From 698f8c2f01ea549d77d7dc3338a12e04c11057b9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:02:58 +0200 Subject: Adding upstream version 1.64.0+dfsg1. Signed-off-by: Daniel Baumann --- compiler/rustc_typeck/src/check/intrinsicck.rs | 530 +++++++++++++++++++++++++ 1 file changed, 530 insertions(+) create mode 100644 compiler/rustc_typeck/src/check/intrinsicck.rs (limited to 'compiler/rustc_typeck/src/check/intrinsicck.rs') diff --git a/compiler/rustc_typeck/src/check/intrinsicck.rs b/compiler/rustc_typeck/src/check/intrinsicck.rs new file mode 100644 index 000000000..df94abbaf --- /dev/null +++ b/compiler/rustc_typeck/src/check/intrinsicck.rs @@ -0,0 +1,530 @@ +use rustc_ast::InlineAsmTemplatePiece; +use rustc_data_structures::fx::FxHashSet; +use rustc_errors::struct_span_err; +use rustc_hir as hir; +use rustc_index::vec::Idx; +use rustc_middle::ty::layout::{LayoutError, SizeSkeleton}; +use rustc_middle::ty::{self, Article, FloatTy, IntTy, Ty, TyCtxt, TypeVisitable, UintTy}; +use rustc_session::lint; +use rustc_span::{Span, Symbol, DUMMY_SP}; +use rustc_target::abi::{Pointer, VariantIdx}; +use rustc_target::asm::{InlineAsmReg, InlineAsmRegClass, InlineAsmRegOrRegClass, InlineAsmType}; +use rustc_trait_selection::infer::InferCtxtExt; + +use super::FnCtxt; + +/// If the type is `Option`, it will return `T`, otherwise +/// the type itself. Works on most `Option`-like types. +fn unpack_option_like<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { + let ty::Adt(def, substs) = *ty.kind() else { return ty }; + + if def.variants().len() == 2 && !def.repr().c() && def.repr().int.is_none() { + let data_idx; + + let one = VariantIdx::new(1); + let zero = VariantIdx::new(0); + + if def.variant(zero).fields.is_empty() { + data_idx = one; + } else if def.variant(one).fields.is_empty() { + data_idx = zero; + } else { + return ty; + } + + if def.variant(data_idx).fields.len() == 1 { + return def.variant(data_idx).fields[0].ty(tcx, substs); + } + } + + ty +} + +impl<'a, 'tcx> FnCtxt<'a, 'tcx> { + pub fn check_transmute(&self, span: Span, from: Ty<'tcx>, to: Ty<'tcx>) { + let convert = |ty: Ty<'tcx>| { + let ty = self.resolve_vars_if_possible(ty); + let ty = self.tcx.normalize_erasing_regions(self.param_env, ty); + (SizeSkeleton::compute(ty, self.tcx, self.param_env), ty) + }; + let (sk_from, from) = convert(from); + let (sk_to, to) = convert(to); + + // Check for same size using the skeletons. + if let (Ok(sk_from), Ok(sk_to)) = (sk_from, sk_to) { + if sk_from.same_size(sk_to) { + return; + } + + // Special-case transmuting from `typeof(function)` and + // `Option` to present a clearer error. + let from = unpack_option_like(self.tcx, from); + if let (&ty::FnDef(..), SizeSkeleton::Known(size_to)) = (from.kind(), sk_to) && size_to == Pointer.size(&self.tcx) { + struct_span_err!(self.tcx.sess, span, E0591, "can't transmute zero-sized type") + .note(&format!("source type: {from}")) + .note(&format!("target type: {to}")) + .help("cast with `as` to a pointer instead") + .emit(); + return; + } + } + + // Try to display a sensible error with as much information as possible. + let skeleton_string = |ty: Ty<'tcx>, sk| match sk { + Ok(SizeSkeleton::Known(size)) => format!("{} bits", size.bits()), + Ok(SizeSkeleton::Pointer { tail, .. }) => format!("pointer to `{tail}`"), + Err(LayoutError::Unknown(bad)) => { + if bad == ty { + "this type does not have a fixed size".to_owned() + } else { + format!("size can vary because of {bad}") + } + } + Err(err) => err.to_string(), + }; + + let mut err = struct_span_err!( + self.tcx.sess, + span, + E0512, + "cannot transmute between types of different sizes, \ + or dependently-sized types" + ); + if from == to { + err.note(&format!("`{from}` does not have a fixed size")); + } else { + err.note(&format!("source type: `{}` ({})", from, skeleton_string(from, sk_from))) + .note(&format!("target type: `{}` ({})", to, skeleton_string(to, sk_to))); + } + err.emit(); + } + + // FIXME(compiler-errors): This could use `<$ty as Pointee>::Metadata == ()` + fn is_thin_ptr_ty(&self, ty: Ty<'tcx>) -> bool { + // Type still may have region variables, but `Sized` does not depend + // on those, so just erase them before querying. + if self.tcx.erase_regions(ty).is_sized(self.tcx.at(DUMMY_SP), self.param_env) { + return true; + } + if let ty::Foreign(..) = ty.kind() { + return true; + } + false + } +} + +pub struct InlineAsmCtxt<'a, 'tcx> { + tcx: TyCtxt<'tcx>, + fcx: Option<&'a FnCtxt<'a, 'tcx>>, +} + +impl<'a, 'tcx> InlineAsmCtxt<'a, 'tcx> { + pub fn new_global_asm(tcx: TyCtxt<'tcx>) -> Self { + InlineAsmCtxt { tcx, fcx: None } + } + + pub fn new_in_fn(fcx: &'a FnCtxt<'a, 'tcx>) -> Self { + InlineAsmCtxt { tcx: fcx.tcx, fcx: Some(fcx) } + } + + fn check_asm_operand_type( + &self, + idx: usize, + reg: InlineAsmRegOrRegClass, + expr: &hir::Expr<'tcx>, + template: &[InlineAsmTemplatePiece], + is_input: bool, + tied_input: Option<(&hir::Expr<'tcx>, Option)>, + target_features: &FxHashSet, + ) -> Option { + let fcx = self.fcx.unwrap_or_else(|| span_bug!(expr.span, "asm operand for global asm")); + // Check the type against the allowed types for inline asm. + let ty = fcx.typeck_results.borrow().expr_ty_adjusted(expr); + let ty = fcx.resolve_vars_if_possible(ty); + let asm_ty_isize = match self.tcx.sess.target.pointer_width { + 16 => InlineAsmType::I16, + 32 => InlineAsmType::I32, + 64 => InlineAsmType::I64, + _ => unreachable!(), + }; + + // Expect types to be fully resolved, no const or type variables. + if ty.has_infer_types_or_consts() { + assert!(fcx.is_tainted_by_errors()); + return None; + } + + let asm_ty = match *ty.kind() { + // `!` is allowed for input but not for output (issue #87802) + ty::Never if is_input => return None, + ty::Error(_) => return None, + ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Some(InlineAsmType::I8), + ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Some(InlineAsmType::I16), + ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Some(InlineAsmType::I32), + ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Some(InlineAsmType::I64), + ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Some(InlineAsmType::I128), + ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Some(asm_ty_isize), + ty::Float(FloatTy::F32) => Some(InlineAsmType::F32), + ty::Float(FloatTy::F64) => Some(InlineAsmType::F64), + ty::FnPtr(_) => Some(asm_ty_isize), + ty::RawPtr(ty::TypeAndMut { ty, mutbl: _ }) if fcx.is_thin_ptr_ty(ty) => { + Some(asm_ty_isize) + } + ty::Adt(adt, substs) if adt.repr().simd() => { + let fields = &adt.non_enum_variant().fields; + let elem_ty = fields[0].ty(self.tcx, substs); + match elem_ty.kind() { + ty::Never | ty::Error(_) => return None, + ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => { + Some(InlineAsmType::VecI8(fields.len() as u64)) + } + ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => { + Some(InlineAsmType::VecI16(fields.len() as u64)) + } + ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => { + Some(InlineAsmType::VecI32(fields.len() as u64)) + } + ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => { + Some(InlineAsmType::VecI64(fields.len() as u64)) + } + ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => { + Some(InlineAsmType::VecI128(fields.len() as u64)) + } + ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => { + Some(match self.tcx.sess.target.pointer_width { + 16 => InlineAsmType::VecI16(fields.len() as u64), + 32 => InlineAsmType::VecI32(fields.len() as u64), + 64 => InlineAsmType::VecI64(fields.len() as u64), + _ => unreachable!(), + }) + } + ty::Float(FloatTy::F32) => Some(InlineAsmType::VecF32(fields.len() as u64)), + ty::Float(FloatTy::F64) => Some(InlineAsmType::VecF64(fields.len() as u64)), + _ => None, + } + } + ty::Infer(_) => unreachable!(), + _ => None, + }; + let Some(asm_ty) = asm_ty else { + let msg = &format!("cannot use value of type `{ty}` for inline assembly"); + let mut err = self.tcx.sess.struct_span_err(expr.span, msg); + err.note( + "only integers, floats, SIMD vectors, pointers and function pointers \ + can be used as arguments for inline assembly", + ); + err.emit(); + return None; + }; + + // Check that the type implements Copy. The only case where this can + // possibly fail is for SIMD types which don't #[derive(Copy)]. + if !fcx.infcx.type_is_copy_modulo_regions(fcx.param_env, ty, DUMMY_SP) { + let msg = "arguments for inline assembly must be copyable"; + let mut err = self.tcx.sess.struct_span_err(expr.span, msg); + err.note(&format!("`{ty}` does not implement the Copy trait")); + err.emit(); + } + + // Ideally we wouldn't need to do this, but LLVM's register allocator + // really doesn't like it when tied operands have different types. + // + // This is purely an LLVM limitation, but we have to live with it since + // there is no way to hide this with implicit conversions. + // + // For the purposes of this check we only look at the `InlineAsmType`, + // which means that pointers and integers are treated as identical (modulo + // size). + if let Some((in_expr, Some(in_asm_ty))) = tied_input { + if in_asm_ty != asm_ty { + let msg = "incompatible types for asm inout argument"; + let mut err = self.tcx.sess.struct_span_err(vec![in_expr.span, expr.span], msg); + + let in_expr_ty = fcx.typeck_results.borrow().expr_ty_adjusted(in_expr); + let in_expr_ty = fcx.resolve_vars_if_possible(in_expr_ty); + err.span_label(in_expr.span, &format!("type `{in_expr_ty}`")); + err.span_label(expr.span, &format!("type `{ty}`")); + err.note( + "asm inout arguments must have the same type, \ + unless they are both pointers or integers of the same size", + ); + err.emit(); + } + + // All of the later checks have already been done on the input, so + // let's not emit errors and warnings twice. + return Some(asm_ty); + } + + // Check the type against the list of types supported by the selected + // register class. + let asm_arch = self.tcx.sess.asm_arch.unwrap(); + let reg_class = reg.reg_class(); + let supported_tys = reg_class.supported_types(asm_arch); + let Some((_, feature)) = supported_tys.iter().find(|&&(t, _)| t == asm_ty) else { + let msg = &format!("type `{ty}` cannot be used with this register class"); + let mut err = self.tcx.sess.struct_span_err(expr.span, msg); + let supported_tys: Vec<_> = + supported_tys.iter().map(|(t, _)| t.to_string()).collect(); + err.note(&format!( + "register class `{}` supports these types: {}", + reg_class.name(), + supported_tys.join(", "), + )); + if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) { + err.help(&format!( + "consider using the `{}` register class instead", + suggest.name() + )); + } + err.emit(); + return Some(asm_ty); + }; + + // Check whether the selected type requires a target feature. Note that + // this is different from the feature check we did earlier. While the + // previous check checked that this register class is usable at all + // with the currently enabled features, some types may only be usable + // with a register class when a certain feature is enabled. We check + // this here since it depends on the results of typeck. + // + // Also note that this check isn't run when the operand type is never + // (!). In that case we still need the earlier check to verify that the + // register class is usable at all. + if let Some(feature) = feature { + if !target_features.contains(&feature) { + let msg = &format!("`{}` target feature is not enabled", feature); + let mut err = self.tcx.sess.struct_span_err(expr.span, msg); + err.note(&format!( + "this is required to use type `{}` with register class `{}`", + ty, + reg_class.name(), + )); + err.emit(); + return Some(asm_ty); + } + } + + // Check whether a modifier is suggested for using this type. + if let Some((suggested_modifier, suggested_result)) = + reg_class.suggest_modifier(asm_arch, asm_ty) + { + // Search for any use of this operand without a modifier and emit + // the suggestion for them. + let mut spans = vec![]; + for piece in template { + if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece + { + if operand_idx == idx && modifier.is_none() { + spans.push(span); + } + } + } + if !spans.is_empty() { + let (default_modifier, default_result) = + reg_class.default_modifier(asm_arch).unwrap(); + self.tcx.struct_span_lint_hir( + lint::builtin::ASM_SUB_REGISTER, + expr.hir_id, + spans, + |lint| { + let msg = "formatting may not be suitable for sub-register argument"; + let mut err = lint.build(msg); + err.span_label(expr.span, "for this argument"); + err.help(&format!( + "use the `{suggested_modifier}` modifier to have the register formatted as `{suggested_result}`", + )); + err.help(&format!( + "or use the `{default_modifier}` modifier to keep the default formatting of `{default_result}`", + )); + err.emit(); + }, + ); + } + } + + Some(asm_ty) + } + + pub fn check_asm(&self, asm: &hir::InlineAsm<'tcx>, enclosing_id: hir::HirId) { + let hir = self.tcx.hir(); + let enclosing_def_id = hir.local_def_id(enclosing_id).to_def_id(); + let target_features = self.tcx.asm_target_features(enclosing_def_id); + let Some(asm_arch) = self.tcx.sess.asm_arch else { + self.tcx.sess.delay_span_bug(DUMMY_SP, "target architecture does not support asm"); + return; + }; + for (idx, (op, op_sp)) in asm.operands.iter().enumerate() { + // Validate register classes against currently enabled target + // features. We check that at least one type is available for + // the enabled features. + // + // We ignore target feature requirements for clobbers: if the + // feature is disabled then the compiler doesn't care what we + // do with the registers. + // + // Note that this is only possible for explicit register + // operands, which cannot be used in the asm string. + if let Some(reg) = op.reg() { + // Some explicit registers cannot be used depending on the + // target. Reject those here. + if let InlineAsmRegOrRegClass::Reg(reg) = reg { + if let InlineAsmReg::Err = reg { + // `validate` will panic on `Err`, as an error must + // already have been reported. + continue; + } + if let Err(msg) = reg.validate( + asm_arch, + self.tcx.sess.relocation_model(), + &target_features, + &self.tcx.sess.target, + op.is_clobber(), + ) { + let msg = format!("cannot use register `{}`: {}", reg.name(), msg); + self.tcx.sess.struct_span_err(*op_sp, &msg).emit(); + continue; + } + } + + if !op.is_clobber() { + let mut missing_required_features = vec![]; + let reg_class = reg.reg_class(); + if let InlineAsmRegClass::Err = reg_class { + continue; + } + for &(_, feature) in reg_class.supported_types(asm_arch) { + match feature { + Some(feature) => { + if target_features.contains(&feature) { + missing_required_features.clear(); + break; + } else { + missing_required_features.push(feature); + } + } + None => { + missing_required_features.clear(); + break; + } + } + } + + // We are sorting primitive strs here and can use unstable sort here + missing_required_features.sort_unstable(); + missing_required_features.dedup(); + match &missing_required_features[..] { + [] => {} + [feature] => { + let msg = format!( + "register class `{}` requires the `{}` target feature", + reg_class.name(), + feature + ); + self.tcx.sess.struct_span_err(*op_sp, &msg).emit(); + // register isn't enabled, don't do more checks + continue; + } + features => { + let msg = format!( + "register class `{}` requires at least one of the following target features: {}", + reg_class.name(), + features + .iter() + .map(|f| f.as_str()) + .intersperse(", ") + .collect::(), + ); + self.tcx.sess.struct_span_err(*op_sp, &msg).emit(); + // register isn't enabled, don't do more checks + continue; + } + } + } + } + + match *op { + hir::InlineAsmOperand::In { reg, ref expr } => { + self.check_asm_operand_type( + idx, + reg, + expr, + asm.template, + true, + None, + &target_features, + ); + } + hir::InlineAsmOperand::Out { reg, late: _, ref expr } => { + if let Some(expr) = expr { + self.check_asm_operand_type( + idx, + reg, + expr, + asm.template, + false, + None, + &target_features, + ); + } + } + hir::InlineAsmOperand::InOut { reg, late: _, ref expr } => { + self.check_asm_operand_type( + idx, + reg, + expr, + asm.template, + false, + None, + &target_features, + ); + } + hir::InlineAsmOperand::SplitInOut { reg, late: _, ref in_expr, ref out_expr } => { + let in_ty = self.check_asm_operand_type( + idx, + reg, + in_expr, + asm.template, + true, + None, + &target_features, + ); + if let Some(out_expr) = out_expr { + self.check_asm_operand_type( + idx, + reg, + out_expr, + asm.template, + false, + Some((in_expr, in_ty)), + &target_features, + ); + } + } + // No special checking is needed for these: + // - Typeck has checked that Const operands are integers. + // - AST lowering guarantees that SymStatic points to a static. + hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymStatic { .. } => {} + // Check that sym actually points to a function. Later passes + // depend on this. + hir::InlineAsmOperand::SymFn { anon_const } => { + let ty = self.tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id); + match ty.kind() { + ty::Never | ty::Error(_) => {} + ty::FnDef(..) => {} + _ => { + let mut err = + self.tcx.sess.struct_span_err(*op_sp, "invalid `sym` operand"); + err.span_label( + self.tcx.hir().span(anon_const.body.hir_id), + &format!("is {} `{}`", ty.kind().article(), ty), + ); + err.help("`sym` operands must refer to either a function or a static"); + err.emit(); + } + }; + } + } + } + } +} -- cgit v1.2.3