From 698f8c2f01ea549d77d7dc3338a12e04c11057b9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:02:58 +0200 Subject: Adding upstream version 1.64.0+dfsg1. Signed-off-by: Daniel Baumann --- compiler/rustc_monomorphize/src/collector.rs | 1463 ++++++++++++++++++++++++++ 1 file changed, 1463 insertions(+) create mode 100644 compiler/rustc_monomorphize/src/collector.rs (limited to 'compiler/rustc_monomorphize/src/collector.rs') diff --git a/compiler/rustc_monomorphize/src/collector.rs b/compiler/rustc_monomorphize/src/collector.rs new file mode 100644 index 000000000..68b65658c --- /dev/null +++ b/compiler/rustc_monomorphize/src/collector.rs @@ -0,0 +1,1463 @@ +//! Mono Item Collection +//! ==================== +//! +//! This module is responsible for discovering all items that will contribute +//! to code generation of the crate. The important part here is that it not only +//! needs to find syntax-level items (functions, structs, etc) but also all +//! their monomorphized instantiations. Every non-generic, non-const function +//! maps to one LLVM artifact. Every generic function can produce +//! from zero to N artifacts, depending on the sets of type arguments it +//! is instantiated with. +//! This also applies to generic items from other crates: A generic definition +//! in crate X might produce monomorphizations that are compiled into crate Y. +//! We also have to collect these here. +//! +//! The following kinds of "mono items" are handled here: +//! +//! - Functions +//! - Methods +//! - Closures +//! - Statics +//! - Drop glue +//! +//! The following things also result in LLVM artifacts, but are not collected +//! here, since we instantiate them locally on demand when needed in a given +//! codegen unit: +//! +//! - Constants +//! - VTables +//! - Object Shims +//! +//! +//! General Algorithm +//! ----------------- +//! Let's define some terms first: +//! +//! - A "mono item" is something that results in a function or global in +//! the LLVM IR of a codegen unit. Mono items do not stand on their +//! own, they can reference other mono items. For example, if function +//! `foo()` calls function `bar()` then the mono item for `foo()` +//! references the mono item for function `bar()`. In general, the +//! definition for mono item A referencing a mono item B is that +//! the LLVM artifact produced for A references the LLVM artifact produced +//! for B. +//! +//! - Mono items and the references between them form a directed graph, +//! where the mono items are the nodes and references form the edges. +//! Let's call this graph the "mono item graph". +//! +//! - The mono item graph for a program contains all mono items +//! that are needed in order to produce the complete LLVM IR of the program. +//! +//! The purpose of the algorithm implemented in this module is to build the +//! mono item graph for the current crate. It runs in two phases: +//! +//! 1. Discover the roots of the graph by traversing the HIR of the crate. +//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR +//! representation of the item corresponding to a given node, until no more +//! new nodes are found. +//! +//! ### Discovering roots +//! +//! The roots of the mono item graph correspond to the public non-generic +//! syntactic items in the source code. We find them by walking the HIR of the +//! crate, and whenever we hit upon a public function, method, or static item, +//! we create a mono item consisting of the items DefId and, since we only +//! consider non-generic items, an empty type-substitution set. (In eager +//! collection mode, during incremental compilation, all non-generic functions +//! are considered as roots, as well as when the `-Clink-dead-code` option is +//! specified. Functions marked `#[no_mangle]` and functions called by inlinable +//! functions also always act as roots.) +//! +//! ### Finding neighbor nodes +//! Given a mono item node, we can discover neighbors by inspecting its +//! MIR. We walk the MIR and any time we hit upon something that signifies a +//! reference to another mono item, we have found a neighbor. Since the +//! mono item we are currently at is always monomorphic, we also know the +//! concrete type arguments of its neighbors, and so all neighbors again will be +//! monomorphic. The specific forms a reference to a neighboring node can take +//! in MIR are quite diverse. Here is an overview: +//! +//! #### Calling Functions/Methods +//! The most obvious form of one mono item referencing another is a +//! function or method call (represented by a CALL terminator in MIR). But +//! calls are not the only thing that might introduce a reference between two +//! function mono items, and as we will see below, they are just a +//! specialization of the form described next, and consequently will not get any +//! special treatment in the algorithm. +//! +//! #### Taking a reference to a function or method +//! A function does not need to actually be called in order to be a neighbor of +//! another function. It suffices to just take a reference in order to introduce +//! an edge. Consider the following example: +//! +//! ``` +//! # use core::fmt::Display; +//! fn print_val(x: T) { +//! println!("{}", x); +//! } +//! +//! fn call_fn(f: &dyn Fn(i32), x: i32) { +//! f(x); +//! } +//! +//! fn main() { +//! let print_i32 = print_val::; +//! call_fn(&print_i32, 0); +//! } +//! ``` +//! The MIR of none of these functions will contain an explicit call to +//! `print_val::`. Nonetheless, in order to mono this program, we need +//! an instance of this function. Thus, whenever we encounter a function or +//! method in operand position, we treat it as a neighbor of the current +//! mono item. Calls are just a special case of that. +//! +//! #### Closures +//! In a way, closures are a simple case. Since every closure object needs to be +//! constructed somewhere, we can reliably discover them by observing +//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also +//! true for closures inlined from other crates. +//! +//! #### Drop glue +//! Drop glue mono items are introduced by MIR drop-statements. The +//! generated mono item will again have drop-glue item neighbors if the +//! type to be dropped contains nested values that also need to be dropped. It +//! might also have a function item neighbor for the explicit `Drop::drop` +//! implementation of its type. +//! +//! #### Unsizing Casts +//! A subtle way of introducing neighbor edges is by casting to a trait object. +//! Since the resulting fat-pointer contains a reference to a vtable, we need to +//! instantiate all object-save methods of the trait, as we need to store +//! pointers to these functions even if they never get called anywhere. This can +//! be seen as a special case of taking a function reference. +//! +//! #### Boxes +//! Since `Box` expression have special compiler support, no explicit calls to +//! `exchange_malloc()` and `box_free()` may show up in MIR, even if the +//! compiler will generate them. We have to observe `Rvalue::Box` expressions +//! and Box-typed drop-statements for that purpose. +//! +//! +//! Interaction with Cross-Crate Inlining +//! ------------------------------------- +//! The binary of a crate will not only contain machine code for the items +//! defined in the source code of that crate. It will also contain monomorphic +//! instantiations of any extern generic functions and of functions marked with +//! `#[inline]`. +//! The collection algorithm handles this more or less mono. If it is +//! about to create a mono item for something with an external `DefId`, +//! it will take a look if the MIR for that item is available, and if so just +//! proceed normally. If the MIR is not available, it assumes that the item is +//! just linked to and no node is created; which is exactly what we want, since +//! no machine code should be generated in the current crate for such an item. +//! +//! Eager and Lazy Collection Mode +//! ------------------------------ +//! Mono item collection can be performed in one of two modes: +//! +//! - Lazy mode means that items will only be instantiated when actually +//! referenced. The goal is to produce the least amount of machine code +//! possible. +//! +//! - Eager mode is meant to be used in conjunction with incremental compilation +//! where a stable set of mono items is more important than a minimal +//! one. Thus, eager mode will instantiate drop-glue for every drop-able type +//! in the crate, even if no drop call for that type exists (yet). It will +//! also instantiate default implementations of trait methods, something that +//! otherwise is only done on demand. +//! +//! +//! Open Issues +//! ----------- +//! Some things are not yet fully implemented in the current version of this +//! module. +//! +//! ### Const Fns +//! Ideally, no mono item should be generated for const fns unless there +//! is a call to them that cannot be evaluated at compile time. At the moment +//! this is not implemented however: a mono item will be produced +//! regardless of whether it is actually needed or not. + +use rustc_data_structures::fx::{FxHashMap, FxHashSet}; +use rustc_data_structures::sync::{par_for_each_in, MTLock, MTRef}; +use rustc_hir as hir; +use rustc_hir::def::DefKind; +use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId}; +use rustc_hir::lang_items::LangItem; +use rustc_index::bit_set::GrowableBitSet; +use rustc_middle::mir::interpret::{AllocId, ConstValue}; +use rustc_middle::mir::interpret::{ErrorHandled, GlobalAlloc, Scalar}; +use rustc_middle::mir::mono::{InstantiationMode, MonoItem}; +use rustc_middle::mir::visit::Visitor as MirVisitor; +use rustc_middle::mir::{self, Local, Location}; +use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCast}; +use rustc_middle::ty::print::with_no_trimmed_paths; +use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts}; +use rustc_middle::ty::{ + self, GenericParamDefKind, Instance, Ty, TyCtxt, TypeFoldable, TypeVisitable, VtblEntry, +}; +use rustc_middle::{middle::codegen_fn_attrs::CodegenFnAttrFlags, mir::visit::TyContext}; +use rustc_session::config::EntryFnType; +use rustc_session::lint::builtin::LARGE_ASSIGNMENTS; +use rustc_session::Limit; +use rustc_span::source_map::{dummy_spanned, respan, Span, Spanned, DUMMY_SP}; +use rustc_target::abi::Size; +use std::iter; +use std::ops::Range; +use std::path::PathBuf; + +#[derive(PartialEq)] +pub enum MonoItemCollectionMode { + Eager, + Lazy, +} + +/// Maps every mono item to all mono items it references in its +/// body. +pub struct InliningMap<'tcx> { + // Maps a source mono item to the range of mono items + // accessed by it. + // The range selects elements within the `targets` vecs. + index: FxHashMap, Range>, + targets: Vec>, + + // Contains one bit per mono item in the `targets` field. That bit + // is true if that mono item needs to be inlined into every CGU. + inlines: GrowableBitSet, +} + +/// Struct to store mono items in each collecting and if they should +/// be inlined. We call `instantiation_mode` to get their inlining +/// status when inserting new elements, which avoids calling it in +/// `inlining_map.lock_mut()`. See the `collect_items_rec` implementation +/// below. +struct MonoItems<'tcx> { + // If this is false, we do not need to compute whether items + // will need to be inlined. + compute_inlining: bool, + + // The TyCtxt used to determine whether the a item should + // be inlined. + tcx: TyCtxt<'tcx>, + + // The collected mono items. The bool field in each element + // indicates whether this element should be inlined. + items: Vec<(Spanned>, bool /*inlined*/)>, +} + +impl<'tcx> MonoItems<'tcx> { + #[inline] + fn push(&mut self, item: Spanned>) { + self.extend([item]); + } + + #[inline] + fn extend>>>(&mut self, iter: T) { + self.items.extend(iter.into_iter().map(|mono_item| { + let inlined = if !self.compute_inlining { + false + } else { + mono_item.node.instantiation_mode(self.tcx) == InstantiationMode::LocalCopy + }; + (mono_item, inlined) + })) + } +} + +impl<'tcx> InliningMap<'tcx> { + fn new() -> InliningMap<'tcx> { + InliningMap { + index: FxHashMap::default(), + targets: Vec::new(), + inlines: GrowableBitSet::with_capacity(1024), + } + } + + fn record_accesses<'a>( + &mut self, + source: MonoItem<'tcx>, + new_targets: &'a [(Spanned>, bool)], + ) where + 'tcx: 'a, + { + let start_index = self.targets.len(); + let new_items_count = new_targets.len(); + let new_items_count_total = new_items_count + self.targets.len(); + + self.targets.reserve(new_items_count); + self.inlines.ensure(new_items_count_total); + + for (i, (Spanned { node: mono_item, .. }, inlined)) in new_targets.into_iter().enumerate() { + self.targets.push(*mono_item); + if *inlined { + self.inlines.insert(i + start_index); + } + } + + let end_index = self.targets.len(); + assert!(self.index.insert(source, start_index..end_index).is_none()); + } + + // Internally iterate over all items referenced by `source` which will be + // made available for inlining. + pub fn with_inlining_candidates(&self, source: MonoItem<'tcx>, mut f: F) + where + F: FnMut(MonoItem<'tcx>), + { + if let Some(range) = self.index.get(&source) { + for (i, candidate) in self.targets[range.clone()].iter().enumerate() { + if self.inlines.contains(range.start + i) { + f(*candidate); + } + } + } + } + + // Internally iterate over all items and the things each accesses. + pub fn iter_accesses(&self, mut f: F) + where + F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>]), + { + for (&accessor, range) in &self.index { + f(accessor, &self.targets[range.clone()]) + } + } +} + +#[instrument(skip(tcx, mode), level = "debug")] +pub fn collect_crate_mono_items( + tcx: TyCtxt<'_>, + mode: MonoItemCollectionMode, +) -> (FxHashSet>, InliningMap<'_>) { + let _prof_timer = tcx.prof.generic_activity("monomorphization_collector"); + + let roots = + tcx.sess.time("monomorphization_collector_root_collections", || collect_roots(tcx, mode)); + + debug!("building mono item graph, beginning at roots"); + + let mut visited = MTLock::new(FxHashSet::default()); + let mut inlining_map = MTLock::new(InliningMap::new()); + let recursion_limit = tcx.recursion_limit(); + + { + let visited: MTRef<'_, _> = &mut visited; + let inlining_map: MTRef<'_, _> = &mut inlining_map; + + tcx.sess.time("monomorphization_collector_graph_walk", || { + par_for_each_in(roots, |root| { + let mut recursion_depths = DefIdMap::default(); + collect_items_rec( + tcx, + dummy_spanned(root), + visited, + &mut recursion_depths, + recursion_limit, + inlining_map, + ); + }); + }); + } + + (visited.into_inner(), inlining_map.into_inner()) +} + +// Find all non-generic items by walking the HIR. These items serve as roots to +// start monomorphizing from. +#[instrument(skip(tcx, mode), level = "debug")] +fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionMode) -> Vec> { + debug!("collecting roots"); + let mut roots = MonoItems { compute_inlining: false, tcx, items: Vec::new() }; + + { + let entry_fn = tcx.entry_fn(()); + + debug!("collect_roots: entry_fn = {:?}", entry_fn); + + let mut collector = RootCollector { tcx, mode, entry_fn, output: &mut roots }; + + let crate_items = tcx.hir_crate_items(()); + + for id in crate_items.items() { + collector.process_item(id); + } + + for id in crate_items.impl_items() { + collector.process_impl_item(id); + } + + collector.push_extra_entry_roots(); + } + + // We can only codegen items that are instantiable - items all of + // whose predicates hold. Luckily, items that aren't instantiable + // can't actually be used, so we can just skip codegenning them. + roots + .items + .into_iter() + .filter_map(|(Spanned { node: mono_item, .. }, _)| { + mono_item.is_instantiable(tcx).then_some(mono_item) + }) + .collect() +} + +/// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a +/// post-monorphization error is encountered during a collection step. +#[instrument(skip(tcx, visited, recursion_depths, recursion_limit, inlining_map), level = "debug")] +fn collect_items_rec<'tcx>( + tcx: TyCtxt<'tcx>, + starting_point: Spanned>, + visited: MTRef<'_, MTLock>>>, + recursion_depths: &mut DefIdMap, + recursion_limit: Limit, + inlining_map: MTRef<'_, MTLock>>, +) { + if !visited.lock_mut().insert(starting_point.node) { + // We've been here already, no need to search again. + return; + } + debug!("BEGIN collect_items_rec({})", starting_point.node); + + let mut neighbors = MonoItems { compute_inlining: true, tcx, items: Vec::new() }; + let recursion_depth_reset; + + // + // Post-monomorphization errors MVP + // + // We can encounter errors while monomorphizing an item, but we don't have a good way of + // showing a complete stack of spans ultimately leading to collecting the erroneous one yet. + // (It's also currently unclear exactly which diagnostics and information would be interesting + // to report in such cases) + // + // This leads to suboptimal error reporting: a post-monomorphization error (PME) will be + // shown with just a spanned piece of code causing the error, without information on where + // it was called from. This is especially obscure if the erroneous mono item is in a + // dependency. See for example issue #85155, where, before minimization, a PME happened two + // crates downstream from libcore's stdarch, without a way to know which dependency was the + // cause. + // + // If such an error occurs in the current crate, its span will be enough to locate the + // source. If the cause is in another crate, the goal here is to quickly locate which mono + // item in the current crate is ultimately responsible for causing the error. + // + // To give at least _some_ context to the user: while collecting mono items, we check the + // error count. If it has changed, a PME occurred, and we trigger some diagnostics about the + // current step of mono items collection. + // + // FIXME: don't rely on global state, instead bubble up errors. Note: this is very hard to do. + let error_count = tcx.sess.diagnostic().err_count(); + + match starting_point.node { + MonoItem::Static(def_id) => { + let instance = Instance::mono(tcx, def_id); + + // Sanity check whether this ended up being collected accidentally + debug_assert!(should_codegen_locally(tcx, &instance)); + + let ty = instance.ty(tcx, ty::ParamEnv::reveal_all()); + visit_drop_use(tcx, ty, true, starting_point.span, &mut neighbors); + + recursion_depth_reset = None; + + if let Ok(alloc) = tcx.eval_static_initializer(def_id) { + for &id in alloc.inner().relocations().values() { + collect_miri(tcx, id, &mut neighbors); + } + } + } + MonoItem::Fn(instance) => { + // Sanity check whether this ended up being collected accidentally + debug_assert!(should_codegen_locally(tcx, &instance)); + + // Keep track of the monomorphization recursion depth + recursion_depth_reset = Some(check_recursion_limit( + tcx, + instance, + starting_point.span, + recursion_depths, + recursion_limit, + )); + check_type_length_limit(tcx, instance); + + rustc_data_structures::stack::ensure_sufficient_stack(|| { + collect_neighbours(tcx, instance, &mut neighbors); + }); + } + MonoItem::GlobalAsm(item_id) => { + recursion_depth_reset = None; + + let item = tcx.hir().item(item_id); + if let hir::ItemKind::GlobalAsm(asm) = item.kind { + for (op, op_sp) in asm.operands { + match op { + hir::InlineAsmOperand::Const { .. } => { + // Only constants which resolve to a plain integer + // are supported. Therefore the value should not + // depend on any other items. + } + hir::InlineAsmOperand::SymFn { anon_const } => { + let fn_ty = + tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id); + visit_fn_use(tcx, fn_ty, false, *op_sp, &mut neighbors); + } + hir::InlineAsmOperand::SymStatic { path: _, def_id } => { + let instance = Instance::mono(tcx, *def_id); + if should_codegen_locally(tcx, &instance) { + trace!("collecting static {:?}", def_id); + neighbors.push(dummy_spanned(MonoItem::Static(*def_id))); + } + } + hir::InlineAsmOperand::In { .. } + | hir::InlineAsmOperand::Out { .. } + | hir::InlineAsmOperand::InOut { .. } + | hir::InlineAsmOperand::SplitInOut { .. } => { + span_bug!(*op_sp, "invalid operand type for global_asm!") + } + } + } + } else { + span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type") + } + } + } + + // Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the + // mono item graph. + if tcx.sess.diagnostic().err_count() > error_count + && starting_point.node.is_generic_fn() + && starting_point.node.is_user_defined() + { + let formatted_item = with_no_trimmed_paths!(starting_point.node.to_string()); + tcx.sess.span_note_without_error( + starting_point.span, + &format!("the above error was encountered while instantiating `{}`", formatted_item), + ); + } + inlining_map.lock_mut().record_accesses(starting_point.node, &neighbors.items); + + for (neighbour, _) in neighbors.items { + collect_items_rec(tcx, neighbour, visited, recursion_depths, recursion_limit, inlining_map); + } + + if let Some((def_id, depth)) = recursion_depth_reset { + recursion_depths.insert(def_id, depth); + } + + debug!("END collect_items_rec({})", starting_point.node); +} + +/// Format instance name that is already known to be too long for rustc. +/// Show only the first and last 32 characters to avoid blasting +/// the user's terminal with thousands of lines of type-name. +/// +/// If the type name is longer than before+after, it will be written to a file. +fn shrunk_instance_name<'tcx>( + tcx: TyCtxt<'tcx>, + instance: &Instance<'tcx>, + before: usize, + after: usize, +) -> (String, Option) { + let s = instance.to_string(); + + // Only use the shrunk version if it's really shorter. + // This also avoids the case where before and after slices overlap. + if s.chars().nth(before + after + 1).is_some() { + // An iterator of all byte positions including the end of the string. + let positions = || s.char_indices().map(|(i, _)| i).chain(iter::once(s.len())); + + let shrunk = format!( + "{before}...{after}", + before = &s[..positions().nth(before).unwrap_or(s.len())], + after = &s[positions().rev().nth(after).unwrap_or(0)..], + ); + + let path = tcx.output_filenames(()).temp_path_ext("long-type.txt", None); + let written_to_path = std::fs::write(&path, s).ok().map(|_| path); + + (shrunk, written_to_path) + } else { + (s, None) + } +} + +fn check_recursion_limit<'tcx>( + tcx: TyCtxt<'tcx>, + instance: Instance<'tcx>, + span: Span, + recursion_depths: &mut DefIdMap, + recursion_limit: Limit, +) -> (DefId, usize) { + let def_id = instance.def_id(); + let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0); + debug!(" => recursion depth={}", recursion_depth); + + let adjusted_recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() { + // HACK: drop_in_place creates tight monomorphization loops. Give + // it more margin. + recursion_depth / 4 + } else { + recursion_depth + }; + + // Code that needs to instantiate the same function recursively + // more than the recursion limit is assumed to be causing an + // infinite expansion. + if !recursion_limit.value_within_limit(adjusted_recursion_depth) { + let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32); + let error = format!("reached the recursion limit while instantiating `{}`", shrunk); + let mut err = tcx.sess.struct_span_fatal(span, &error); + err.span_note( + tcx.def_span(def_id), + &format!("`{}` defined here", tcx.def_path_str(def_id)), + ); + if let Some(path) = written_to_path { + err.note(&format!("the full type name has been written to '{}'", path.display())); + } + err.emit() + } + + recursion_depths.insert(def_id, recursion_depth + 1); + + (def_id, recursion_depth) +} + +fn check_type_length_limit<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) { + let type_length = instance + .substs + .iter() + .flat_map(|arg| arg.walk()) + .filter(|arg| match arg.unpack() { + GenericArgKind::Type(_) | GenericArgKind::Const(_) => true, + GenericArgKind::Lifetime(_) => false, + }) + .count(); + debug!(" => type length={}", type_length); + + // Rust code can easily create exponentially-long types using only a + // polynomial recursion depth. Even with the default recursion + // depth, you can easily get cases that take >2^60 steps to run, + // which means that rustc basically hangs. + // + // Bail out in these cases to avoid that bad user experience. + if !tcx.type_length_limit().value_within_limit(type_length) { + let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32); + let msg = format!("reached the type-length limit while instantiating `{}`", shrunk); + let mut diag = tcx.sess.struct_span_fatal(tcx.def_span(instance.def_id()), &msg); + if let Some(path) = written_to_path { + diag.note(&format!("the full type name has been written to '{}'", path.display())); + } + diag.help(&format!( + "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate", + type_length + )); + diag.emit() + } +} + +struct MirNeighborCollector<'a, 'tcx> { + tcx: TyCtxt<'tcx>, + body: &'a mir::Body<'tcx>, + output: &'a mut MonoItems<'tcx>, + instance: Instance<'tcx>, +} + +impl<'a, 'tcx> MirNeighborCollector<'a, 'tcx> { + pub fn monomorphize(&self, value: T) -> T + where + T: TypeFoldable<'tcx>, + { + debug!("monomorphize: self.instance={:?}", self.instance); + self.instance.subst_mir_and_normalize_erasing_regions( + self.tcx, + ty::ParamEnv::reveal_all(), + value, + ) + } +} + +impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> { + fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) { + debug!("visiting rvalue {:?}", *rvalue); + + let span = self.body.source_info(location).span; + + match *rvalue { + // When doing an cast from a regular pointer to a fat pointer, we + // have to instantiate all methods of the trait being cast to, so we + // can build the appropriate vtable. + mir::Rvalue::Cast( + mir::CastKind::Pointer(PointerCast::Unsize), + ref operand, + target_ty, + ) => { + let target_ty = self.monomorphize(target_ty); + let source_ty = operand.ty(self.body, self.tcx); + let source_ty = self.monomorphize(source_ty); + let (source_ty, target_ty) = + find_vtable_types_for_unsizing(self.tcx, source_ty, target_ty); + // This could also be a different Unsize instruction, like + // from a fixed sized array to a slice. But we are only + // interested in things that produce a vtable. + if target_ty.is_trait() && !source_ty.is_trait() { + create_mono_items_for_vtable_methods( + self.tcx, + target_ty, + source_ty, + span, + self.output, + ); + } + } + mir::Rvalue::Cast( + mir::CastKind::Pointer(PointerCast::ReifyFnPointer), + ref operand, + _, + ) => { + let fn_ty = operand.ty(self.body, self.tcx); + let fn_ty = self.monomorphize(fn_ty); + visit_fn_use(self.tcx, fn_ty, false, span, &mut self.output); + } + mir::Rvalue::Cast( + mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)), + ref operand, + _, + ) => { + let source_ty = operand.ty(self.body, self.tcx); + let source_ty = self.monomorphize(source_ty); + match *source_ty.kind() { + ty::Closure(def_id, substs) => { + let instance = Instance::resolve_closure( + self.tcx, + def_id, + substs, + ty::ClosureKind::FnOnce, + ) + .expect("failed to normalize and resolve closure during codegen"); + if should_codegen_locally(self.tcx, &instance) { + self.output.push(create_fn_mono_item(self.tcx, instance, span)); + } + } + _ => bug!(), + } + } + mir::Rvalue::ThreadLocalRef(def_id) => { + assert!(self.tcx.is_thread_local_static(def_id)); + let instance = Instance::mono(self.tcx, def_id); + if should_codegen_locally(self.tcx, &instance) { + trace!("collecting thread-local static {:?}", def_id); + self.output.push(respan(span, MonoItem::Static(def_id))); + } + } + _ => { /* not interesting */ } + } + + self.super_rvalue(rvalue, location); + } + + /// This does not walk the constant, as it has been handled entirely here and trying + /// to walk it would attempt to evaluate the `ty::Const` inside, which doesn't necessarily + /// work, as some constants cannot be represented in the type system. + #[instrument(skip(self), level = "debug")] + fn visit_constant(&mut self, constant: &mir::Constant<'tcx>, location: Location) { + let literal = self.monomorphize(constant.literal); + let val = match literal { + mir::ConstantKind::Val(val, _) => val, + mir::ConstantKind::Ty(ct) => match ct.kind() { + ty::ConstKind::Value(val) => self.tcx.valtree_to_const_val((ct.ty(), val)), + ty::ConstKind::Unevaluated(ct) => { + debug!(?ct); + let param_env = ty::ParamEnv::reveal_all(); + match self.tcx.const_eval_resolve(param_env, ct, None) { + // The `monomorphize` call should have evaluated that constant already. + Ok(val) => val, + Err(ErrorHandled::Reported(_) | ErrorHandled::Linted) => return, + Err(ErrorHandled::TooGeneric) => span_bug!( + self.body.source_info(location).span, + "collection encountered polymorphic constant: {:?}", + literal + ), + } + } + _ => return, + }, + }; + collect_const_value(self.tcx, val, self.output); + self.visit_ty(literal.ty(), TyContext::Location(location)); + } + + #[instrument(skip(self), level = "debug")] + fn visit_const(&mut self, constant: ty::Const<'tcx>, location: Location) { + debug!("visiting const {:?} @ {:?}", constant, location); + + let substituted_constant = self.monomorphize(constant); + let param_env = ty::ParamEnv::reveal_all(); + + match substituted_constant.kind() { + ty::ConstKind::Value(val) => { + let const_val = self.tcx.valtree_to_const_val((constant.ty(), val)); + collect_const_value(self.tcx, const_val, self.output) + } + ty::ConstKind::Unevaluated(unevaluated) => { + match self.tcx.const_eval_resolve(param_env, unevaluated, None) { + // The `monomorphize` call should have evaluated that constant already. + Ok(val) => span_bug!( + self.body.source_info(location).span, + "collection encountered the unevaluated constant {} which evaluated to {:?}", + substituted_constant, + val + ), + Err(ErrorHandled::Reported(_) | ErrorHandled::Linted) => {} + Err(ErrorHandled::TooGeneric) => span_bug!( + self.body.source_info(location).span, + "collection encountered polymorphic constant: {}", + substituted_constant + ), + } + } + _ => {} + } + + self.super_const(constant); + } + + fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) { + debug!("visiting terminator {:?} @ {:?}", terminator, location); + let source = self.body.source_info(location).span; + + let tcx = self.tcx; + match terminator.kind { + mir::TerminatorKind::Call { ref func, .. } => { + let callee_ty = func.ty(self.body, tcx); + let callee_ty = self.monomorphize(callee_ty); + visit_fn_use(self.tcx, callee_ty, true, source, &mut self.output); + } + mir::TerminatorKind::Drop { ref place, .. } + | mir::TerminatorKind::DropAndReplace { ref place, .. } => { + let ty = place.ty(self.body, self.tcx).ty; + let ty = self.monomorphize(ty); + visit_drop_use(self.tcx, ty, true, source, self.output); + } + mir::TerminatorKind::InlineAsm { ref operands, .. } => { + for op in operands { + match *op { + mir::InlineAsmOperand::SymFn { ref value } => { + let fn_ty = self.monomorphize(value.literal.ty()); + visit_fn_use(self.tcx, fn_ty, false, source, &mut self.output); + } + mir::InlineAsmOperand::SymStatic { def_id } => { + let instance = Instance::mono(self.tcx, def_id); + if should_codegen_locally(self.tcx, &instance) { + trace!("collecting asm sym static {:?}", def_id); + self.output.push(respan(source, MonoItem::Static(def_id))); + } + } + _ => {} + } + } + } + mir::TerminatorKind::Assert { ref msg, .. } => { + let lang_item = match msg { + mir::AssertKind::BoundsCheck { .. } => LangItem::PanicBoundsCheck, + _ => LangItem::Panic, + }; + let instance = Instance::mono(tcx, tcx.require_lang_item(lang_item, Some(source))); + if should_codegen_locally(tcx, &instance) { + self.output.push(create_fn_mono_item(tcx, instance, source)); + } + } + mir::TerminatorKind::Abort { .. } => { + let instance = Instance::mono( + tcx, + tcx.require_lang_item(LangItem::PanicNoUnwind, Some(source)), + ); + if should_codegen_locally(tcx, &instance) { + self.output.push(create_fn_mono_item(tcx, instance, source)); + } + } + mir::TerminatorKind::Goto { .. } + | mir::TerminatorKind::SwitchInt { .. } + | mir::TerminatorKind::Resume + | mir::TerminatorKind::Return + | mir::TerminatorKind::Unreachable => {} + mir::TerminatorKind::GeneratorDrop + | mir::TerminatorKind::Yield { .. } + | mir::TerminatorKind::FalseEdge { .. } + | mir::TerminatorKind::FalseUnwind { .. } => bug!(), + } + + self.super_terminator(terminator, location); + } + + fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) { + self.super_operand(operand, location); + let limit = self.tcx.move_size_limit().0; + if limit == 0 { + return; + } + let limit = Size::from_bytes(limit); + let ty = operand.ty(self.body, self.tcx); + let ty = self.monomorphize(ty); + let layout = self.tcx.layout_of(ty::ParamEnv::reveal_all().and(ty)); + if let Ok(layout) = layout { + if layout.size > limit { + debug!(?layout); + let source_info = self.body.source_info(location); + debug!(?source_info); + let lint_root = source_info.scope.lint_root(&self.body.source_scopes); + debug!(?lint_root); + let Some(lint_root) = lint_root else { + // This happens when the issue is in a function from a foreign crate that + // we monomorphized in the current crate. We can't get a `HirId` for things + // in other crates. + // FIXME: Find out where to report the lint on. Maybe simply crate-level lint root + // but correct span? This would make the lint at least accept crate-level lint attributes. + return; + }; + self.tcx.struct_span_lint_hir( + LARGE_ASSIGNMENTS, + lint_root, + source_info.span, + |lint| { + let mut err = lint.build(&format!("moving {} bytes", layout.size.bytes())); + err.span_label(source_info.span, "value moved from here"); + err.note(&format!(r#"The current maximum size is {}, but it can be customized with the move_size_limit attribute: `#![move_size_limit = "..."]`"#, limit.bytes())); + err.emit(); + }, + ); + } + } + } + + fn visit_local( + &mut self, + _place_local: Local, + _context: mir::visit::PlaceContext, + _location: Location, + ) { + } +} + +fn visit_drop_use<'tcx>( + tcx: TyCtxt<'tcx>, + ty: Ty<'tcx>, + is_direct_call: bool, + source: Span, + output: &mut MonoItems<'tcx>, +) { + let instance = Instance::resolve_drop_in_place(tcx, ty); + visit_instance_use(tcx, instance, is_direct_call, source, output); +} + +fn visit_fn_use<'tcx>( + tcx: TyCtxt<'tcx>, + ty: Ty<'tcx>, + is_direct_call: bool, + source: Span, + output: &mut MonoItems<'tcx>, +) { + if let ty::FnDef(def_id, substs) = *ty.kind() { + let instance = if is_direct_call { + ty::Instance::resolve(tcx, ty::ParamEnv::reveal_all(), def_id, substs).unwrap().unwrap() + } else { + ty::Instance::resolve_for_fn_ptr(tcx, ty::ParamEnv::reveal_all(), def_id, substs) + .unwrap() + }; + visit_instance_use(tcx, instance, is_direct_call, source, output); + } +} + +fn visit_instance_use<'tcx>( + tcx: TyCtxt<'tcx>, + instance: ty::Instance<'tcx>, + is_direct_call: bool, + source: Span, + output: &mut MonoItems<'tcx>, +) { + debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call); + if !should_codegen_locally(tcx, &instance) { + return; + } + + match instance.def { + ty::InstanceDef::Virtual(..) | ty::InstanceDef::Intrinsic(_) => { + if !is_direct_call { + bug!("{:?} being reified", instance); + } + } + ty::InstanceDef::DropGlue(_, None) => { + // Don't need to emit noop drop glue if we are calling directly. + if !is_direct_call { + output.push(create_fn_mono_item(tcx, instance, source)); + } + } + ty::InstanceDef::DropGlue(_, Some(_)) + | ty::InstanceDef::VTableShim(..) + | ty::InstanceDef::ReifyShim(..) + | ty::InstanceDef::ClosureOnceShim { .. } + | ty::InstanceDef::Item(..) + | ty::InstanceDef::FnPtrShim(..) + | ty::InstanceDef::CloneShim(..) => { + output.push(create_fn_mono_item(tcx, instance, source)); + } + } +} + +/// Returns `true` if we should codegen an instance in the local crate, or returns `false` if we +/// can just link to the upstream crate and therefore don't need a mono item. +fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: &Instance<'tcx>) -> bool { + let Some(def_id) = instance.def.def_id_if_not_guaranteed_local_codegen() else { + return true; + }; + + if tcx.is_foreign_item(def_id) { + // Foreign items are always linked against, there's no way of instantiating them. + return false; + } + + if def_id.is_local() { + // Local items cannot be referred to locally without monomorphizing them locally. + return true; + } + + if tcx.is_reachable_non_generic(def_id) + || instance.polymorphize(tcx).upstream_monomorphization(tcx).is_some() + { + // We can link to the item in question, no instance needed in this crate. + return false; + } + + if !tcx.is_mir_available(def_id) { + bug!("no MIR available for {:?}", def_id); + } + + true +} + +/// For a given pair of source and target type that occur in an unsizing coercion, +/// this function finds the pair of types that determines the vtable linking +/// them. +/// +/// For example, the source type might be `&SomeStruct` and the target type +/// might be `&SomeTrait` in a cast like: +/// +/// let src: &SomeStruct = ...; +/// let target = src as &SomeTrait; +/// +/// Then the output of this function would be (SomeStruct, SomeTrait) since for +/// constructing the `target` fat-pointer we need the vtable for that pair. +/// +/// Things can get more complicated though because there's also the case where +/// the unsized type occurs as a field: +/// +/// ```rust +/// struct ComplexStruct { +/// a: u32, +/// b: f64, +/// c: T +/// } +/// ``` +/// +/// In this case, if `T` is sized, `&ComplexStruct` is a thin pointer. If `T` +/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is +/// for the pair of `T` (which is a trait) and the concrete type that `T` was +/// originally coerced from: +/// +/// let src: &ComplexStruct = ...; +/// let target = src as &ComplexStruct; +/// +/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair +/// `(SomeStruct, SomeTrait)`. +/// +/// Finally, there is also the case of custom unsizing coercions, e.g., for +/// smart pointers such as `Rc` and `Arc`. +fn find_vtable_types_for_unsizing<'tcx>( + tcx: TyCtxt<'tcx>, + source_ty: Ty<'tcx>, + target_ty: Ty<'tcx>, +) -> (Ty<'tcx>, Ty<'tcx>) { + let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| { + let param_env = ty::ParamEnv::reveal_all(); + let type_has_metadata = |ty: Ty<'tcx>| -> bool { + if ty.is_sized(tcx.at(DUMMY_SP), param_env) { + return false; + } + let tail = tcx.struct_tail_erasing_lifetimes(ty, param_env); + match tail.kind() { + ty::Foreign(..) => false, + ty::Str | ty::Slice(..) | ty::Dynamic(..) => true, + _ => bug!("unexpected unsized tail: {:?}", tail), + } + }; + if type_has_metadata(inner_source) { + (inner_source, inner_target) + } else { + tcx.struct_lockstep_tails_erasing_lifetimes(inner_source, inner_target, param_env) + } + }; + + match (&source_ty.kind(), &target_ty.kind()) { + (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) + | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => { + ptr_vtable(*a, *b) + } + (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) if def_a.is_box() && def_b.is_box() => { + ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty()) + } + + (&ty::Adt(source_adt_def, source_substs), &ty::Adt(target_adt_def, target_substs)) => { + assert_eq!(source_adt_def, target_adt_def); + + let CustomCoerceUnsized::Struct(coerce_index) = + crate::custom_coerce_unsize_info(tcx, source_ty, target_ty); + + let source_fields = &source_adt_def.non_enum_variant().fields; + let target_fields = &target_adt_def.non_enum_variant().fields; + + assert!( + coerce_index < source_fields.len() && source_fields.len() == target_fields.len() + ); + + find_vtable_types_for_unsizing( + tcx, + source_fields[coerce_index].ty(tcx, source_substs), + target_fields[coerce_index].ty(tcx, target_substs), + ) + } + _ => bug!( + "find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}", + source_ty, + target_ty + ), + } +} + +#[instrument(skip(tcx), level = "debug")] +fn create_fn_mono_item<'tcx>( + tcx: TyCtxt<'tcx>, + instance: Instance<'tcx>, + source: Span, +) -> Spanned> { + debug!("create_fn_mono_item(instance={})", instance); + + let def_id = instance.def_id(); + if tcx.sess.opts.unstable_opts.profile_closures && def_id.is_local() && tcx.is_closure(def_id) { + crate::util::dump_closure_profile(tcx, instance); + } + + let respanned = respan(source, MonoItem::Fn(instance.polymorphize(tcx))); + debug!(?respanned); + + respanned +} + +/// Creates a `MonoItem` for each method that is referenced by the vtable for +/// the given trait/impl pair. +fn create_mono_items_for_vtable_methods<'tcx>( + tcx: TyCtxt<'tcx>, + trait_ty: Ty<'tcx>, + impl_ty: Ty<'tcx>, + source: Span, + output: &mut MonoItems<'tcx>, +) { + assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars()); + + if let ty::Dynamic(ref trait_ty, ..) = trait_ty.kind() { + if let Some(principal) = trait_ty.principal() { + let poly_trait_ref = principal.with_self_ty(tcx, impl_ty); + assert!(!poly_trait_ref.has_escaping_bound_vars()); + + // Walk all methods of the trait, including those of its supertraits + let entries = tcx.vtable_entries(poly_trait_ref); + let methods = entries + .iter() + .filter_map(|entry| match entry { + VtblEntry::MetadataDropInPlace + | VtblEntry::MetadataSize + | VtblEntry::MetadataAlign + | VtblEntry::Vacant => None, + VtblEntry::TraitVPtr(_) => { + // all super trait items already covered, so skip them. + None + } + VtblEntry::Method(instance) => { + Some(*instance).filter(|instance| should_codegen_locally(tcx, instance)) + } + }) + .map(|item| create_fn_mono_item(tcx, item, source)); + output.extend(methods); + } + + // Also add the destructor. + visit_drop_use(tcx, impl_ty, false, source, output); + } +} + +//=----------------------------------------------------------------------------- +// Root Collection +//=----------------------------------------------------------------------------- + +struct RootCollector<'a, 'tcx> { + tcx: TyCtxt<'tcx>, + mode: MonoItemCollectionMode, + output: &'a mut MonoItems<'tcx>, + entry_fn: Option<(DefId, EntryFnType)>, +} + +impl<'v> RootCollector<'_, 'v> { + fn process_item(&mut self, id: hir::ItemId) { + match self.tcx.def_kind(id.def_id) { + DefKind::Enum | DefKind::Struct | DefKind::Union => { + let item = self.tcx.hir().item(id); + match item.kind { + hir::ItemKind::Enum(_, ref generics) + | hir::ItemKind::Struct(_, ref generics) + | hir::ItemKind::Union(_, ref generics) => { + if generics.params.is_empty() { + if self.mode == MonoItemCollectionMode::Eager { + debug!( + "RootCollector: ADT drop-glue for {}", + self.tcx.def_path_str(item.def_id.to_def_id()) + ); + + let ty = + Instance::new(item.def_id.to_def_id(), InternalSubsts::empty()) + .ty(self.tcx, ty::ParamEnv::reveal_all()); + visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output); + } + } + } + _ => bug!(), + } + } + DefKind::GlobalAsm => { + debug!( + "RootCollector: ItemKind::GlobalAsm({})", + self.tcx.def_path_str(id.def_id.to_def_id()) + ); + self.output.push(dummy_spanned(MonoItem::GlobalAsm(id))); + } + DefKind::Static(..) => { + debug!( + "RootCollector: ItemKind::Static({})", + self.tcx.def_path_str(id.def_id.to_def_id()) + ); + self.output.push(dummy_spanned(MonoItem::Static(id.def_id.to_def_id()))); + } + DefKind::Const => { + // const items only generate mono items if they are + // actually used somewhere. Just declaring them is insufficient. + + // but even just declaring them must collect the items they refer to + if let Ok(val) = self.tcx.const_eval_poly(id.def_id.to_def_id()) { + collect_const_value(self.tcx, val, &mut self.output); + } + } + DefKind::Impl => { + if self.mode == MonoItemCollectionMode::Eager { + let item = self.tcx.hir().item(id); + create_mono_items_for_default_impls(self.tcx, item, self.output); + } + } + DefKind::Fn => { + self.push_if_root(id.def_id); + } + _ => {} + } + } + + fn process_impl_item(&mut self, id: hir::ImplItemId) { + if matches!(self.tcx.def_kind(id.def_id), DefKind::AssocFn) { + self.push_if_root(id.def_id); + } + } + + fn is_root(&self, def_id: LocalDefId) -> bool { + !item_requires_monomorphization(self.tcx, def_id) + && match self.mode { + MonoItemCollectionMode::Eager => true, + MonoItemCollectionMode::Lazy => { + self.entry_fn.and_then(|(id, _)| id.as_local()) == Some(def_id) + || self.tcx.is_reachable_non_generic(def_id) + || self + .tcx + .codegen_fn_attrs(def_id) + .flags + .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) + } + } + } + + /// If `def_id` represents a root, pushes it onto the list of + /// outputs. (Note that all roots must be monomorphic.) + #[instrument(skip(self), level = "debug")] + fn push_if_root(&mut self, def_id: LocalDefId) { + if self.is_root(def_id) { + debug!("RootCollector::push_if_root: found root def_id={:?}", def_id); + + let instance = Instance::mono(self.tcx, def_id.to_def_id()); + self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP)); + } + } + + /// As a special case, when/if we encounter the + /// `main()` function, we also have to generate a + /// monomorphized copy of the start lang item based on + /// the return type of `main`. This is not needed when + /// the user writes their own `start` manually. + fn push_extra_entry_roots(&mut self) { + let Some((main_def_id, EntryFnType::Main)) = self.entry_fn else { + return; + }; + + let start_def_id = match self.tcx.lang_items().require(LangItem::Start) { + Ok(s) => s, + Err(err) => self.tcx.sess.fatal(&err), + }; + let main_ret_ty = self.tcx.fn_sig(main_def_id).output(); + + // Given that `main()` has no arguments, + // then its return type cannot have + // late-bound regions, since late-bound + // regions must appear in the argument + // listing. + let main_ret_ty = self.tcx.normalize_erasing_regions( + ty::ParamEnv::reveal_all(), + main_ret_ty.no_bound_vars().unwrap(), + ); + + let start_instance = Instance::resolve( + self.tcx, + ty::ParamEnv::reveal_all(), + start_def_id, + self.tcx.intern_substs(&[main_ret_ty.into()]), + ) + .unwrap() + .unwrap(); + + self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP)); + } +} + +fn item_requires_monomorphization(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { + let generics = tcx.generics_of(def_id); + generics.requires_monomorphization(tcx) +} + +fn create_mono_items_for_default_impls<'tcx>( + tcx: TyCtxt<'tcx>, + item: &'tcx hir::Item<'tcx>, + output: &mut MonoItems<'tcx>, +) { + match item.kind { + hir::ItemKind::Impl(ref impl_) => { + for param in impl_.generics.params { + match param.kind { + hir::GenericParamKind::Lifetime { .. } => {} + hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => { + return; + } + } + } + + debug!( + "create_mono_items_for_default_impls(item={})", + tcx.def_path_str(item.def_id.to_def_id()) + ); + + if let Some(trait_ref) = tcx.impl_trait_ref(item.def_id) { + let param_env = ty::ParamEnv::reveal_all(); + let trait_ref = tcx.normalize_erasing_regions(param_env, trait_ref); + let overridden_methods = tcx.impl_item_implementor_ids(item.def_id); + for method in tcx.provided_trait_methods(trait_ref.def_id) { + if overridden_methods.contains_key(&method.def_id) { + continue; + } + + if tcx.generics_of(method.def_id).own_requires_monomorphization() { + continue; + } + + let substs = + InternalSubsts::for_item(tcx, method.def_id, |param, _| match param.kind { + GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(), + GenericParamDefKind::Type { .. } + | GenericParamDefKind::Const { .. } => { + trait_ref.substs[param.index as usize] + } + }); + let instance = ty::Instance::resolve(tcx, param_env, method.def_id, substs) + .unwrap() + .unwrap(); + + let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP); + if mono_item.node.is_instantiable(tcx) && should_codegen_locally(tcx, &instance) + { + output.push(mono_item); + } + } + } + } + _ => bug!(), + } +} + +/// Scans the miri alloc in order to find function calls, closures, and drop-glue. +fn collect_miri<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoItems<'tcx>) { + match tcx.global_alloc(alloc_id) { + GlobalAlloc::Static(def_id) => { + assert!(!tcx.is_thread_local_static(def_id)); + let instance = Instance::mono(tcx, def_id); + if should_codegen_locally(tcx, &instance) { + trace!("collecting static {:?}", def_id); + output.push(dummy_spanned(MonoItem::Static(def_id))); + } + } + GlobalAlloc::Memory(alloc) => { + trace!("collecting {:?} with {:#?}", alloc_id, alloc); + for &inner in alloc.inner().relocations().values() { + rustc_data_structures::stack::ensure_sufficient_stack(|| { + collect_miri(tcx, inner, output); + }); + } + } + GlobalAlloc::Function(fn_instance) => { + if should_codegen_locally(tcx, &fn_instance) { + trace!("collecting {:?} with {:#?}", alloc_id, fn_instance); + output.push(create_fn_mono_item(tcx, fn_instance, DUMMY_SP)); + } + } + GlobalAlloc::VTable(ty, trait_ref) => { + let alloc_id = tcx.vtable_allocation((ty, trait_ref)); + collect_miri(tcx, alloc_id, output) + } + } +} + +/// Scans the MIR in order to find function calls, closures, and drop-glue. +#[instrument(skip(tcx, output), level = "debug")] +fn collect_neighbours<'tcx>( + tcx: TyCtxt<'tcx>, + instance: Instance<'tcx>, + output: &mut MonoItems<'tcx>, +) { + let body = tcx.instance_mir(instance.def); + MirNeighborCollector { tcx, body: &body, output, instance }.visit_body(&body); +} + +#[instrument(skip(tcx, output), level = "debug")] +fn collect_const_value<'tcx>( + tcx: TyCtxt<'tcx>, + value: ConstValue<'tcx>, + output: &mut MonoItems<'tcx>, +) { + match value { + ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => collect_miri(tcx, ptr.provenance, output), + ConstValue::Slice { data: alloc, start: _, end: _ } | ConstValue::ByRef { alloc, .. } => { + for &id in alloc.inner().relocations().values() { + collect_miri(tcx, id, output); + } + } + _ => {} + } +} -- cgit v1.2.3