(&self) -> Span { + DUMMY_SP + } + + /// Helper used for `layout_of`, to adapt `tcx.layout_of(...)` into a + /// `Self::LayoutOfResult` (which does not need to be a `Result<...>`). + /// + /// Most `impl`s, which propagate `LayoutError`s, should simply return `err`, + /// but this hook allows e.g. codegen to return only `TyAndLayout` from its + /// `cx.layout_of(...)`, without any `Result<...>` around it to deal with + /// (and any `LayoutError`s are turned into fatal errors or ICEs). + fn handle_layout_err( + &self, + err: LayoutError<'tcx>, + span: Span, + ty: Ty<'tcx>, + ) -> >>::Error; +} + +/// Blanket extension trait for contexts that can compute layouts of types. +pub trait LayoutOf<'tcx>: LayoutOfHelpers<'tcx> { + /// Computes the layout of a type. Note that this implicitly + /// executes in "reveal all" mode, and will normalize the input type. + #[inline] + fn layout_of(&self, ty: Ty<'tcx>) -> Self::LayoutOfResult { + self.spanned_layout_of(ty, DUMMY_SP) + } + + /// Computes the layout of a type, at `span`. Note that this implicitly + /// executes in "reveal all" mode, and will normalize the input type. + // FIXME(eddyb) avoid passing information like this, and instead add more + // `TyCtxt::at`-like APIs to be able to do e.g. `cx.at(span).layout_of(ty)`. + #[inline] + fn spanned_layout_of(&self, ty: Ty<'tcx>, span: Span) -> Self::LayoutOfResult { + let span = if !span.is_dummy() { span } else { self.layout_tcx_at_span() }; + let tcx = self.tcx().at(span); + + MaybeResult::from( + tcx.layout_of(self.param_env().and(ty)) + .map_err(|err| self.handle_layout_err(err, span, ty)), + ) + } +} + +impl<'tcx, C: LayoutOfHelpers<'tcx>> LayoutOf<'tcx> for C {} + +impl<'tcx> LayoutOfHelpers<'tcx> for LayoutCx<'tcx, TyCtxt<'tcx>> { + type LayoutOfResult = Result, LayoutError<'tcx>>; + + #[inline] + fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> { + err + } +} + +impl<'tcx> LayoutOfHelpers<'tcx> for LayoutCx<'tcx, ty::query::TyCtxtAt<'tcx>> { + type LayoutOfResult = Result, LayoutError<'tcx>>; + + #[inline] + fn layout_tcx_at_span(&self) -> Span { + self.tcx.span + } + + #[inline] + fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> { + err + } +} + +impl<'tcx, C> TyAbiInterface<'tcx, C> for Ty<'tcx> +where + C: HasTyCtxt<'tcx> + HasParamEnv<'tcx>, +{ + fn ty_and_layout_for_variant( + this: TyAndLayout<'tcx>, + cx: &C, + variant_index: VariantIdx, + ) -> TyAndLayout<'tcx> { + let layout = match this.variants { + Variants::Single { index } + // If all variants but one are uninhabited, the variant layout is the enum layout. + if index == variant_index && + // Don't confuse variants of uninhabited enums with the enum itself. + // For more details see https://github.com/rust-lang/rust/issues/69763. + this.fields != FieldsShape::Primitive => + { + this.layout + } + + Variants::Single { index } => { + let tcx = cx.tcx(); + let param_env = cx.param_env(); + + // Deny calling for_variant more than once for non-Single enums. + if let Ok(original_layout) = tcx.layout_of(param_env.and(this.ty)) { + assert_eq!(original_layout.variants, Variants::Single { index }); + } + + let fields = match this.ty.kind() { + ty::Adt(def, _) if def.variants().is_empty() => + bug!("for_variant called on zero-variant enum"), + ty::Adt(def, _) => def.variant(variant_index).fields.len(), + _ => bug!(), + }; + tcx.intern_layout(LayoutS { + variants: Variants::Single { index: variant_index }, + fields: match NonZeroUsize::new(fields) { + Some(fields) => FieldsShape::Union(fields), + None => FieldsShape::Arbitrary { offsets: vec![], memory_index: vec![] }, + }, + abi: Abi::Uninhabited, + largest_niche: None, + align: tcx.data_layout.i8_align, + size: Size::ZERO, + }) + } + + Variants::Multiple { ref variants, .. } => variants[variant_index], + }; + + assert_eq!(*layout.variants(), Variants::Single { index: variant_index }); + + TyAndLayout { ty: this.ty, layout } + } + + fn ty_and_layout_field(this: TyAndLayout<'tcx>, cx: &C, i: usize) -> TyAndLayout<'tcx> { + enum TyMaybeWithLayout<'tcx> { + Ty(Ty<'tcx>), + TyAndLayout(TyAndLayout<'tcx>), + } + + fn field_ty_or_layout<'tcx>( + this: TyAndLayout<'tcx>, + cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>), + i: usize, + ) -> TyMaybeWithLayout<'tcx> { + let tcx = cx.tcx(); + let tag_layout = |tag: Scalar| -> TyAndLayout<'tcx> { + TyAndLayout { + layout: tcx.intern_layout(LayoutS::scalar(cx, tag)), + ty: tag.primitive().to_ty(tcx), + } + }; + + match *this.ty.kind() { + ty::Bool + | ty::Char + | ty::Int(_) + | ty::Uint(_) + | ty::Float(_) + | ty::FnPtr(_) + | ty::Never + | ty::FnDef(..) + | ty::GeneratorWitness(..) + | ty::Foreign(..) + | ty::Dynamic(..) => bug!("TyAndLayout::field({:?}): not applicable", this), + + // Potentially-fat pointers. + ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { + assert!(i < this.fields.count()); + + // Reuse the fat `*T` type as its own thin pointer data field. + // This provides information about, e.g., DST struct pointees + // (which may have no non-DST form), and will work as long + // as the `Abi` or `FieldsShape` is checked by users. + if i == 0 { + let nil = tcx.mk_unit(); + let unit_ptr_ty = if this.ty.is_unsafe_ptr() { + tcx.mk_mut_ptr(nil) + } else { + tcx.mk_mut_ref(tcx.lifetimes.re_static, nil) + }; + + // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing + // the `Result` should always work because the type is + // always either `*mut ()` or `&'static mut ()`. + return TyMaybeWithLayout::TyAndLayout(TyAndLayout { + ty: this.ty, + ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap() + }); + } + + match tcx.struct_tail_erasing_lifetimes(pointee, cx.param_env()).kind() { + ty::Slice(_) | ty::Str => TyMaybeWithLayout::Ty(tcx.types.usize), + ty::Dynamic(_, _) => { + TyMaybeWithLayout::Ty(tcx.mk_imm_ref( + tcx.lifetimes.re_static, + tcx.mk_array(tcx.types.usize, 3), + )) + /* FIXME: use actual fn pointers + Warning: naively computing the number of entries in the + vtable by counting the methods on the trait + methods on + all parent traits does not work, because some methods can + be not object safe and thus excluded from the vtable. + Increase this counter if you tried to implement this but + failed to do it without duplicating a lot of code from + other places in the compiler: 2 + tcx.mk_tup(&[ + tcx.mk_array(tcx.types.usize, 3), + tcx.mk_array(Option), + ]) + */ + } + _ => bug!("TyAndLayout::field({:?}): not applicable", this), + } + } + + // Arrays and slices. + ty::Array(element, _) | ty::Slice(element) => TyMaybeWithLayout::Ty(element), + ty::Str => TyMaybeWithLayout::Ty(tcx.types.u8), + + // Tuples, generators and closures. + ty::Closure(_, ref substs) => field_ty_or_layout( + TyAndLayout { ty: substs.as_closure().tupled_upvars_ty(), ..this }, + cx, + i, + ), + + ty::Generator(def_id, ref substs, _) => match this.variants { + Variants::Single { index } => TyMaybeWithLayout::Ty( + substs + .as_generator() + .state_tys(def_id, tcx) + .nth(index.as_usize()) + .unwrap() + .nth(i) + .unwrap(), + ), + Variants::Multiple { tag, tag_field, .. } => { + if i == tag_field { + return TyMaybeWithLayout::TyAndLayout(tag_layout(tag)); + } + TyMaybeWithLayout::Ty(substs.as_generator().prefix_tys().nth(i).unwrap()) + } + }, + + ty::Tuple(tys) => TyMaybeWithLayout::Ty(tys[i]), + + // ADTs. + ty::Adt(def, substs) => { + match this.variants { + Variants::Single { index } => { + TyMaybeWithLayout::Ty(def.variant(index).fields[i].ty(tcx, substs)) + } + + // Discriminant field for enums (where applicable). + Variants::Multiple { tag, .. } => { + assert_eq!(i, 0); + return TyMaybeWithLayout::TyAndLayout(tag_layout(tag)); + } + } + } + + ty::Projection(_) + | ty::Bound(..) + | ty::Placeholder(..) + | ty::Opaque(..) + | ty::Param(_) + | ty::Infer(_) + | ty::Error(_) => bug!("TyAndLayout::field: unexpected type `{}`", this.ty), + } + } + + match field_ty_or_layout(this, cx, i) { + TyMaybeWithLayout::Ty(field_ty) => { + cx.tcx().layout_of(cx.param_env().and(field_ty)).unwrap_or_else(|e| { + bug!( + "failed to get layout for `{}`: {},\n\ + despite it being a field (#{}) of an existing layout: {:#?}", + field_ty, + e, + i, + this + ) + }) + } + TyMaybeWithLayout::TyAndLayout(field_layout) => field_layout, + } + } + + fn ty_and_layout_pointee_info_at( + this: TyAndLayout<'tcx>, + cx: &C, + offset: Size, + ) -> Option { + let tcx = cx.tcx(); + let param_env = cx.param_env(); + + let addr_space_of_ty = |ty: Ty<'tcx>| { + if ty.is_fn() { cx.data_layout().instruction_address_space } else { AddressSpace::DATA } + }; + + let pointee_info = match *this.ty.kind() { + ty::RawPtr(mt) if offset.bytes() == 0 => { + tcx.layout_of(param_env.and(mt.ty)).ok().map(|layout| PointeeInfo { + size: layout.size, + align: layout.align.abi, + safe: None, + address_space: addr_space_of_ty(mt.ty), + }) + } + ty::FnPtr(fn_sig) if offset.bytes() == 0 => { + tcx.layout_of(param_env.and(tcx.mk_fn_ptr(fn_sig))).ok().map(|layout| PointeeInfo { + size: layout.size, + align: layout.align.abi, + safe: None, + address_space: cx.data_layout().instruction_address_space, + }) + } + ty::Ref(_, ty, mt) if offset.bytes() == 0 => { + let address_space = addr_space_of_ty(ty); + let kind = if tcx.sess.opts.optimize == OptLevel::No { + // Use conservative pointer kind if not optimizing. This saves us the + // Freeze/Unpin queries, and can save time in the codegen backend (noalias + // attributes in LLVM have compile-time cost even in unoptimized builds). + PointerKind::SharedMutable + } else { + match mt { + hir::Mutability::Not => { + if ty.is_freeze(tcx.at(DUMMY_SP), cx.param_env()) { + PointerKind::Frozen + } else { + PointerKind::SharedMutable + } + } + hir::Mutability::Mut => { + // References to self-referential structures should not be considered + // noalias, as another pointer to the structure can be obtained, that + // is not based-on the original reference. We consider all !Unpin + // types to be potentially self-referential here. + if ty.is_unpin(tcx.at(DUMMY_SP), cx.param_env()) { + PointerKind::UniqueBorrowed + } else { + PointerKind::UniqueBorrowedPinned + } + } + } + }; + + tcx.layout_of(param_env.and(ty)).ok().map(|layout| PointeeInfo { + size: layout.size, + align: layout.align.abi, + safe: Some(kind), + address_space, + }) + } + + _ => { + let mut data_variant = match this.variants { + // Within the discriminant field, only the niche itself is + // always initialized, so we only check for a pointer at its + // offset. + // + // If the niche is a pointer, it's either valid (according + // to its type), or null (which the niche field's scalar + // validity range encodes). This allows using + // `dereferenceable_or_null` for e.g., `Option<&T>`, and + // this will continue to work as long as we don't start + // using more niches than just null (e.g., the first page of + // the address space, or unaligned pointers). + Variants::Multiple { + tag_encoding: TagEncoding::Niche { dataful_variant, .. }, + tag_field, + .. + } if this.fields.offset(tag_field) == offset => { + Some(this.for_variant(cx, dataful_variant)) + } + _ => Some(this), + }; + + if let Some(variant) = data_variant { + // We're not interested in any unions. + if let FieldsShape::Union(_) = variant.fields { + data_variant = None; + } + } + + let mut result = None; + + if let Some(variant) = data_variant { + let ptr_end = offset + Pointer.size(cx); + for i in 0..variant.fields.count() { + let field_start = variant.fields.offset(i); + if field_start <= offset { + let field = variant.field(cx, i); + result = field.to_result().ok().and_then(|field| { + if ptr_end <= field_start + field.size { + // We found the right field, look inside it. + let field_info = + field.pointee_info_at(cx, offset - field_start); + field_info + } else { + None + } + }); + if result.is_some() { + break; + } + } + } + } + + // FIXME(eddyb) This should be for `ptr::Unique`, not `Box`. + if let Some(ref mut pointee) = result { + if let ty::Adt(def, _) = this.ty.kind() { + if def.is_box() && offset.bytes() == 0 { + pointee.safe = Some(PointerKind::UniqueOwned); + } + } + } + + result + } + }; + + debug!( + "pointee_info_at (offset={:?}, type kind: {:?}) => {:?}", + offset, + this.ty.kind(), + pointee_info + ); + + pointee_info + } + + fn is_adt(this: TyAndLayout<'tcx>) -> bool { + matches!(this.ty.kind(), ty::Adt(..)) + } + + fn is_never(this: TyAndLayout<'tcx>) -> bool { + this.ty.kind() == &ty::Never + } + + fn is_tuple(this: TyAndLayout<'tcx>) -> bool { + matches!(this.ty.kind(), ty::Tuple(..)) + } + + fn is_unit(this: TyAndLayout<'tcx>) -> bool { + matches!(this.ty.kind(), ty::Tuple(list) if list.len() == 0) + } +} + +impl<'tcx> ty::Instance<'tcx> { + // NOTE(eddyb) this is private to avoid using it from outside of + // `fn_abi_of_instance` - any other uses are either too high-level + // for `Instance` (e.g. typeck would use `Ty::fn_sig` instead), + // or should go through `FnAbi` instead, to avoid losing any + // adjustments `fn_abi_of_instance` might be performing. + fn fn_sig_for_fn_abi( + &self, + tcx: TyCtxt<'tcx>, + param_env: ty::ParamEnv<'tcx>, + ) -> ty::PolyFnSig<'tcx> { + let ty = self.ty(tcx, param_env); + match *ty.kind() { + ty::FnDef(..) => { + // HACK(davidtwco,eddyb): This is a workaround for polymorphization considering + // parameters unused if they show up in the signature, but not in the `mir::Body` + // (i.e. due to being inside a projection that got normalized, see + // `src/test/ui/polymorphization/normalized_sig_types.rs`), and codegen not keeping + // track of a polymorphization `ParamEnv` to allow normalizing later. + let mut sig = match *ty.kind() { + ty::FnDef(def_id, substs) => tcx + .normalize_erasing_regions(tcx.param_env(def_id), tcx.bound_fn_sig(def_id)) + .subst(tcx, substs), + _ => unreachable!(), + }; + + if let ty::InstanceDef::VTableShim(..) = self.def { + // Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`. + sig = sig.map_bound(|mut sig| { + let mut inputs_and_output = sig.inputs_and_output.to_vec(); + inputs_and_output[0] = tcx.mk_mut_ptr(inputs_and_output[0]); + sig.inputs_and_output = tcx.intern_type_list(&inputs_and_output); + sig + }); + } + sig + } + ty::Closure(def_id, substs) => { + let sig = substs.as_closure().sig(); + + let bound_vars = tcx.mk_bound_variable_kinds( + sig.bound_vars() + .iter() + .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))), + ); + let br = ty::BoundRegion { + var: ty::BoundVar::from_usize(bound_vars.len() - 1), + kind: ty::BoundRegionKind::BrEnv, + }; + let env_region = ty::ReLateBound(ty::INNERMOST, br); + let env_ty = tcx.closure_env_ty(def_id, substs, env_region).unwrap(); + + let sig = sig.skip_binder(); + ty::Binder::bind_with_vars( + tcx.mk_fn_sig( + iter::once(env_ty).chain(sig.inputs().iter().cloned()), + sig.output(), + sig.c_variadic, + sig.unsafety, + sig.abi, + ), + bound_vars, + ) + } + ty::Generator(_, substs, _) => { + let sig = substs.as_generator().poly_sig(); + + let bound_vars = tcx.mk_bound_variable_kinds( + sig.bound_vars() + .iter() + .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))), + ); + let br = ty::BoundRegion { + var: ty::BoundVar::from_usize(bound_vars.len() - 1), + kind: ty::BoundRegionKind::BrEnv, + }; + let env_region = ty::ReLateBound(ty::INNERMOST, br); + let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty); + + let pin_did = tcx.require_lang_item(LangItem::Pin, None); + let pin_adt_ref = tcx.adt_def(pin_did); + let pin_substs = tcx.intern_substs(&[env_ty.into()]); + let env_ty = tcx.mk_adt(pin_adt_ref, pin_substs); + + let sig = sig.skip_binder(); + let state_did = tcx.require_lang_item(LangItem::GeneratorState, None); + let state_adt_ref = tcx.adt_def(state_did); + let state_substs = tcx.intern_substs(&[sig.yield_ty.into(), sig.return_ty.into()]); + let ret_ty = tcx.mk_adt(state_adt_ref, state_substs); + ty::Binder::bind_with_vars( + tcx.mk_fn_sig( + [env_ty, sig.resume_ty].iter(), + &ret_ty, + false, + hir::Unsafety::Normal, + rustc_target::spec::abi::Abi::Rust, + ), + bound_vars, + ) + } + _ => bug!("unexpected type {:?} in Instance::fn_sig", ty), + } + } +} + +/// Calculates whether a function's ABI can unwind or not. +/// +/// This takes two primary parameters: +/// +/// * `codegen_fn_attr_flags` - these are flags calculated as part of the +/// codegen attrs for a defined function. For function pointers this set of +/// flags is the empty set. This is only applicable for Rust-defined +/// functions, and generally isn't needed except for small optimizations where +/// we try to say a function which otherwise might look like it could unwind +/// doesn't actually unwind (such as for intrinsics and such). +/// +/// * `abi` - this is the ABI that the function is defined with. This is the +/// primary factor for determining whether a function can unwind or not. +/// +/// Note that in this case unwinding is not necessarily panicking in Rust. Rust +/// panics are implemented with unwinds on most platform (when +/// `-Cpanic=unwind`), but this also accounts for `-Cpanic=abort` build modes. +/// Notably unwinding is disallowed for more non-Rust ABIs unless it's +/// specifically in the name (e.g. `"C-unwind"`). Unwinding within each ABI is +/// defined for each ABI individually, but it always corresponds to some form of +/// stack-based unwinding (the exact mechanism of which varies +/// platform-by-platform). +/// +/// Rust functions are classified whether or not they can unwind based on the +/// active "panic strategy". In other words Rust functions are considered to +/// unwind in `-Cpanic=unwind` mode and cannot unwind in `-Cpanic=abort` mode. +/// Note that Rust supports intermingling panic=abort and panic=unwind code, but +/// only if the final panic mode is panic=abort. In this scenario any code +/// previously compiled assuming that a function can unwind is still correct, it +/// just never happens to actually unwind at runtime. +/// +/// This function's answer to whether or not a function can unwind is quite +/// impactful throughout the compiler. This affects things like: +/// +/// * Calling a function which can't unwind means codegen simply ignores any +/// associated unwinding cleanup. +/// * Calling a function which can unwind from a function which can't unwind +/// causes the `abort_unwinding_calls` MIR pass to insert a landing pad that +/// aborts the process. +/// * This affects whether functions have the LLVM `nounwind` attribute, which +/// affects various optimizations and codegen. +/// +/// FIXME: this is actually buggy with respect to Rust functions. Rust functions +/// compiled with `-Cpanic=unwind` and referenced from another crate compiled +/// with `-Cpanic=abort` will look like they can't unwind when in fact they +/// might (from a foreign exception or similar). +#[inline] +pub fn fn_can_unwind<'tcx>(tcx: TyCtxt<'tcx>, fn_def_id: Option, abi: SpecAbi) -> bool { + if let Some(did) = fn_def_id { + // Special attribute for functions which can't unwind. + if tcx.codegen_fn_attrs(did).flags.contains(CodegenFnAttrFlags::NEVER_UNWIND) { + return false; + } + + // With `-C panic=abort`, all non-FFI functions are required to not unwind. + // + // Note that this is true regardless ABI specified on the function -- a `extern "C-unwind"` + // function defined in Rust is also required to abort. + if tcx.sess.panic_strategy() == PanicStrategy::Abort && !tcx.is_foreign_item(did) { + return false; + } + + // With -Z panic-in-drop=abort, drop_in_place never unwinds. + // + // This is not part of `codegen_fn_attrs` as it can differ between crates + // and therefore cannot be computed in core. + if tcx.sess.opts.unstable_opts.panic_in_drop == PanicStrategy::Abort { + if Some(did) == tcx.lang_items().drop_in_place_fn() { + return false; + } + } + } + + // Otherwise if this isn't special then unwinding is generally determined by + // the ABI of the itself. ABIs like `C` have variants which also + // specifically allow unwinding (`C-unwind`), but not all platform-specific + // ABIs have such an option. Otherwise the only other thing here is Rust + // itself, and those ABIs are determined by the panic strategy configured + // for this compilation. + // + // Unfortunately at this time there's also another caveat. Rust [RFC + // 2945][rfc] has been accepted and is in the process of being implemented + // and stabilized. In this interim state we need to deal with historical + // rustc behavior as well as plan for future rustc behavior. + // + // Historically functions declared with `extern "C"` were marked at the + // codegen layer as `nounwind`. This happened regardless of `panic=unwind` + // or not. This is UB for functions in `panic=unwind` mode that then + // actually panic and unwind. Note that this behavior is true for both + // externally declared functions as well as Rust-defined function. + // + // To fix this UB rustc would like to change in the future to catch unwinds + // from function calls that may unwind within a Rust-defined `extern "C"` + // function and forcibly abort the process, thereby respecting the + // `nounwind` attribute emitted for `extern "C"`. This behavior change isn't + // ready to roll out, so determining whether or not the `C` family of ABIs + // unwinds is conditional not only on their definition but also whether the + // `#![feature(c_unwind)]` feature gate is active. + // + // Note that this means that unlike historical compilers rustc now, by + // default, unconditionally thinks that the `C` ABI may unwind. This will + // prevent some optimization opportunities, however, so we try to scope this + // change and only assume that `C` unwinds with `panic=unwind` (as opposed + // to `panic=abort`). + // + // Eventually the check against `c_unwind` here will ideally get removed and + // this'll be a little cleaner as it'll be a straightforward check of the + // ABI. + // + // [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/2945-c-unwind-abi.md + use SpecAbi::*; + match abi { + C { unwind } + | System { unwind } + | Cdecl { unwind } + | Stdcall { unwind } + | Fastcall { unwind } + | Vectorcall { unwind } + | Thiscall { unwind } + | Aapcs { unwind } + | Win64 { unwind } + | SysV64 { unwind } => { + unwind + || (!tcx.features().c_unwind && tcx.sess.panic_strategy() == PanicStrategy::Unwind) + } + PtxKernel + | Msp430Interrupt + | X86Interrupt + | AmdGpuKernel + | EfiApi + | AvrInterrupt + | AvrNonBlockingInterrupt + | CCmseNonSecureCall + | Wasm + | RustIntrinsic + | PlatformIntrinsic + | Unadjusted => false, + Rust | RustCall | RustCold => tcx.sess.panic_strategy() == PanicStrategy::Unwind, + } +} + +#[inline] +pub fn conv_from_spec_abi(tcx: TyCtxt<'_>, abi: SpecAbi) -> Conv { + use rustc_target::spec::abi::Abi::*; + match tcx.sess.target.adjust_abi(abi) { + RustIntrinsic | PlatformIntrinsic | Rust | RustCall => Conv::Rust, + RustCold => Conv::RustCold, + + // It's the ABI's job to select this, not ours. + System { .. } => bug!("system abi should be selected elsewhere"), + EfiApi => bug!("eficall abi should be selected elsewhere"), + + Stdcall { .. } => Conv::X86Stdcall, + Fastcall { .. } => Conv::X86Fastcall, + Vectorcall { .. } => Conv::X86VectorCall, + Thiscall { .. } => Conv::X86ThisCall, + C { .. } => Conv::C, + Unadjusted => Conv::C, + Win64 { .. } => Conv::X86_64Win64, + SysV64 { .. } => Conv::X86_64SysV, + Aapcs { .. } => Conv::ArmAapcs, + CCmseNonSecureCall => Conv::CCmseNonSecureCall, + PtxKernel => Conv::PtxKernel, + Msp430Interrupt => Conv::Msp430Intr, + X86Interrupt => Conv::X86Intr, + AmdGpuKernel => Conv::AmdGpuKernel, + AvrInterrupt => Conv::AvrInterrupt, + AvrNonBlockingInterrupt => Conv::AvrNonBlockingInterrupt, + Wasm => Conv::C, + + // These API constants ought to be more specific... + Cdecl { .. } => Conv::C, + } +} + +/// Error produced by attempting to compute or adjust a `FnAbi`. +#[derive(Copy, Clone, Debug, HashStable)] +pub enum FnAbiError<'tcx> { + /// Error produced by a `layout_of` call, while computing `FnAbi` initially. + Layout(LayoutError<'tcx>), + + /// Error produced by attempting to adjust a `FnAbi`, for a "foreign" ABI. + AdjustForForeignAbi(call::AdjustForForeignAbiError), +} + +impl<'tcx> From> for FnAbiError<'tcx> { + fn from(err: LayoutError<'tcx>) -> Self { + Self::Layout(err) + } +} + +impl From for FnAbiError<'_> { + fn from(err: call::AdjustForForeignAbiError) -> Self { + Self::AdjustForForeignAbi(err) + } +} + +impl<'tcx> fmt::Display for FnAbiError<'tcx> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + match self { + Self::Layout(err) => err.fmt(f), + Self::AdjustForForeignAbi(err) => err.fmt(f), + } + } +} + +// FIXME(eddyb) maybe use something like this for an unified `fn_abi_of`, not +// just for error handling. +#[derive(Debug)] +pub enum FnAbiRequest<'tcx> { + OfFnPtr { sig: ty::PolyFnSig<'tcx>, extra_args: &'tcx ty::List> }, + OfInstance { instance: ty::Instance<'tcx>, extra_args: &'tcx ty::List> }, +} + +/// Trait for contexts that want to be able to compute `FnAbi`s. +/// This automatically gives access to `FnAbiOf`, through a blanket `impl`. +pub trait FnAbiOfHelpers<'tcx>: LayoutOfHelpers<'tcx> { + /// The `&FnAbi`-wrapping type (or `&FnAbi` itself), which will be + /// returned from `fn_abi_of_*` (see also `handle_fn_abi_err`). + type FnAbiOfResult: MaybeResult<&'tcx FnAbi<'tcx, Ty<'tcx>>>; + + /// Helper used for `fn_abi_of_*`, to adapt `tcx.fn_abi_of_*(...)` into a + /// `Self::FnAbiOfResult` (which does not need to be a `Result<...>`). + /// + /// Most `impl`s, which propagate `FnAbiError`s, should simply return `err`, + /// but this hook allows e.g. codegen to return only `&FnAbi` from its + /// `cx.fn_abi_of_*(...)`, without any `Result<...>` around it to deal with + /// (and any `FnAbiError`s are turned into fatal errors or ICEs). + fn handle_fn_abi_err( + &self, + err: FnAbiError<'tcx>, + span: Span, + fn_abi_request: FnAbiRequest<'tcx>, + ) -> >>>::Error; +} + +/// Blanket extension trait for contexts that can compute `FnAbi`s. +pub trait FnAbiOf<'tcx>: FnAbiOfHelpers<'tcx> { + /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers. + /// + /// NB: this doesn't handle virtual calls - those should use `fn_abi_of_instance` + /// instead, where the instance is an `InstanceDef::Virtual`. + #[inline] + fn fn_abi_of_fn_ptr( + &self, + sig: ty::PolyFnSig<'tcx>, + extra_args: &'tcx ty::List>, + ) -> Self::FnAbiOfResult { + // FIXME(eddyb) get a better `span` here. + let span = self.layout_tcx_at_span(); + let tcx = self.tcx().at(span); + + MaybeResult::from(tcx.fn_abi_of_fn_ptr(self.param_env().and((sig, extra_args))).map_err( + |err| self.handle_fn_abi_err(err, span, FnAbiRequest::OfFnPtr { sig, extra_args }), + )) + } + + /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for + /// direct calls to an `fn`. + /// + /// NB: that includes virtual calls, which are represented by "direct calls" + /// to an `InstanceDef::Virtual` instance (of `::fn`). + #[inline] + fn fn_abi_of_instance( + &self, + instance: ty::Instance<'tcx>, + extra_args: &'tcx ty::List>, + ) -> Self::FnAbiOfResult { + // FIXME(eddyb) get a better `span` here. + let span = self.layout_tcx_at_span(); + let tcx = self.tcx().at(span); + + MaybeResult::from( + tcx.fn_abi_of_instance(self.param_env().and((instance, extra_args))).map_err(|err| { + // HACK(eddyb) at least for definitions of/calls to `Instance`s, + // we can get some kind of span even if one wasn't provided. + // However, we don't do this early in order to avoid calling + // `def_span` unconditionally (which may have a perf penalty). + let span = if !span.is_dummy() { span } else { tcx.def_span(instance.def_id()) }; + self.handle_fn_abi_err(err, span, FnAbiRequest::OfInstance { instance, extra_args }) + }), + ) + } +} + +impl<'tcx, C: FnAbiOfHelpers<'tcx>> FnAbiOf<'tcx> for C {} + +fn fn_abi_of_fn_ptr<'tcx>( + tcx: TyCtxt<'tcx>, + query: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List>)>, +) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> { + let (param_env, (sig, extra_args)) = query.into_parts(); + + LayoutCx { tcx, param_env }.fn_abi_new_uncached(sig, extra_args, None, None, false) +} + +fn fn_abi_of_instance<'tcx>( + tcx: TyCtxt<'tcx>, + query: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List>)>, +) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> { + let (param_env, (instance, extra_args)) = query.into_parts(); + + let sig = instance.fn_sig_for_fn_abi(tcx, param_env); + + let caller_location = if instance.def.requires_caller_location(tcx) { + Some(tcx.caller_location_ty()) + } else { + None + }; + + LayoutCx { tcx, param_env }.fn_abi_new_uncached( + sig, + extra_args, + caller_location, + Some(instance.def_id()), + matches!(instance.def, ty::InstanceDef::Virtual(..)), + ) +} + +impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> { + // FIXME(eddyb) perhaps group the signature/type-containing (or all of them?) + // arguments of this method, into a separate `struct`. + fn fn_abi_new_uncached( + &self, + sig: ty::PolyFnSig<'tcx>, + extra_args: &[Ty<'tcx>], + caller_location: Option>, + fn_def_id: Option, + // FIXME(eddyb) replace this with something typed, like an `enum`. + force_thin_self_ptr: bool, + ) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> { + debug!("fn_abi_new_uncached({:?}, {:?})", sig, extra_args); + + let sig = self.tcx.normalize_erasing_late_bound_regions(self.param_env, sig); + + let conv = conv_from_spec_abi(self.tcx(), sig.abi); + + let mut inputs = sig.inputs(); + let extra_args = if sig.abi == RustCall { + assert!(!sig.c_variadic && extra_args.is_empty()); + + if let Some(input) = sig.inputs().last() { + if let ty::Tuple(tupled_arguments) = input.kind() { + inputs = &sig.inputs()[0..sig.inputs().len() - 1]; + tupled_arguments + } else { + bug!( + "argument to function with \"rust-call\" ABI \ + is not a tuple" + ); + } + } else { + bug!( + "argument to function with \"rust-call\" ABI \ + is not a tuple" + ); + } + } else { + assert!(sig.c_variadic || extra_args.is_empty()); + extra_args + }; + + let target = &self.tcx.sess.target; + let target_env_gnu_like = matches!(&target.env[..], "gnu" | "musl" | "uclibc"); + let win_x64_gnu = target.os == "windows" && target.arch == "x86_64" && target.env == "gnu"; + let linux_s390x_gnu_like = + target.os == "linux" && target.arch == "s390x" && target_env_gnu_like; + let linux_sparc64_gnu_like = + target.os == "linux" && target.arch == "sparc64" && target_env_gnu_like; + let linux_powerpc_gnu_like = + target.os == "linux" && target.arch == "powerpc" && target_env_gnu_like; + use SpecAbi::*; + let rust_abi = matches!(sig.abi, RustIntrinsic | PlatformIntrinsic | Rust | RustCall); + + // Handle safe Rust thin and fat pointers. + let adjust_for_rust_scalar = |attrs: &mut ArgAttributes, + scalar: Scalar, + layout: TyAndLayout<'tcx>, + offset: Size, + is_return: bool| { + // Booleans are always a noundef i1 that needs to be zero-extended. + if scalar.is_bool() { + attrs.ext(ArgExtension::Zext); + attrs.set(ArgAttribute::NoUndef); + return; + } + + // Scalars which have invalid values cannot be undef. + if !scalar.is_always_valid(self) { + attrs.set(ArgAttribute::NoUndef); + } + + // Only pointer types handled below. + let Scalar::Initialized { value: Pointer, valid_range} = scalar else { return }; + + if !valid_range.contains(0) { + attrs.set(ArgAttribute::NonNull); + } + + if let Some(pointee) = layout.pointee_info_at(self, offset) { + if let Some(kind) = pointee.safe { + attrs.pointee_align = Some(pointee.align); + + // `Box` (`UniqueBorrowed`) are not necessarily dereferenceable + // for the entire duration of the function as they can be deallocated + // at any time. Same for shared mutable references. If LLVM had a + // way to say "dereferenceable on entry" we could use it here. + attrs.pointee_size = match kind { + PointerKind::UniqueBorrowed + | PointerKind::UniqueBorrowedPinned + | PointerKind::Frozen => pointee.size, + PointerKind::SharedMutable | PointerKind::UniqueOwned => Size::ZERO, + }; + + // `Box`, `&T`, and `&mut T` cannot be undef. + // Note that this only applies to the value of the pointer itself; + // this attribute doesn't make it UB for the pointed-to data to be undef. + attrs.set(ArgAttribute::NoUndef); + + // The aliasing rules for `Box` are still not decided, but currently we emit + // `noalias` for it. This can be turned off using an unstable flag. + // See https://github.com/rust-lang/unsafe-code-guidelines/issues/326 + let noalias_for_box = + self.tcx().sess.opts.unstable_opts.box_noalias.unwrap_or(true); + + // `&mut` pointer parameters never alias other parameters, + // or mutable global data + // + // `&T` where `T` contains no `UnsafeCell` is immutable, + // and can be marked as both `readonly` and `noalias`, as + // LLVM's definition of `noalias` is based solely on memory + // dependencies rather than pointer equality + // + // Due to past miscompiles in LLVM, we apply a separate NoAliasMutRef attribute + // for UniqueBorrowed arguments, so that the codegen backend can decide whether + // or not to actually emit the attribute. It can also be controlled with the + // `-Zmutable-noalias` debugging option. + let no_alias = match kind { + PointerKind::SharedMutable + | PointerKind::UniqueBorrowed + | PointerKind::UniqueBorrowedPinned => false, + PointerKind::UniqueOwned => noalias_for_box, + PointerKind::Frozen => !is_return, + }; + if no_alias { + attrs.set(ArgAttribute::NoAlias); + } + + if kind == PointerKind::Frozen && !is_return { + attrs.set(ArgAttribute::ReadOnly); + } + + if kind == PointerKind::UniqueBorrowed && !is_return { + attrs.set(ArgAttribute::NoAliasMutRef); + } + } + } + }; + + let arg_of = |ty: Ty<'tcx>, arg_idx: Option| -> Result<_, FnAbiError<'tcx>> { + let is_return = arg_idx.is_none(); + + let layout = self.layout_of(ty)?; + let layout = if force_thin_self_ptr && arg_idx == Some(0) { + // Don't pass the vtable, it's not an argument of the virtual fn. + // Instead, pass just the data pointer, but give it the type `*const/mut dyn Trait` + // or `&/&mut dyn Trait` because this is special-cased elsewhere in codegen + make_thin_self_ptr(self, layout) + } else { + layout + }; + + let mut arg = ArgAbi::new(self, layout, |layout, scalar, offset| { + let mut attrs = ArgAttributes::new(); + adjust_for_rust_scalar(&mut attrs, scalar, *layout, offset, is_return); + attrs + }); + + if arg.layout.is_zst() { + // For some forsaken reason, x86_64-pc-windows-gnu + // doesn't ignore zero-sized struct arguments. + // The same is true for {s390x,sparc64,powerpc}-unknown-linux-{gnu,musl,uclibc}. + if is_return + || rust_abi + || (!win_x64_gnu + && !linux_s390x_gnu_like + && !linux_sparc64_gnu_like + && !linux_powerpc_gnu_like) + { + arg.mode = PassMode::Ignore; + } + } + + Ok(arg) + }; + + let mut fn_abi = FnAbi { + ret: arg_of(sig.output(), None)?, + args: inputs + .iter() + .copied() + .chain(extra_args.iter().copied()) + .chain(caller_location) + .enumerate() + .map(|(i, ty)| arg_of(ty, Some(i))) + .collect::>()?, + c_variadic: sig.c_variadic, + fixed_count: inputs.len(), + conv, + can_unwind: fn_can_unwind(self.tcx(), fn_def_id, sig.abi), + }; + self.fn_abi_adjust_for_abi(&mut fn_abi, sig.abi)?; + debug!("fn_abi_new_uncached = {:?}", fn_abi); + Ok(self.tcx.arena.alloc(fn_abi)) + } + + fn fn_abi_adjust_for_abi( + &self, + fn_abi: &mut FnAbi<'tcx, Ty<'tcx>>, + abi: SpecAbi, + ) -> Result<(), FnAbiError<'tcx>> { + if abi == SpecAbi::Unadjusted { + return Ok(()); + } + + if abi == SpecAbi::Rust + || abi == SpecAbi::RustCall + || abi == SpecAbi::RustIntrinsic + || abi == SpecAbi::PlatformIntrinsic + { + let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>| { + if arg.is_ignore() { + return; + } + + match arg.layout.abi { + Abi::Aggregate { .. } => {} + + // This is a fun case! The gist of what this is doing is + // that we want callers and callees to always agree on the + // ABI of how they pass SIMD arguments. If we were to *not* + // make these arguments indirect then they'd be immediates + // in LLVM, which means that they'd used whatever the + // appropriate ABI is for the callee and the caller. That + // means, for example, if the caller doesn't have AVX + // enabled but the callee does, then passing an AVX argument + // across this boundary would cause corrupt data to show up. + // + // This problem is fixed by unconditionally passing SIMD + // arguments through memory between callers and callees + // which should get them all to agree on ABI regardless of + // target feature sets. Some more information about this + // issue can be found in #44367. + // + // Note that the platform intrinsic ABI is exempt here as + // that's how we connect up to LLVM and it's unstable + // anyway, we control all calls to it in libstd. + Abi::Vector { .. } + if abi != SpecAbi::PlatformIntrinsic + && self.tcx.sess.target.simd_types_indirect => + { + arg.make_indirect(); + return; + } + + _ => return, + } + + let size = arg.layout.size; + if arg.layout.is_unsized() || size > Pointer.size(self) { + arg.make_indirect(); + } else { + // We want to pass small aggregates as immediates, but using + // a LLVM aggregate type for this leads to bad optimizations, + // so we pick an appropriately sized integer type instead. + arg.cast_to(Reg { kind: RegKind::Integer, size }); + } + }; + fixup(&mut fn_abi.ret); + for arg in &mut fn_abi.args { + fixup(arg); + } + } else { + fn_abi.adjust_for_foreign_abi(self, abi)?; + } + + Ok(()) + } +} + +fn make_thin_self_ptr<'tcx>( + cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>), + layout: TyAndLayout<'tcx>, +) -> TyAndLayout<'tcx> { + let tcx = cx.tcx(); + let fat_pointer_ty = if layout.is_unsized() { + // unsized `self` is passed as a pointer to `self` + // FIXME (mikeyhew) change this to use &own if it is ever added to the language + tcx.mk_mut_ptr(layout.ty) + } else { + match layout.abi { + Abi::ScalarPair(..) => (), + _ => bug!("receiver type has unsupported layout: {:?}", layout), + } + + // In the case of Rc, we need to explicitly pass a *mut RcBox + // with a Scalar (not ScalarPair) ABI. This is a hack that is understood + // elsewhere in the compiler as a method on a `dyn Trait`. + // To get the type `*mut RcBox`, we just keep unwrapping newtypes until we + // get a built-in pointer type + let mut fat_pointer_layout = layout; + 'descend_newtypes: while !fat_pointer_layout.ty.is_unsafe_ptr() + && !fat_pointer_layout.ty.is_region_ptr() + { + for i in 0..fat_pointer_layout.fields.count() { + let field_layout = fat_pointer_layout.field(cx, i); + + if !field_layout.is_zst() { + fat_pointer_layout = field_layout; + continue 'descend_newtypes; + } + } + + bug!("receiver has no non-zero-sized fields {:?}", fat_pointer_layout); + } + + fat_pointer_layout.ty + }; + + // we now have a type like `*mut RcBox` + // change its layout to that of `*mut ()`, a thin pointer, but keep the same type + // this is understood as a special case elsewhere in the compiler + let unit_ptr_ty = tcx.mk_mut_ptr(tcx.mk_unit()); + + TyAndLayout { + ty: fat_pointer_ty, + + // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing the `Result` + // should always work because the type is always `*mut ()`. + ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap() + } +} -- cgit v1.2.3