From 64d98f8ee037282c35007b64c2649055c56af1db Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:19:03 +0200 Subject: Merging upstream version 1.68.2+dfsg1. Signed-off-by: Daniel Baumann --- library/alloc/src/collections/binary_heap.rs | 1721 -------------------------- 1 file changed, 1721 deletions(-) delete mode 100644 library/alloc/src/collections/binary_heap.rs (limited to 'library/alloc/src/collections/binary_heap.rs') diff --git a/library/alloc/src/collections/binary_heap.rs b/library/alloc/src/collections/binary_heap.rs deleted file mode 100644 index 4583bc9a1..000000000 --- a/library/alloc/src/collections/binary_heap.rs +++ /dev/null @@ -1,1721 +0,0 @@ -//! A priority queue implemented with a binary heap. -//! -//! Insertion and popping the largest element have *O*(log(*n*)) time complexity. -//! Checking the largest element is *O*(1). Converting a vector to a binary heap -//! can be done in-place, and has *O*(*n*) complexity. A binary heap can also be -//! converted to a sorted vector in-place, allowing it to be used for an *O*(*n* * log(*n*)) -//! in-place heapsort. -//! -//! # Examples -//! -//! This is a larger example that implements [Dijkstra's algorithm][dijkstra] -//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph]. -//! It shows how to use [`BinaryHeap`] with custom types. -//! -//! [dijkstra]: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm -//! [sssp]: https://en.wikipedia.org/wiki/Shortest_path_problem -//! [dir_graph]: https://en.wikipedia.org/wiki/Directed_graph -//! -//! ``` -//! use std::cmp::Ordering; -//! use std::collections::BinaryHeap; -//! -//! #[derive(Copy, Clone, Eq, PartialEq)] -//! struct State { -//! cost: usize, -//! position: usize, -//! } -//! -//! // The priority queue depends on `Ord`. -//! // Explicitly implement the trait so the queue becomes a min-heap -//! // instead of a max-heap. -//! impl Ord for State { -//! fn cmp(&self, other: &Self) -> Ordering { -//! // Notice that the we flip the ordering on costs. -//! // In case of a tie we compare positions - this step is necessary -//! // to make implementations of `PartialEq` and `Ord` consistent. -//! other.cost.cmp(&self.cost) -//! .then_with(|| self.position.cmp(&other.position)) -//! } -//! } -//! -//! // `PartialOrd` needs to be implemented as well. -//! impl PartialOrd for State { -//! fn partial_cmp(&self, other: &Self) -> Option { -//! Some(self.cmp(other)) -//! } -//! } -//! -//! // Each node is represented as a `usize`, for a shorter implementation. -//! struct Edge { -//! node: usize, -//! cost: usize, -//! } -//! -//! // Dijkstra's shortest path algorithm. -//! -//! // Start at `start` and use `dist` to track the current shortest distance -//! // to each node. This implementation isn't memory-efficient as it may leave duplicate -//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value, -//! // for a simpler implementation. -//! fn shortest_path(adj_list: &Vec>, start: usize, goal: usize) -> Option { -//! // dist[node] = current shortest distance from `start` to `node` -//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect(); -//! -//! let mut heap = BinaryHeap::new(); -//! -//! // We're at `start`, with a zero cost -//! dist[start] = 0; -//! heap.push(State { cost: 0, position: start }); -//! -//! // Examine the frontier with lower cost nodes first (min-heap) -//! while let Some(State { cost, position }) = heap.pop() { -//! // Alternatively we could have continued to find all shortest paths -//! if position == goal { return Some(cost); } -//! -//! // Important as we may have already found a better way -//! if cost > dist[position] { continue; } -//! -//! // For each node we can reach, see if we can find a way with -//! // a lower cost going through this node -//! for edge in &adj_list[position] { -//! let next = State { cost: cost + edge.cost, position: edge.node }; -//! -//! // If so, add it to the frontier and continue -//! if next.cost < dist[next.position] { -//! heap.push(next); -//! // Relaxation, we have now found a better way -//! dist[next.position] = next.cost; -//! } -//! } -//! } -//! -//! // Goal not reachable -//! None -//! } -//! -//! fn main() { -//! // This is the directed graph we're going to use. -//! // The node numbers correspond to the different states, -//! // and the edge weights symbolize the cost of moving -//! // from one node to another. -//! // Note that the edges are one-way. -//! // -//! // 7 -//! // +-----------------+ -//! // | | -//! // v 1 2 | 2 -//! // 0 -----> 1 -----> 3 ---> 4 -//! // | ^ ^ ^ -//! // | | 1 | | -//! // | | | 3 | 1 -//! // +------> 2 -------+ | -//! // 10 | | -//! // +---------------+ -//! // -//! // The graph is represented as an adjacency list where each index, -//! // corresponding to a node value, has a list of outgoing edges. -//! // Chosen for its efficiency. -//! let graph = vec![ -//! // Node 0 -//! vec![Edge { node: 2, cost: 10 }, -//! Edge { node: 1, cost: 1 }], -//! // Node 1 -//! vec![Edge { node: 3, cost: 2 }], -//! // Node 2 -//! vec![Edge { node: 1, cost: 1 }, -//! Edge { node: 3, cost: 3 }, -//! Edge { node: 4, cost: 1 }], -//! // Node 3 -//! vec![Edge { node: 0, cost: 7 }, -//! Edge { node: 4, cost: 2 }], -//! // Node 4 -//! vec![]]; -//! -//! assert_eq!(shortest_path(&graph, 0, 1), Some(1)); -//! assert_eq!(shortest_path(&graph, 0, 3), Some(3)); -//! assert_eq!(shortest_path(&graph, 3, 0), Some(7)); -//! assert_eq!(shortest_path(&graph, 0, 4), Some(5)); -//! assert_eq!(shortest_path(&graph, 4, 0), None); -//! } -//! ``` - -#![allow(missing_docs)] -#![stable(feature = "rust1", since = "1.0.0")] - -use core::fmt; -use core::iter::{FromIterator, FusedIterator, InPlaceIterable, SourceIter, TrustedLen}; -use core::mem::{self, swap, ManuallyDrop}; -use core::ops::{Deref, DerefMut}; -use core::ptr; - -use crate::collections::TryReserveError; -use crate::slice; -use crate::vec::{self, AsVecIntoIter, Vec}; - -use super::SpecExtend; - -#[cfg(test)] -mod tests; - -/// A priority queue implemented with a binary heap. -/// -/// This will be a max-heap. -/// -/// It is a logic error for an item to be modified in such a way that the -/// item's ordering relative to any other item, as determined by the [`Ord`] -/// trait, changes while it is in the heap. This is normally only possible -/// through [`Cell`], [`RefCell`], global state, I/O, or unsafe code. The -/// behavior resulting from such a logic error is not specified, but will -/// be encapsulated to the `BinaryHeap` that observed the logic error and not -/// result in undefined behavior. This could include panics, incorrect results, -/// aborts, memory leaks, and non-termination. -/// -/// # Examples -/// -/// ``` -/// use std::collections::BinaryHeap; -/// -/// // Type inference lets us omit an explicit type signature (which -/// // would be `BinaryHeap` in this example). -/// let mut heap = BinaryHeap::new(); -/// -/// // We can use peek to look at the next item in the heap. In this case, -/// // there's no items in there yet so we get None. -/// assert_eq!(heap.peek(), None); -/// -/// // Let's add some scores... -/// heap.push(1); -/// heap.push(5); -/// heap.push(2); -/// -/// // Now peek shows the most important item in the heap. -/// assert_eq!(heap.peek(), Some(&5)); -/// -/// // We can check the length of a heap. -/// assert_eq!(heap.len(), 3); -/// -/// // We can iterate over the items in the heap, although they are returned in -/// // a random order. -/// for x in &heap { -/// println!("{x}"); -/// } -/// -/// // If we instead pop these scores, they should come back in order. -/// assert_eq!(heap.pop(), Some(5)); -/// assert_eq!(heap.pop(), Some(2)); -/// assert_eq!(heap.pop(), Some(1)); -/// assert_eq!(heap.pop(), None); -/// -/// // We can clear the heap of any remaining items. -/// heap.clear(); -/// -/// // The heap should now be empty. -/// assert!(heap.is_empty()) -/// ``` -/// -/// A `BinaryHeap` with a known list of items can be initialized from an array: -/// -/// ``` -/// use std::collections::BinaryHeap; -/// -/// let heap = BinaryHeap::from([1, 5, 2]); -/// ``` -/// -/// ## Min-heap -/// -/// Either [`core::cmp::Reverse`] or a custom [`Ord`] implementation can be used to -/// make `BinaryHeap` a min-heap. This makes `heap.pop()` return the smallest -/// value instead of the greatest one. -/// -/// ``` -/// use std::collections::BinaryHeap; -/// use std::cmp::Reverse; -/// -/// let mut heap = BinaryHeap::new(); -/// -/// // Wrap values in `Reverse` -/// heap.push(Reverse(1)); -/// heap.push(Reverse(5)); -/// heap.push(Reverse(2)); -/// -/// // If we pop these scores now, they should come back in the reverse order. -/// assert_eq!(heap.pop(), Some(Reverse(1))); -/// assert_eq!(heap.pop(), Some(Reverse(2))); -/// assert_eq!(heap.pop(), Some(Reverse(5))); -/// assert_eq!(heap.pop(), None); -/// ``` -/// -/// # Time complexity -/// -/// | [push] | [pop] | [peek]/[peek\_mut] | -/// |---------|---------------|--------------------| -/// | *O*(1)~ | *O*(log(*n*)) | *O*(1) | -/// -/// The value for `push` is an expected cost; the method documentation gives a -/// more detailed analysis. -/// -/// [`core::cmp::Reverse`]: core::cmp::Reverse -/// [`Ord`]: core::cmp::Ord -/// [`Cell`]: core::cell::Cell -/// [`RefCell`]: core::cell::RefCell -/// [push]: BinaryHeap::push -/// [pop]: BinaryHeap::pop -/// [peek]: BinaryHeap::peek -/// [peek\_mut]: BinaryHeap::peek_mut -#[stable(feature = "rust1", since = "1.0.0")] -#[cfg_attr(not(test), rustc_diagnostic_item = "BinaryHeap")] -pub struct BinaryHeap { - data: Vec, -} - -/// Structure wrapping a mutable reference to the greatest item on a -/// `BinaryHeap`. -/// -/// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See -/// its documentation for more. -/// -/// [`peek_mut`]: BinaryHeap::peek_mut -#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] -pub struct PeekMut<'a, T: 'a + Ord> { - heap: &'a mut BinaryHeap, - sift: bool, -} - -#[stable(feature = "collection_debug", since = "1.17.0")] -impl fmt::Debug for PeekMut<'_, T> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_tuple("PeekMut").field(&self.heap.data[0]).finish() - } -} - -#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] -impl Drop for PeekMut<'_, T> { - fn drop(&mut self) { - if self.sift { - // SAFETY: PeekMut is only instantiated for non-empty heaps. - unsafe { self.heap.sift_down(0) }; - } - } -} - -#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] -impl Deref for PeekMut<'_, T> { - type Target = T; - fn deref(&self) -> &T { - debug_assert!(!self.heap.is_empty()); - // SAFE: PeekMut is only instantiated for non-empty heaps - unsafe { self.heap.data.get_unchecked(0) } - } -} - -#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] -impl DerefMut for PeekMut<'_, T> { - fn deref_mut(&mut self) -> &mut T { - debug_assert!(!self.heap.is_empty()); - self.sift = true; - // SAFE: PeekMut is only instantiated for non-empty heaps - unsafe { self.heap.data.get_unchecked_mut(0) } - } -} - -impl<'a, T: Ord> PeekMut<'a, T> { - /// Removes the peeked value from the heap and returns it. - #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")] - pub fn pop(mut this: PeekMut<'a, T>) -> T { - let value = this.heap.pop().unwrap(); - this.sift = false; - value - } -} - -#[stable(feature = "rust1", since = "1.0.0")] -impl Clone for BinaryHeap { - fn clone(&self) -> Self { - BinaryHeap { data: self.data.clone() } - } - - fn clone_from(&mut self, source: &Self) { - self.data.clone_from(&source.data); - } -} - -#[stable(feature = "rust1", since = "1.0.0")] -impl Default for BinaryHeap { - /// Creates an empty `BinaryHeap`. - #[inline] - fn default() -> BinaryHeap { - BinaryHeap::new() - } -} - -#[stable(feature = "binaryheap_debug", since = "1.4.0")] -impl fmt::Debug for BinaryHeap { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_list().entries(self.iter()).finish() - } -} - -impl BinaryHeap { - /// Creates an empty `BinaryHeap` as a max-heap. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap = BinaryHeap::new(); - /// heap.push(4); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[must_use] - pub fn new() -> BinaryHeap { - BinaryHeap { data: vec![] } - } - - /// Creates an empty `BinaryHeap` with at least the specified capacity. - /// - /// The binary heap will be able to hold at least `capacity` elements without - /// reallocating. This method is allowed to allocate for more elements than - /// `capacity`. If `capacity` is 0, the binary heap will not allocate. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap = BinaryHeap::with_capacity(10); - /// heap.push(4); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - #[must_use] - pub fn with_capacity(capacity: usize) -> BinaryHeap { - BinaryHeap { data: Vec::with_capacity(capacity) } - } - - /// Returns a mutable reference to the greatest item in the binary heap, or - /// `None` if it is empty. - /// - /// Note: If the `PeekMut` value is leaked, the heap may be in an - /// inconsistent state. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap = BinaryHeap::new(); - /// assert!(heap.peek_mut().is_none()); - /// - /// heap.push(1); - /// heap.push(5); - /// heap.push(2); - /// { - /// let mut val = heap.peek_mut().unwrap(); - /// *val = 0; - /// } - /// assert_eq!(heap.peek(), Some(&2)); - /// ``` - /// - /// # Time complexity - /// - /// If the item is modified then the worst case time complexity is *O*(log(*n*)), - /// otherwise it's *O*(1). - #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] - pub fn peek_mut(&mut self) -> Option> { - if self.is_empty() { None } else { Some(PeekMut { heap: self, sift: false }) } - } - - /// Removes the greatest item from the binary heap and returns it, or `None` if it - /// is empty. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap = BinaryHeap::from([1, 3]); - /// - /// assert_eq!(heap.pop(), Some(3)); - /// assert_eq!(heap.pop(), Some(1)); - /// assert_eq!(heap.pop(), None); - /// ``` - /// - /// # Time complexity - /// - /// The worst case cost of `pop` on a heap containing *n* elements is *O*(log(*n*)). - #[stable(feature = "rust1", since = "1.0.0")] - pub fn pop(&mut self) -> Option { - self.data.pop().map(|mut item| { - if !self.is_empty() { - swap(&mut item, &mut self.data[0]); - // SAFETY: !self.is_empty() means that self.len() > 0 - unsafe { self.sift_down_to_bottom(0) }; - } - item - }) - } - - /// Pushes an item onto the binary heap. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap = BinaryHeap::new(); - /// heap.push(3); - /// heap.push(5); - /// heap.push(1); - /// - /// assert_eq!(heap.len(), 3); - /// assert_eq!(heap.peek(), Some(&5)); - /// ``` - /// - /// # Time complexity - /// - /// The expected cost of `push`, averaged over every possible ordering of - /// the elements being pushed, and over a sufficiently large number of - /// pushes, is *O*(1). This is the most meaningful cost metric when pushing - /// elements that are *not* already in any sorted pattern. - /// - /// The time complexity degrades if elements are pushed in predominantly - /// ascending order. In the worst case, elements are pushed in ascending - /// sorted order and the amortized cost per push is *O*(log(*n*)) against a heap - /// containing *n* elements. - /// - /// The worst case cost of a *single* call to `push` is *O*(*n*). The worst case - /// occurs when capacity is exhausted and needs a resize. The resize cost - /// has been amortized in the previous figures. - #[stable(feature = "rust1", since = "1.0.0")] - pub fn push(&mut self, item: T) { - let old_len = self.len(); - self.data.push(item); - // SAFETY: Since we pushed a new item it means that - // old_len = self.len() - 1 < self.len() - unsafe { self.sift_up(0, old_len) }; - } - - /// Consumes the `BinaryHeap` and returns a vector in sorted - /// (ascending) order. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// - /// let mut heap = BinaryHeap::from([1, 2, 4, 5, 7]); - /// heap.push(6); - /// heap.push(3); - /// - /// let vec = heap.into_sorted_vec(); - /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]); - /// ``` - #[must_use = "`self` will be dropped if the result is not used"] - #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] - pub fn into_sorted_vec(mut self) -> Vec { - let mut end = self.len(); - while end > 1 { - end -= 1; - // SAFETY: `end` goes from `self.len() - 1` to 1 (both included), - // so it's always a valid index to access. - // It is safe to access index 0 (i.e. `ptr`), because - // 1 <= end < self.len(), which means self.len() >= 2. - unsafe { - let ptr = self.data.as_mut_ptr(); - ptr::swap(ptr, ptr.add(end)); - } - // SAFETY: `end` goes from `self.len() - 1` to 1 (both included) so: - // 0 < 1 <= end <= self.len() - 1 < self.len() - // Which means 0 < end and end < self.len(). - unsafe { self.sift_down_range(0, end) }; - } - self.into_vec() - } - - // The implementations of sift_up and sift_down use unsafe blocks in - // order to move an element out of the vector (leaving behind a - // hole), shift along the others and move the removed element back into the - // vector at the final location of the hole. - // The `Hole` type is used to represent this, and make sure - // the hole is filled back at the end of its scope, even on panic. - // Using a hole reduces the constant factor compared to using swaps, - // which involves twice as many moves. - - /// # Safety - /// - /// The caller must guarantee that `pos < self.len()`. - unsafe fn sift_up(&mut self, start: usize, pos: usize) -> usize { - // Take out the value at `pos` and create a hole. - // SAFETY: The caller guarantees that pos < self.len() - let mut hole = unsafe { Hole::new(&mut self.data, pos) }; - - while hole.pos() > start { - let parent = (hole.pos() - 1) / 2; - - // SAFETY: hole.pos() > start >= 0, which means hole.pos() > 0 - // and so hole.pos() - 1 can't underflow. - // This guarantees that parent < hole.pos() so - // it's a valid index and also != hole.pos(). - if hole.element() <= unsafe { hole.get(parent) } { - break; - } - - // SAFETY: Same as above - unsafe { hole.move_to(parent) }; - } - - hole.pos() - } - - /// Take an element at `pos` and move it down the heap, - /// while its children are larger. - /// - /// # Safety - /// - /// The caller must guarantee that `pos < end <= self.len()`. - unsafe fn sift_down_range(&mut self, pos: usize, end: usize) { - // SAFETY: The caller guarantees that pos < end <= self.len(). - let mut hole = unsafe { Hole::new(&mut self.data, pos) }; - let mut child = 2 * hole.pos() + 1; - - // Loop invariant: child == 2 * hole.pos() + 1. - while child <= end.saturating_sub(2) { - // compare with the greater of the two children - // SAFETY: child < end - 1 < self.len() and - // child + 1 < end <= self.len(), so they're valid indexes. - // child == 2 * hole.pos() + 1 != hole.pos() and - // child + 1 == 2 * hole.pos() + 2 != hole.pos(). - // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow - // if T is a ZST - child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize; - - // if we are already in order, stop. - // SAFETY: child is now either the old child or the old child+1 - // We already proven that both are < self.len() and != hole.pos() - if hole.element() >= unsafe { hole.get(child) } { - return; - } - - // SAFETY: same as above. - unsafe { hole.move_to(child) }; - child = 2 * hole.pos() + 1; - } - - // SAFETY: && short circuit, which means that in the - // second condition it's already true that child == end - 1 < self.len(). - if child == end - 1 && hole.element() < unsafe { hole.get(child) } { - // SAFETY: child is already proven to be a valid index and - // child == 2 * hole.pos() + 1 != hole.pos(). - unsafe { hole.move_to(child) }; - } - } - - /// # Safety - /// - /// The caller must guarantee that `pos < self.len()`. - unsafe fn sift_down(&mut self, pos: usize) { - let len = self.len(); - // SAFETY: pos < len is guaranteed by the caller and - // obviously len = self.len() <= self.len(). - unsafe { self.sift_down_range(pos, len) }; - } - - /// Take an element at `pos` and move it all the way down the heap, - /// then sift it up to its position. - /// - /// Note: This is faster when the element is known to be large / should - /// be closer to the bottom. - /// - /// # Safety - /// - /// The caller must guarantee that `pos < self.len()`. - unsafe fn sift_down_to_bottom(&mut self, mut pos: usize) { - let end = self.len(); - let start = pos; - - // SAFETY: The caller guarantees that pos < self.len(). - let mut hole = unsafe { Hole::new(&mut self.data, pos) }; - let mut child = 2 * hole.pos() + 1; - - // Loop invariant: child == 2 * hole.pos() + 1. - while child <= end.saturating_sub(2) { - // SAFETY: child < end - 1 < self.len() and - // child + 1 < end <= self.len(), so they're valid indexes. - // child == 2 * hole.pos() + 1 != hole.pos() and - // child + 1 == 2 * hole.pos() + 2 != hole.pos(). - // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow - // if T is a ZST - child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize; - - // SAFETY: Same as above - unsafe { hole.move_to(child) }; - child = 2 * hole.pos() + 1; - } - - if child == end - 1 { - // SAFETY: child == end - 1 < self.len(), so it's a valid index - // and child == 2 * hole.pos() + 1 != hole.pos(). - unsafe { hole.move_to(child) }; - } - pos = hole.pos(); - drop(hole); - - // SAFETY: pos is the position in the hole and was already proven - // to be a valid index. - unsafe { self.sift_up(start, pos) }; - } - - /// Rebuild assuming data[0..start] is still a proper heap. - fn rebuild_tail(&mut self, start: usize) { - if start == self.len() { - return; - } - - let tail_len = self.len() - start; - - #[inline(always)] - fn log2_fast(x: usize) -> usize { - (usize::BITS - x.leading_zeros() - 1) as usize - } - - // `rebuild` takes O(self.len()) operations - // and about 2 * self.len() comparisons in the worst case - // while repeating `sift_up` takes O(tail_len * log(start)) operations - // and about 1 * tail_len * log_2(start) comparisons in the worst case, - // assuming start >= tail_len. For larger heaps, the crossover point - // no longer follows this reasoning and was determined empirically. - let better_to_rebuild = if start < tail_len { - true - } else if self.len() <= 2048 { - 2 * self.len() < tail_len * log2_fast(start) - } else { - 2 * self.len() < tail_len * 11 - }; - - if better_to_rebuild { - self.rebuild(); - } else { - for i in start..self.len() { - // SAFETY: The index `i` is always less than self.len(). - unsafe { self.sift_up(0, i) }; - } - } - } - - fn rebuild(&mut self) { - let mut n = self.len() / 2; - while n > 0 { - n -= 1; - // SAFETY: n starts from self.len() / 2 and goes down to 0. - // The only case when !(n < self.len()) is if - // self.len() == 0, but it's ruled out by the loop condition. - unsafe { self.sift_down(n) }; - } - } - - /// Moves all the elements of `other` into `self`, leaving `other` empty. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// - /// let mut a = BinaryHeap::from([-10, 1, 2, 3, 3]); - /// let mut b = BinaryHeap::from([-20, 5, 43]); - /// - /// a.append(&mut b); - /// - /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]); - /// assert!(b.is_empty()); - /// ``` - #[stable(feature = "binary_heap_append", since = "1.11.0")] - pub fn append(&mut self, other: &mut Self) { - if self.len() < other.len() { - swap(self, other); - } - - let start = self.data.len(); - - self.data.append(&mut other.data); - - self.rebuild_tail(start); - } - - /// Clears the binary heap, returning an iterator over the removed elements - /// in heap order. If the iterator is dropped before being fully consumed, - /// it drops the remaining elements in heap order. - /// - /// The returned iterator keeps a mutable borrow on the heap to optimize - /// its implementation. - /// - /// Note: - /// * `.drain_sorted()` is *O*(*n* \* log(*n*)); much slower than `.drain()`. - /// You should use the latter for most cases. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// #![feature(binary_heap_drain_sorted)] - /// use std::collections::BinaryHeap; - /// - /// let mut heap = BinaryHeap::from([1, 2, 3, 4, 5]); - /// assert_eq!(heap.len(), 5); - /// - /// drop(heap.drain_sorted()); // removes all elements in heap order - /// assert_eq!(heap.len(), 0); - /// ``` - #[inline] - #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] - pub fn drain_sorted(&mut self) -> DrainSorted<'_, T> { - DrainSorted { inner: self } - } - - /// Retains only the elements specified by the predicate. - /// - /// In other words, remove all elements `e` for which `f(&e)` returns - /// `false`. The elements are visited in unsorted (and unspecified) order. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// #![feature(binary_heap_retain)] - /// use std::collections::BinaryHeap; - /// - /// let mut heap = BinaryHeap::from([-10, -5, 1, 2, 4, 13]); - /// - /// heap.retain(|x| x % 2 == 0); // only keep even numbers - /// - /// assert_eq!(heap.into_sorted_vec(), [-10, 2, 4]) - /// ``` - #[unstable(feature = "binary_heap_retain", issue = "71503")] - pub fn retain(&mut self, mut f: F) - where - F: FnMut(&T) -> bool, - { - let mut first_removed = self.len(); - let mut i = 0; - self.data.retain(|e| { - let keep = f(e); - if !keep && i < first_removed { - first_removed = i; - } - i += 1; - keep - }); - // data[0..first_removed] is untouched, so we only need to rebuild the tail: - self.rebuild_tail(first_removed); - } -} - -impl BinaryHeap { - /// Returns an iterator visiting all values in the underlying vector, in - /// arbitrary order. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let heap = BinaryHeap::from([1, 2, 3, 4]); - /// - /// // Print 1, 2, 3, 4 in arbitrary order - /// for x in heap.iter() { - /// println!("{x}"); - /// } - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - pub fn iter(&self) -> Iter<'_, T> { - Iter { iter: self.data.iter() } - } - - /// Returns an iterator which retrieves elements in heap order. - /// This method consumes the original heap. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// #![feature(binary_heap_into_iter_sorted)] - /// use std::collections::BinaryHeap; - /// let heap = BinaryHeap::from([1, 2, 3, 4, 5]); - /// - /// assert_eq!(heap.into_iter_sorted().take(2).collect::>(), [5, 4]); - /// ``` - #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] - pub fn into_iter_sorted(self) -> IntoIterSorted { - IntoIterSorted { inner: self } - } - - /// Returns the greatest item in the binary heap, or `None` if it is empty. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap = BinaryHeap::new(); - /// assert_eq!(heap.peek(), None); - /// - /// heap.push(1); - /// heap.push(5); - /// heap.push(2); - /// assert_eq!(heap.peek(), Some(&5)); - /// - /// ``` - /// - /// # Time complexity - /// - /// Cost is *O*(1) in the worst case. - #[must_use] - #[stable(feature = "rust1", since = "1.0.0")] - pub fn peek(&self) -> Option<&T> { - self.data.get(0) - } - - /// Returns the number of elements the binary heap can hold without reallocating. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap = BinaryHeap::with_capacity(100); - /// assert!(heap.capacity() >= 100); - /// heap.push(4); - /// ``` - #[must_use] - #[stable(feature = "rust1", since = "1.0.0")] - pub fn capacity(&self) -> usize { - self.data.capacity() - } - - /// Reserves the minimum capacity for at least `additional` elements more than - /// the current length. Unlike [`reserve`], this will not - /// deliberately over-allocate to speculatively avoid frequent allocations. - /// After calling `reserve_exact`, capacity will be greater than or equal to - /// `self.len() + additional`. Does nothing if the capacity is already - /// sufficient. - /// - /// [`reserve`]: BinaryHeap::reserve - /// - /// # Panics - /// - /// Panics if the new capacity overflows [`usize`]. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap = BinaryHeap::new(); - /// heap.reserve_exact(100); - /// assert!(heap.capacity() >= 100); - /// heap.push(4); - /// ``` - /// - /// [`reserve`]: BinaryHeap::reserve - #[stable(feature = "rust1", since = "1.0.0")] - pub fn reserve_exact(&mut self, additional: usize) { - self.data.reserve_exact(additional); - } - - /// Reserves capacity for at least `additional` elements more than the - /// current length. The allocator may reserve more space to speculatively - /// avoid frequent allocations. After calling `reserve`, - /// capacity will be greater than or equal to `self.len() + additional`. - /// Does nothing if capacity is already sufficient. - /// - /// # Panics - /// - /// Panics if the new capacity overflows [`usize`]. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap = BinaryHeap::new(); - /// heap.reserve(100); - /// assert!(heap.capacity() >= 100); - /// heap.push(4); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - pub fn reserve(&mut self, additional: usize) { - self.data.reserve(additional); - } - - /// Tries to reserve the minimum capacity for at least `additional` elements - /// more than the current length. Unlike [`try_reserve`], this will not - /// deliberately over-allocate to speculatively avoid frequent allocations. - /// After calling `try_reserve_exact`, capacity will be greater than or - /// equal to `self.len() + additional` if it returns `Ok(())`. - /// Does nothing if the capacity is already sufficient. - /// - /// Note that the allocator may give the collection more space than it - /// requests. Therefore, capacity can not be relied upon to be precisely - /// minimal. Prefer [`try_reserve`] if future insertions are expected. - /// - /// [`try_reserve`]: BinaryHeap::try_reserve - /// - /// # Errors - /// - /// If the capacity overflows, or the allocator reports a failure, then an error - /// is returned. - /// - /// # Examples - /// - /// ``` - /// use std::collections::BinaryHeap; - /// use std::collections::TryReserveError; - /// - /// fn find_max_slow(data: &[u32]) -> Result, TryReserveError> { - /// let mut heap = BinaryHeap::new(); - /// - /// // Pre-reserve the memory, exiting if we can't - /// heap.try_reserve_exact(data.len())?; - /// - /// // Now we know this can't OOM in the middle of our complex work - /// heap.extend(data.iter()); - /// - /// Ok(heap.pop()) - /// } - /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?"); - /// ``` - #[stable(feature = "try_reserve_2", since = "1.63.0")] - pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { - self.data.try_reserve_exact(additional) - } - - /// Tries to reserve capacity for at least `additional` elements more than the - /// current length. The allocator may reserve more space to speculatively - /// avoid frequent allocations. After calling `try_reserve`, capacity will be - /// greater than or equal to `self.len() + additional` if it returns - /// `Ok(())`. Does nothing if capacity is already sufficient. This method - /// preserves the contents even if an error occurs. - /// - /// # Errors - /// - /// If the capacity overflows, or the allocator reports a failure, then an error - /// is returned. - /// - /// # Examples - /// - /// ``` - /// use std::collections::BinaryHeap; - /// use std::collections::TryReserveError; - /// - /// fn find_max_slow(data: &[u32]) -> Result, TryReserveError> { - /// let mut heap = BinaryHeap::new(); - /// - /// // Pre-reserve the memory, exiting if we can't - /// heap.try_reserve(data.len())?; - /// - /// // Now we know this can't OOM in the middle of our complex work - /// heap.extend(data.iter()); - /// - /// Ok(heap.pop()) - /// } - /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?"); - /// ``` - #[stable(feature = "try_reserve_2", since = "1.63.0")] - pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { - self.data.try_reserve(additional) - } - - /// Discards as much additional capacity as possible. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap: BinaryHeap = BinaryHeap::with_capacity(100); - /// - /// assert!(heap.capacity() >= 100); - /// heap.shrink_to_fit(); - /// assert!(heap.capacity() == 0); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - pub fn shrink_to_fit(&mut self) { - self.data.shrink_to_fit(); - } - - /// Discards capacity with a lower bound. - /// - /// The capacity will remain at least as large as both the length - /// and the supplied value. - /// - /// If the current capacity is less than the lower limit, this is a no-op. - /// - /// # Examples - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap: BinaryHeap = BinaryHeap::with_capacity(100); - /// - /// assert!(heap.capacity() >= 100); - /// heap.shrink_to(10); - /// assert!(heap.capacity() >= 10); - /// ``` - #[inline] - #[stable(feature = "shrink_to", since = "1.56.0")] - pub fn shrink_to(&mut self, min_capacity: usize) { - self.data.shrink_to(min_capacity) - } - - /// Returns a slice of all values in the underlying vector, in arbitrary - /// order. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// #![feature(binary_heap_as_slice)] - /// use std::collections::BinaryHeap; - /// use std::io::{self, Write}; - /// - /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]); - /// - /// io::sink().write(heap.as_slice()).unwrap(); - /// ``` - #[must_use] - #[unstable(feature = "binary_heap_as_slice", issue = "83659")] - pub fn as_slice(&self) -> &[T] { - self.data.as_slice() - } - - /// Consumes the `BinaryHeap` and returns the underlying vector - /// in arbitrary order. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]); - /// let vec = heap.into_vec(); - /// - /// // Will print in some order - /// for x in vec { - /// println!("{x}"); - /// } - /// ``` - #[must_use = "`self` will be dropped if the result is not used"] - #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] - pub fn into_vec(self) -> Vec { - self.into() - } - - /// Returns the length of the binary heap. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let heap = BinaryHeap::from([1, 3]); - /// - /// assert_eq!(heap.len(), 2); - /// ``` - #[must_use] - #[stable(feature = "rust1", since = "1.0.0")] - pub fn len(&self) -> usize { - self.data.len() - } - - /// Checks if the binary heap is empty. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap = BinaryHeap::new(); - /// - /// assert!(heap.is_empty()); - /// - /// heap.push(3); - /// heap.push(5); - /// heap.push(1); - /// - /// assert!(!heap.is_empty()); - /// ``` - #[must_use] - #[stable(feature = "rust1", since = "1.0.0")] - pub fn is_empty(&self) -> bool { - self.len() == 0 - } - - /// Clears the binary heap, returning an iterator over the removed elements - /// in arbitrary order. If the iterator is dropped before being fully - /// consumed, it drops the remaining elements in arbitrary order. - /// - /// The returned iterator keeps a mutable borrow on the heap to optimize - /// its implementation. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap = BinaryHeap::from([1, 3]); - /// - /// assert!(!heap.is_empty()); - /// - /// for x in heap.drain() { - /// println!("{x}"); - /// } - /// - /// assert!(heap.is_empty()); - /// ``` - #[inline] - #[stable(feature = "drain", since = "1.6.0")] - pub fn drain(&mut self) -> Drain<'_, T> { - Drain { iter: self.data.drain(..) } - } - - /// Drops all items from the binary heap. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let mut heap = BinaryHeap::from([1, 3]); - /// - /// assert!(!heap.is_empty()); - /// - /// heap.clear(); - /// - /// assert!(heap.is_empty()); - /// ``` - #[stable(feature = "rust1", since = "1.0.0")] - pub fn clear(&mut self) { - self.drain(); - } -} - -/// Hole represents a hole in a slice i.e., an index without valid value -/// (because it was moved from or duplicated). -/// In drop, `Hole` will restore the slice by filling the hole -/// position with the value that was originally removed. -struct Hole<'a, T: 'a> { - data: &'a mut [T], - elt: ManuallyDrop, - pos: usize, -} - -impl<'a, T> Hole<'a, T> { - /// Create a new `Hole` at index `pos`. - /// - /// Unsafe because pos must be within the data slice. - #[inline] - unsafe fn new(data: &'a mut [T], pos: usize) -> Self { - debug_assert!(pos < data.len()); - // SAFE: pos should be inside the slice - let elt = unsafe { ptr::read(data.get_unchecked(pos)) }; - Hole { data, elt: ManuallyDrop::new(elt), pos } - } - - #[inline] - fn pos(&self) -> usize { - self.pos - } - - /// Returns a reference to the element removed. - #[inline] - fn element(&self) -> &T { - &self.elt - } - - /// Returns a reference to the element at `index`. - /// - /// Unsafe because index must be within the data slice and not equal to pos. - #[inline] - unsafe fn get(&self, index: usize) -> &T { - debug_assert!(index != self.pos); - debug_assert!(index < self.data.len()); - unsafe { self.data.get_unchecked(index) } - } - - /// Move hole to new location - /// - /// Unsafe because index must be within the data slice and not equal to pos. - #[inline] - unsafe fn move_to(&mut self, index: usize) { - debug_assert!(index != self.pos); - debug_assert!(index < self.data.len()); - unsafe { - let ptr = self.data.as_mut_ptr(); - let index_ptr: *const _ = ptr.add(index); - let hole_ptr = ptr.add(self.pos); - ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1); - } - self.pos = index; - } -} - -impl Drop for Hole<'_, T> { - #[inline] - fn drop(&mut self) { - // fill the hole again - unsafe { - let pos = self.pos; - ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), 1); - } - } -} - -/// An iterator over the elements of a `BinaryHeap`. -/// -/// This `struct` is created by [`BinaryHeap::iter()`]. See its -/// documentation for more. -/// -/// [`iter`]: BinaryHeap::iter -#[must_use = "iterators are lazy and do nothing unless consumed"] -#[stable(feature = "rust1", since = "1.0.0")] -pub struct Iter<'a, T: 'a> { - iter: slice::Iter<'a, T>, -} - -#[stable(feature = "collection_debug", since = "1.17.0")] -impl fmt::Debug for Iter<'_, T> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_tuple("Iter").field(&self.iter.as_slice()).finish() - } -} - -// FIXME(#26925) Remove in favor of `#[derive(Clone)]` -#[stable(feature = "rust1", since = "1.0.0")] -impl Clone for Iter<'_, T> { - fn clone(&self) -> Self { - Iter { iter: self.iter.clone() } - } -} - -#[stable(feature = "rust1", since = "1.0.0")] -impl<'a, T> Iterator for Iter<'a, T> { - type Item = &'a T; - - #[inline] - fn next(&mut self) -> Option<&'a T> { - self.iter.next() - } - - #[inline] - fn size_hint(&self) -> (usize, Option) { - self.iter.size_hint() - } - - #[inline] - fn last(self) -> Option<&'a T> { - self.iter.last() - } -} - -#[stable(feature = "rust1", since = "1.0.0")] -impl<'a, T> DoubleEndedIterator for Iter<'a, T> { - #[inline] - fn next_back(&mut self) -> Option<&'a T> { - self.iter.next_back() - } -} - -#[stable(feature = "rust1", since = "1.0.0")] -impl ExactSizeIterator for Iter<'_, T> { - fn is_empty(&self) -> bool { - self.iter.is_empty() - } -} - -#[stable(feature = "fused", since = "1.26.0")] -impl FusedIterator for Iter<'_, T> {} - -/// An owning iterator over the elements of a `BinaryHeap`. -/// -/// This `struct` is created by [`BinaryHeap::into_iter()`] -/// (provided by the [`IntoIterator`] trait). See its documentation for more. -/// -/// [`into_iter`]: BinaryHeap::into_iter -/// [`IntoIterator`]: core::iter::IntoIterator -#[stable(feature = "rust1", since = "1.0.0")] -#[derive(Clone)] -pub struct IntoIter { - iter: vec::IntoIter, -} - -#[stable(feature = "collection_debug", since = "1.17.0")] -impl fmt::Debug for IntoIter { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_tuple("IntoIter").field(&self.iter.as_slice()).finish() - } -} - -#[stable(feature = "rust1", since = "1.0.0")] -impl Iterator for IntoIter { - type Item = T; - - #[inline] - fn next(&mut self) -> Option { - self.iter.next() - } - - #[inline] - fn size_hint(&self) -> (usize, Option) { - self.iter.size_hint() - } -} - -#[stable(feature = "rust1", since = "1.0.0")] -impl DoubleEndedIterator for IntoIter { - #[inline] - fn next_back(&mut self) -> Option { - self.iter.next_back() - } -} - -#[stable(feature = "rust1", since = "1.0.0")] -impl ExactSizeIterator for IntoIter { - fn is_empty(&self) -> bool { - self.iter.is_empty() - } -} - -#[stable(feature = "fused", since = "1.26.0")] -impl FusedIterator for IntoIter {} - -// In addition to the SAFETY invariants of the following three unsafe traits -// also refer to the vec::in_place_collect module documentation to get an overview -#[unstable(issue = "none", feature = "inplace_iteration")] -#[doc(hidden)] -unsafe impl SourceIter for IntoIter { - type Source = IntoIter; - - #[inline] - unsafe fn as_inner(&mut self) -> &mut Self::Source { - self - } -} - -#[unstable(issue = "none", feature = "inplace_iteration")] -#[doc(hidden)] -unsafe impl InPlaceIterable for IntoIter {} - -unsafe impl AsVecIntoIter for IntoIter { - type Item = I; - - fn as_into_iter(&mut self) -> &mut vec::IntoIter { - &mut self.iter - } -} - -#[must_use = "iterators are lazy and do nothing unless consumed"] -#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] -#[derive(Clone, Debug)] -pub struct IntoIterSorted { - inner: BinaryHeap, -} - -#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] -impl Iterator for IntoIterSorted { - type Item = T; - - #[inline] - fn next(&mut self) -> Option { - self.inner.pop() - } - - #[inline] - fn size_hint(&self) -> (usize, Option) { - let exact = self.inner.len(); - (exact, Some(exact)) - } -} - -#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] -impl ExactSizeIterator for IntoIterSorted {} - -#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] -impl FusedIterator for IntoIterSorted {} - -#[unstable(feature = "trusted_len", issue = "37572")] -unsafe impl TrustedLen for IntoIterSorted {} - -/// A draining iterator over the elements of a `BinaryHeap`. -/// -/// This `struct` is created by [`BinaryHeap::drain()`]. See its -/// documentation for more. -/// -/// [`drain`]: BinaryHeap::drain -#[stable(feature = "drain", since = "1.6.0")] -#[derive(Debug)] -pub struct Drain<'a, T: 'a> { - iter: vec::Drain<'a, T>, -} - -#[stable(feature = "drain", since = "1.6.0")] -impl Iterator for Drain<'_, T> { - type Item = T; - - #[inline] - fn next(&mut self) -> Option { - self.iter.next() - } - - #[inline] - fn size_hint(&self) -> (usize, Option) { - self.iter.size_hint() - } -} - -#[stable(feature = "drain", since = "1.6.0")] -impl DoubleEndedIterator for Drain<'_, T> { - #[inline] - fn next_back(&mut self) -> Option { - self.iter.next_back() - } -} - -#[stable(feature = "drain", since = "1.6.0")] -impl ExactSizeIterator for Drain<'_, T> { - fn is_empty(&self) -> bool { - self.iter.is_empty() - } -} - -#[stable(feature = "fused", since = "1.26.0")] -impl FusedIterator for Drain<'_, T> {} - -/// A draining iterator over the elements of a `BinaryHeap`. -/// -/// This `struct` is created by [`BinaryHeap::drain_sorted()`]. See its -/// documentation for more. -/// -/// [`drain_sorted`]: BinaryHeap::drain_sorted -#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] -#[derive(Debug)] -pub struct DrainSorted<'a, T: Ord> { - inner: &'a mut BinaryHeap, -} - -#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] -impl<'a, T: Ord> Drop for DrainSorted<'a, T> { - /// Removes heap elements in heap order. - fn drop(&mut self) { - struct DropGuard<'r, 'a, T: Ord>(&'r mut DrainSorted<'a, T>); - - impl<'r, 'a, T: Ord> Drop for DropGuard<'r, 'a, T> { - fn drop(&mut self) { - while self.0.inner.pop().is_some() {} - } - } - - while let Some(item) = self.inner.pop() { - let guard = DropGuard(self); - drop(item); - mem::forget(guard); - } - } -} - -#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] -impl Iterator for DrainSorted<'_, T> { - type Item = T; - - #[inline] - fn next(&mut self) -> Option { - self.inner.pop() - } - - #[inline] - fn size_hint(&self) -> (usize, Option) { - let exact = self.inner.len(); - (exact, Some(exact)) - } -} - -#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] -impl ExactSizeIterator for DrainSorted<'_, T> {} - -#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] -impl FusedIterator for DrainSorted<'_, T> {} - -#[unstable(feature = "trusted_len", issue = "37572")] -unsafe impl TrustedLen for DrainSorted<'_, T> {} - -#[stable(feature = "binary_heap_extras_15", since = "1.5.0")] -impl From> for BinaryHeap { - /// Converts a `Vec` into a `BinaryHeap`. - /// - /// This conversion happens in-place, and has *O*(*n*) time complexity. - fn from(vec: Vec) -> BinaryHeap { - let mut heap = BinaryHeap { data: vec }; - heap.rebuild(); - heap - } -} - -#[stable(feature = "std_collections_from_array", since = "1.56.0")] -impl From<[T; N]> for BinaryHeap { - /// ``` - /// use std::collections::BinaryHeap; - /// - /// let mut h1 = BinaryHeap::from([1, 4, 2, 3]); - /// let mut h2: BinaryHeap<_> = [1, 4, 2, 3].into(); - /// while let Some((a, b)) = h1.pop().zip(h2.pop()) { - /// assert_eq!(a, b); - /// } - /// ``` - fn from(arr: [T; N]) -> Self { - Self::from_iter(arr) - } -} - -#[stable(feature = "binary_heap_extras_15", since = "1.5.0")] -impl From> for Vec { - /// Converts a `BinaryHeap` into a `Vec`. - /// - /// This conversion requires no data movement or allocation, and has - /// constant time complexity. - fn from(heap: BinaryHeap) -> Vec { - heap.data - } -} - -#[stable(feature = "rust1", since = "1.0.0")] -impl FromIterator for BinaryHeap { - fn from_iter>(iter: I) -> BinaryHeap { - BinaryHeap::from(iter.into_iter().collect::>()) - } -} - -#[stable(feature = "rust1", since = "1.0.0")] -impl IntoIterator for BinaryHeap { - type Item = T; - type IntoIter = IntoIter; - - /// Creates a consuming iterator, that is, one that moves each value out of - /// the binary heap in arbitrary order. The binary heap cannot be used - /// after calling this. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use std::collections::BinaryHeap; - /// let heap = BinaryHeap::from([1, 2, 3, 4]); - /// - /// // Print 1, 2, 3, 4 in arbitrary order - /// for x in heap.into_iter() { - /// // x has type i32, not &i32 - /// println!("{x}"); - /// } - /// ``` - fn into_iter(self) -> IntoIter { - IntoIter { iter: self.data.into_iter() } - } -} - -#[stable(feature = "rust1", since = "1.0.0")] -impl<'a, T> IntoIterator for &'a BinaryHeap { - type Item = &'a T; - type IntoIter = Iter<'a, T>; - - fn into_iter(self) -> Iter<'a, T> { - self.iter() - } -} - -#[stable(feature = "rust1", since = "1.0.0")] -impl Extend for BinaryHeap { - #[inline] - fn extend>(&mut self, iter: I) { - >::spec_extend(self, iter); - } - - #[inline] - fn extend_one(&mut self, item: T) { - self.push(item); - } - - #[inline] - fn extend_reserve(&mut self, additional: usize) { - self.reserve(additional); - } -} - -impl> SpecExtend for BinaryHeap { - default fn spec_extend(&mut self, iter: I) { - self.extend_desugared(iter.into_iter()); - } -} - -impl SpecExtend> for BinaryHeap { - fn spec_extend(&mut self, ref mut other: Vec) { - let start = self.data.len(); - self.data.append(other); - self.rebuild_tail(start); - } -} - -impl SpecExtend> for BinaryHeap { - fn spec_extend(&mut self, ref mut other: BinaryHeap) { - self.append(other); - } -} - -impl BinaryHeap { - fn extend_desugared>(&mut self, iter: I) { - let iterator = iter.into_iter(); - let (lower, _) = iterator.size_hint(); - - self.reserve(lower); - - iterator.for_each(move |elem| self.push(elem)); - } -} - -#[stable(feature = "extend_ref", since = "1.2.0")] -impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap { - fn extend>(&mut self, iter: I) { - self.extend(iter.into_iter().cloned()); - } - - #[inline] - fn extend_one(&mut self, &item: &'a T) { - self.push(item); - } - - #[inline] - fn extend_reserve(&mut self, additional: usize) { - self.reserve(additional); - } -} -- cgit v1.2.3