From 698f8c2f01ea549d77d7dc3338a12e04c11057b9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:02:58 +0200 Subject: Adding upstream version 1.64.0+dfsg1. Signed-off-by: Daniel Baumann --- library/core/src/iter/traits/collect.rs | 450 ++++++++++++++++++++++++++++++++ 1 file changed, 450 insertions(+) create mode 100644 library/core/src/iter/traits/collect.rs (limited to 'library/core/src/iter/traits/collect.rs') diff --git a/library/core/src/iter/traits/collect.rs b/library/core/src/iter/traits/collect.rs new file mode 100644 index 000000000..12ca508be --- /dev/null +++ b/library/core/src/iter/traits/collect.rs @@ -0,0 +1,450 @@ +/// Conversion from an [`Iterator`]. +/// +/// By implementing `FromIterator` for a type, you define how it will be +/// created from an iterator. This is common for types which describe a +/// collection of some kind. +/// +/// If you want to create a collection from the contents of an iterator, the +/// [`Iterator::collect()`] method is preferred. However, when you need to +/// specify the container type, [`FromIterator::from_iter()`] can be more +/// readable than using a turbofish (e.g. `::>()`). See the +/// [`Iterator::collect()`] documentation for more examples of its use. +/// +/// See also: [`IntoIterator`]. +/// +/// # Examples +/// +/// Basic usage: +/// +/// ``` +/// let five_fives = std::iter::repeat(5).take(5); +/// +/// let v = Vec::from_iter(five_fives); +/// +/// assert_eq!(v, vec![5, 5, 5, 5, 5]); +/// ``` +/// +/// Using [`Iterator::collect()`] to implicitly use `FromIterator`: +/// +/// ``` +/// let five_fives = std::iter::repeat(5).take(5); +/// +/// let v: Vec = five_fives.collect(); +/// +/// assert_eq!(v, vec![5, 5, 5, 5, 5]); +/// ``` +/// +/// Using [`FromIterator::from_iter()`] as a more readable alternative to +/// [`Iterator::collect()`]: +/// +/// ``` +/// use std::collections::VecDeque; +/// let first = (0..10).collect::>(); +/// let second = VecDeque::from_iter(0..10); +/// +/// assert_eq!(first, second); +/// ``` +/// +/// Implementing `FromIterator` for your type: +/// +/// ``` +/// // A sample collection, that's just a wrapper over Vec +/// #[derive(Debug)] +/// struct MyCollection(Vec); +/// +/// // Let's give it some methods so we can create one and add things +/// // to it. +/// impl MyCollection { +/// fn new() -> MyCollection { +/// MyCollection(Vec::new()) +/// } +/// +/// fn add(&mut self, elem: i32) { +/// self.0.push(elem); +/// } +/// } +/// +/// // and we'll implement FromIterator +/// impl FromIterator for MyCollection { +/// fn from_iter>(iter: I) -> Self { +/// let mut c = MyCollection::new(); +/// +/// for i in iter { +/// c.add(i); +/// } +/// +/// c +/// } +/// } +/// +/// // Now we can make a new iterator... +/// let iter = (0..5).into_iter(); +/// +/// // ... and make a MyCollection out of it +/// let c = MyCollection::from_iter(iter); +/// +/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]); +/// +/// // collect works too! +/// +/// let iter = (0..5).into_iter(); +/// let c: MyCollection = iter.collect(); +/// +/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]); +/// ``` +#[stable(feature = "rust1", since = "1.0.0")] +#[rustc_on_unimplemented( + on( + _Self = "[{A}]", + message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size", + label = "try explicitly collecting into a `Vec<{A}>`", + ), + on( + all(A = "{integer}", any(_Self = "[{integral}]",)), + message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size", + label = "try explicitly collecting into a `Vec<{A}>`", + ), + on( + _Self = "[{A}; _]", + message = "an array of type `{Self}` cannot be built directly from an iterator", + label = "try collecting into a `Vec<{A}>`, then using `.try_into()`", + ), + on( + all(A = "{integer}", any(_Self = "[{integral}; _]",)), + message = "an array of type `{Self}` cannot be built directly from an iterator", + label = "try collecting into a `Vec<{A}>`, then using `.try_into()`", + ), + message = "a value of type `{Self}` cannot be built from an iterator \ + over elements of type `{A}`", + label = "value of type `{Self}` cannot be built from `std::iter::Iterator`" +)] +#[rustc_diagnostic_item = "FromIterator"] +pub trait FromIterator: Sized { + /// Creates a value from an iterator. + /// + /// See the [module-level documentation] for more. + /// + /// [module-level documentation]: crate::iter + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let five_fives = std::iter::repeat(5).take(5); + /// + /// let v = Vec::from_iter(five_fives); + /// + /// assert_eq!(v, vec![5, 5, 5, 5, 5]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + fn from_iter>(iter: T) -> Self; +} + +/// Conversion into an [`Iterator`]. +/// +/// By implementing `IntoIterator` for a type, you define how it will be +/// converted to an iterator. This is common for types which describe a +/// collection of some kind. +/// +/// One benefit of implementing `IntoIterator` is that your type will [work +/// with Rust's `for` loop syntax](crate::iter#for-loops-and-intoiterator). +/// +/// See also: [`FromIterator`]. +/// +/// # Examples +/// +/// Basic usage: +/// +/// ``` +/// let v = [1, 2, 3]; +/// let mut iter = v.into_iter(); +/// +/// assert_eq!(Some(1), iter.next()); +/// assert_eq!(Some(2), iter.next()); +/// assert_eq!(Some(3), iter.next()); +/// assert_eq!(None, iter.next()); +/// ``` +/// Implementing `IntoIterator` for your type: +/// +/// ``` +/// // A sample collection, that's just a wrapper over Vec +/// #[derive(Debug)] +/// struct MyCollection(Vec); +/// +/// // Let's give it some methods so we can create one and add things +/// // to it. +/// impl MyCollection { +/// fn new() -> MyCollection { +/// MyCollection(Vec::new()) +/// } +/// +/// fn add(&mut self, elem: i32) { +/// self.0.push(elem); +/// } +/// } +/// +/// // and we'll implement IntoIterator +/// impl IntoIterator for MyCollection { +/// type Item = i32; +/// type IntoIter = std::vec::IntoIter; +/// +/// fn into_iter(self) -> Self::IntoIter { +/// self.0.into_iter() +/// } +/// } +/// +/// // Now we can make a new collection... +/// let mut c = MyCollection::new(); +/// +/// // ... add some stuff to it ... +/// c.add(0); +/// c.add(1); +/// c.add(2); +/// +/// // ... and then turn it into an Iterator: +/// for (i, n) in c.into_iter().enumerate() { +/// assert_eq!(i as i32, n); +/// } +/// ``` +/// +/// It is common to use `IntoIterator` as a trait bound. This allows +/// the input collection type to change, so long as it is still an +/// iterator. Additional bounds can be specified by restricting on +/// `Item`: +/// +/// ```rust +/// fn collect_as_strings(collection: T) -> Vec +/// where +/// T: IntoIterator, +/// T::Item: std::fmt::Debug, +/// { +/// collection +/// .into_iter() +/// .map(|item| format!("{item:?}")) +/// .collect() +/// } +/// ``` +#[rustc_diagnostic_item = "IntoIterator"] +#[rustc_skip_array_during_method_dispatch] +#[stable(feature = "rust1", since = "1.0.0")] +pub trait IntoIterator { + /// The type of the elements being iterated over. + #[stable(feature = "rust1", since = "1.0.0")] + type Item; + + /// Which kind of iterator are we turning this into? + #[stable(feature = "rust1", since = "1.0.0")] + type IntoIter: Iterator; + + /// Creates an iterator from a value. + /// + /// See the [module-level documentation] for more. + /// + /// [module-level documentation]: crate::iter + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v = [1, 2, 3]; + /// let mut iter = v.into_iter(); + /// + /// assert_eq!(Some(1), iter.next()); + /// assert_eq!(Some(2), iter.next()); + /// assert_eq!(Some(3), iter.next()); + /// assert_eq!(None, iter.next()); + /// ``` + #[lang = "into_iter"] + #[stable(feature = "rust1", since = "1.0.0")] + fn into_iter(self) -> Self::IntoIter; +} + +#[rustc_const_unstable(feature = "const_intoiterator_identity", issue = "90603")] +#[stable(feature = "rust1", since = "1.0.0")] +impl const IntoIterator for I { + type Item = I::Item; + type IntoIter = I; + + #[inline] + fn into_iter(self) -> I { + self + } +} + +/// Extend a collection with the contents of an iterator. +/// +/// Iterators produce a series of values, and collections can also be thought +/// of as a series of values. The `Extend` trait bridges this gap, allowing you +/// to extend a collection by including the contents of that iterator. When +/// extending a collection with an already existing key, that entry is updated +/// or, in the case of collections that permit multiple entries with equal +/// keys, that entry is inserted. +/// +/// # Examples +/// +/// Basic usage: +/// +/// ``` +/// // You can extend a String with some chars: +/// let mut message = String::from("The first three letters are: "); +/// +/// message.extend(&['a', 'b', 'c']); +/// +/// assert_eq!("abc", &message[29..32]); +/// ``` +/// +/// Implementing `Extend`: +/// +/// ``` +/// // A sample collection, that's just a wrapper over Vec +/// #[derive(Debug)] +/// struct MyCollection(Vec); +/// +/// // Let's give it some methods so we can create one and add things +/// // to it. +/// impl MyCollection { +/// fn new() -> MyCollection { +/// MyCollection(Vec::new()) +/// } +/// +/// fn add(&mut self, elem: i32) { +/// self.0.push(elem); +/// } +/// } +/// +/// // since MyCollection has a list of i32s, we implement Extend for i32 +/// impl Extend for MyCollection { +/// +/// // This is a bit simpler with the concrete type signature: we can call +/// // extend on anything which can be turned into an Iterator which gives +/// // us i32s. Because we need i32s to put into MyCollection. +/// fn extend>(&mut self, iter: T) { +/// +/// // The implementation is very straightforward: loop through the +/// // iterator, and add() each element to ourselves. +/// for elem in iter { +/// self.add(elem); +/// } +/// } +/// } +/// +/// let mut c = MyCollection::new(); +/// +/// c.add(5); +/// c.add(6); +/// c.add(7); +/// +/// // let's extend our collection with three more numbers +/// c.extend(vec![1, 2, 3]); +/// +/// // we've added these elements onto the end +/// assert_eq!("MyCollection([5, 6, 7, 1, 2, 3])", format!("{c:?}")); +/// ``` +#[stable(feature = "rust1", since = "1.0.0")] +pub trait Extend { + /// Extends a collection with the contents of an iterator. + /// + /// As this is the only required method for this trait, the [trait-level] docs + /// contain more details. + /// + /// [trait-level]: Extend + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// // You can extend a String with some chars: + /// let mut message = String::from("abc"); + /// + /// message.extend(['d', 'e', 'f'].iter()); + /// + /// assert_eq!("abcdef", &message); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + fn extend>(&mut self, iter: T); + + /// Extends a collection with exactly one element. + #[unstable(feature = "extend_one", issue = "72631")] + fn extend_one(&mut self, item: A) { + self.extend(Some(item)); + } + + /// Reserves capacity in a collection for the given number of additional elements. + /// + /// The default implementation does nothing. + #[unstable(feature = "extend_one", issue = "72631")] + fn extend_reserve(&mut self, additional: usize) { + let _ = additional; + } +} + +#[stable(feature = "extend_for_unit", since = "1.28.0")] +impl Extend<()> for () { + fn extend>(&mut self, iter: T) { + iter.into_iter().for_each(drop) + } + fn extend_one(&mut self, _item: ()) {} +} + +#[stable(feature = "extend_for_tuple", since = "1.56.0")] +impl Extend<(A, B)> for (ExtendA, ExtendB) +where + ExtendA: Extend, + ExtendB: Extend, +{ + /// Allows to `extend` a tuple of collections that also implement `Extend`. + /// + /// See also: [`Iterator::unzip`] + /// + /// # Examples + /// ``` + /// let mut tuple = (vec![0], vec![1]); + /// tuple.extend([(2, 3), (4, 5), (6, 7)]); + /// assert_eq!(tuple.0, [0, 2, 4, 6]); + /// assert_eq!(tuple.1, [1, 3, 5, 7]); + /// + /// // also allows for arbitrarily nested tuples as elements + /// let mut nested_tuple = (vec![1], (vec![2], vec![3])); + /// nested_tuple.extend([(4, (5, 6)), (7, (8, 9))]); + /// + /// let (a, (b, c)) = nested_tuple; + /// assert_eq!(a, [1, 4, 7]); + /// assert_eq!(b, [2, 5, 8]); + /// assert_eq!(c, [3, 6, 9]); + /// ``` + fn extend>(&mut self, into_iter: T) { + let (a, b) = self; + let iter = into_iter.into_iter(); + + fn extend<'a, A, B>( + a: &'a mut impl Extend, + b: &'a mut impl Extend, + ) -> impl FnMut((), (A, B)) + 'a { + move |(), (t, u)| { + a.extend_one(t); + b.extend_one(u); + } + } + + let (lower_bound, _) = iter.size_hint(); + if lower_bound > 0 { + a.extend_reserve(lower_bound); + b.extend_reserve(lower_bound); + } + + iter.fold((), extend(a, b)); + } + + fn extend_one(&mut self, item: (A, B)) { + self.0.extend_one(item.0); + self.1.extend_one(item.1); + } + + fn extend_reserve(&mut self, additional: usize) { + self.0.extend_reserve(additional); + self.1.extend_reserve(additional); + } +} -- cgit v1.2.3