From 698f8c2f01ea549d77d7dc3338a12e04c11057b9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:02:58 +0200 Subject: Adding upstream version 1.64.0+dfsg1. Signed-off-by: Daniel Baumann --- library/core/src/str/mod.rs | 2640 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2640 insertions(+) create mode 100644 library/core/src/str/mod.rs (limited to 'library/core/src/str/mod.rs') diff --git a/library/core/src/str/mod.rs b/library/core/src/str/mod.rs new file mode 100644 index 000000000..c4f2e283e --- /dev/null +++ b/library/core/src/str/mod.rs @@ -0,0 +1,2640 @@ +//! String manipulation. +//! +//! For more details, see the [`std::str`] module. +//! +//! [`std::str`]: ../../std/str/index.html + +#![stable(feature = "rust1", since = "1.0.0")] + +mod converts; +mod count; +mod error; +mod iter; +mod traits; +mod validations; + +use self::pattern::Pattern; +use self::pattern::{DoubleEndedSearcher, ReverseSearcher, Searcher}; + +use crate::char::{self, EscapeDebugExtArgs}; +use crate::mem; +use crate::slice::{self, SliceIndex}; + +pub mod pattern; + +#[unstable(feature = "str_internals", issue = "none")] +#[allow(missing_docs)] +pub mod lossy; + +#[stable(feature = "rust1", since = "1.0.0")] +pub use converts::{from_utf8, from_utf8_unchecked}; + +#[stable(feature = "str_mut_extras", since = "1.20.0")] +pub use converts::{from_utf8_mut, from_utf8_unchecked_mut}; + +#[stable(feature = "rust1", since = "1.0.0")] +pub use error::{ParseBoolError, Utf8Error}; + +#[stable(feature = "rust1", since = "1.0.0")] +pub use traits::FromStr; + +#[stable(feature = "rust1", since = "1.0.0")] +pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace}; + +#[stable(feature = "rust1", since = "1.0.0")] +#[allow(deprecated)] +pub use iter::LinesAny; + +#[stable(feature = "rust1", since = "1.0.0")] +pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator}; + +#[stable(feature = "rust1", since = "1.0.0")] +pub use iter::{RSplitN, SplitN}; + +#[stable(feature = "str_matches", since = "1.2.0")] +pub use iter::{Matches, RMatches}; + +#[stable(feature = "str_match_indices", since = "1.5.0")] +pub use iter::{MatchIndices, RMatchIndices}; + +#[stable(feature = "encode_utf16", since = "1.8.0")] +pub use iter::EncodeUtf16; + +#[stable(feature = "str_escape", since = "1.34.0")] +pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode}; + +#[stable(feature = "split_ascii_whitespace", since = "1.34.0")] +pub use iter::SplitAsciiWhitespace; + +#[stable(feature = "split_inclusive", since = "1.51.0")] +pub use iter::SplitInclusive; + +#[unstable(feature = "str_internals", issue = "none")] +pub use validations::{next_code_point, utf8_char_width}; + +use iter::MatchIndicesInternal; +use iter::SplitInternal; +use iter::{MatchesInternal, SplitNInternal}; + +#[inline(never)] +#[cold] +#[track_caller] +#[rustc_allow_const_fn_unstable(const_eval_select)] +const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! { + // SAFETY: panics for both branches + unsafe { + crate::intrinsics::const_eval_select( + (s, begin, end), + slice_error_fail_ct, + slice_error_fail_rt, + ) + } +} + +const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! { + panic!("failed to slice string"); +} + +fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! { + const MAX_DISPLAY_LENGTH: usize = 256; + let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH); + let s_trunc = &s[..trunc_len]; + let ellipsis = if trunc_len < s.len() { "[...]" } else { "" }; + + // 1. out of bounds + if begin > s.len() || end > s.len() { + let oob_index = if begin > s.len() { begin } else { end }; + panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}"); + } + + // 2. begin <= end + assert!( + begin <= end, + "begin <= end ({} <= {}) when slicing `{}`{}", + begin, + end, + s_trunc, + ellipsis + ); + + // 3. character boundary + let index = if !s.is_char_boundary(begin) { begin } else { end }; + // find the character + let char_start = s.floor_char_boundary(index); + // `char_start` must be less than len and a char boundary + let ch = s[char_start..].chars().next().unwrap(); + let char_range = char_start..char_start + ch.len_utf8(); + panic!( + "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}", + index, ch, char_range, s_trunc, ellipsis + ); +} + +#[cfg(not(test))] +impl str { + /// Returns the length of `self`. + /// + /// This length is in bytes, not [`char`]s or graphemes. In other words, + /// it might not be what a human considers the length of the string. + /// + /// [`char`]: prim@char + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let len = "foo".len(); + /// assert_eq!(3, len); + /// + /// assert_eq!("ƒoo".len(), 4); // fancy f! + /// assert_eq!("ƒoo".chars().count(), 3); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")] + #[must_use] + #[inline] + pub const fn len(&self) -> usize { + self.as_bytes().len() + } + + /// Returns `true` if `self` has a length of zero bytes. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = ""; + /// assert!(s.is_empty()); + /// + /// let s = "not empty"; + /// assert!(!s.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")] + #[must_use] + #[inline] + pub const fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Checks that `index`-th byte is the first byte in a UTF-8 code point + /// sequence or the end of the string. + /// + /// The start and end of the string (when `index == self.len()`) are + /// considered to be boundaries. + /// + /// Returns `false` if `index` is greater than `self.len()`. + /// + /// # Examples + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// assert!(s.is_char_boundary(0)); + /// // start of `老` + /// assert!(s.is_char_boundary(6)); + /// assert!(s.is_char_boundary(s.len())); + /// + /// // second byte of `ö` + /// assert!(!s.is_char_boundary(2)); + /// + /// // third byte of `老` + /// assert!(!s.is_char_boundary(8)); + /// ``` + #[must_use] + #[stable(feature = "is_char_boundary", since = "1.9.0")] + #[rustc_const_unstable(feature = "const_is_char_boundary", issue = "none")] + #[inline] + pub const fn is_char_boundary(&self, index: usize) -> bool { + // 0 is always ok. + // Test for 0 explicitly so that it can optimize out the check + // easily and skip reading string data for that case. + // Note that optimizing `self.get(..index)` relies on this. + if index == 0 { + return true; + } + + match self.as_bytes().get(index) { + // For `None` we have two options: + // + // - index == self.len() + // Empty strings are valid, so return true + // - index > self.len() + // In this case return false + // + // The check is placed exactly here, because it improves generated + // code on higher opt-levels. See PR #84751 for more details. + None => index == self.len(), + + Some(&b) => b.is_utf8_char_boundary(), + } + } + + /// Finds the closest `x` not exceeding `index` where `is_char_boundary(x)` is `true`. + /// + /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't + /// exceed a given number of bytes. Note that this is done purely at the character level + /// and can still visually split graphemes, even though the underlying characters aren't + /// split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only + /// includes 🧑 (person) instead. + /// + /// # Examples + /// + /// ``` + /// #![feature(round_char_boundary)] + /// let s = "❤️🧡💛💚💙💜"; + /// assert_eq!(s.len(), 26); + /// assert!(!s.is_char_boundary(13)); + /// + /// let closest = s.floor_char_boundary(13); + /// assert_eq!(closest, 10); + /// assert_eq!(&s[..closest], "❤️🧡"); + /// ``` + #[unstable(feature = "round_char_boundary", issue = "93743")] + #[inline] + pub fn floor_char_boundary(&self, index: usize) -> usize { + if index >= self.len() { + self.len() + } else { + let lower_bound = index.saturating_sub(3); + let new_index = self.as_bytes()[lower_bound..=index] + .iter() + .rposition(|b| b.is_utf8_char_boundary()); + + // SAFETY: we know that the character boundary will be within four bytes + unsafe { lower_bound + new_index.unwrap_unchecked() } + } + } + + /// Finds the closest `x` not below `index` where `is_char_boundary(x)` is `true`. + /// + /// This method is the natural complement to [`floor_char_boundary`]. See that method + /// for more details. + /// + /// [`floor_char_boundary`]: str::floor_char_boundary + /// + /// # Panics + /// + /// Panics if `index > self.len()`. + /// + /// # Examples + /// + /// ``` + /// #![feature(round_char_boundary)] + /// let s = "❤️🧡💛💚💙💜"; + /// assert_eq!(s.len(), 26); + /// assert!(!s.is_char_boundary(13)); + /// + /// let closest = s.ceil_char_boundary(13); + /// assert_eq!(closest, 14); + /// assert_eq!(&s[..closest], "❤️🧡💛"); + /// ``` + #[unstable(feature = "round_char_boundary", issue = "93743")] + #[inline] + pub fn ceil_char_boundary(&self, index: usize) -> usize { + if index > self.len() { + slice_error_fail(self, index, index) + } else { + let upper_bound = Ord::min(index + 4, self.len()); + self.as_bytes()[index..upper_bound] + .iter() + .position(|b| b.is_utf8_char_boundary()) + .map_or(upper_bound, |pos| pos + index) + } + } + + /// Converts a string slice to a byte slice. To convert the byte slice back + /// into a string slice, use the [`from_utf8`] function. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let bytes = "bors".as_bytes(); + /// assert_eq!(b"bors", bytes); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")] + #[must_use] + #[inline(always)] + #[allow(unused_attributes)] + pub const fn as_bytes(&self) -> &[u8] { + // SAFETY: const sound because we transmute two types with the same layout + unsafe { mem::transmute(self) } + } + + /// Converts a mutable string slice to a mutable byte slice. + /// + /// # Safety + /// + /// The caller must ensure that the content of the slice is valid UTF-8 + /// before the borrow ends and the underlying `str` is used. + /// + /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::from("Hello"); + /// let bytes = unsafe { s.as_bytes_mut() }; + /// + /// assert_eq!(b"Hello", bytes); + /// ``` + /// + /// Mutability: + /// + /// ``` + /// let mut s = String::from("🗻∈🌏"); + /// + /// unsafe { + /// let bytes = s.as_bytes_mut(); + /// + /// bytes[0] = 0xF0; + /// bytes[1] = 0x9F; + /// bytes[2] = 0x8D; + /// bytes[3] = 0x94; + /// } + /// + /// assert_eq!("🍔∈🌏", s); + /// ``` + #[stable(feature = "str_mut_extras", since = "1.20.0")] + #[must_use] + #[inline(always)] + pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] { + // SAFETY: the cast from `&str` to `&[u8]` is safe since `str` + // has the same layout as `&[u8]` (only libstd can make this guarantee). + // The pointer dereference is safe since it comes from a mutable reference which + // is guaranteed to be valid for writes. + unsafe { &mut *(self as *mut str as *mut [u8]) } + } + + /// Converts a string slice to a raw pointer. + /// + /// As string slices are a slice of bytes, the raw pointer points to a + /// [`u8`]. This pointer will be pointing to the first byte of the string + /// slice. + /// + /// The caller must ensure that the returned pointer is never written to. + /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`]. + /// + /// [`as_mut_ptr`]: str::as_mut_ptr + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "Hello"; + /// let ptr = s.as_ptr(); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")] + #[must_use] + #[inline] + pub const fn as_ptr(&self) -> *const u8 { + self as *const str as *const u8 + } + + /// Converts a mutable string slice to a raw pointer. + /// + /// As string slices are a slice of bytes, the raw pointer points to a + /// [`u8`]. This pointer will be pointing to the first byte of the string + /// slice. + /// + /// It is your responsibility to make sure that the string slice only gets + /// modified in a way that it remains valid UTF-8. + #[stable(feature = "str_as_mut_ptr", since = "1.36.0")] + #[must_use] + #[inline] + pub fn as_mut_ptr(&mut self) -> *mut u8 { + self as *mut str as *mut u8 + } + + /// Returns a subslice of `str`. + /// + /// This is the non-panicking alternative to indexing the `str`. Returns + /// [`None`] whenever equivalent indexing operation would panic. + /// + /// # Examples + /// + /// ``` + /// let v = String::from("🗻∈🌏"); + /// + /// assert_eq!(Some("🗻"), v.get(0..4)); + /// + /// // indices not on UTF-8 sequence boundaries + /// assert!(v.get(1..).is_none()); + /// assert!(v.get(..8).is_none()); + /// + /// // out of bounds + /// assert!(v.get(..42).is_none()); + /// ``` + #[stable(feature = "str_checked_slicing", since = "1.20.0")] + #[rustc_const_unstable(feature = "const_slice_index", issue = "none")] + #[inline] + pub const fn get>(&self, i: I) -> Option<&I::Output> { + i.get(self) + } + + /// Returns a mutable subslice of `str`. + /// + /// This is the non-panicking alternative to indexing the `str`. Returns + /// [`None`] whenever equivalent indexing operation would panic. + /// + /// # Examples + /// + /// ``` + /// let mut v = String::from("hello"); + /// // correct length + /// assert!(v.get_mut(0..5).is_some()); + /// // out of bounds + /// assert!(v.get_mut(..42).is_none()); + /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v)); + /// + /// assert_eq!("hello", v); + /// { + /// let s = v.get_mut(0..2); + /// let s = s.map(|s| { + /// s.make_ascii_uppercase(); + /// &*s + /// }); + /// assert_eq!(Some("HE"), s); + /// } + /// assert_eq!("HEllo", v); + /// ``` + #[stable(feature = "str_checked_slicing", since = "1.20.0")] + #[rustc_const_unstable(feature = "const_slice_index", issue = "none")] + #[inline] + pub const fn get_mut>(&mut self, i: I) -> Option<&mut I::Output> { + i.get_mut(self) + } + + /// Returns an unchecked subslice of `str`. + /// + /// This is the unchecked alternative to indexing the `str`. + /// + /// # Safety + /// + /// Callers of this function are responsible that these preconditions are + /// satisfied: + /// + /// * The starting index must not exceed the ending index; + /// * Indexes must be within bounds of the original slice; + /// * Indexes must lie on UTF-8 sequence boundaries. + /// + /// Failing that, the returned string slice may reference invalid memory or + /// violate the invariants communicated by the `str` type. + /// + /// # Examples + /// + /// ``` + /// let v = "🗻∈🌏"; + /// unsafe { + /// assert_eq!("🗻", v.get_unchecked(0..4)); + /// assert_eq!("∈", v.get_unchecked(4..7)); + /// assert_eq!("🌏", v.get_unchecked(7..11)); + /// } + /// ``` + #[stable(feature = "str_checked_slicing", since = "1.20.0")] + #[rustc_const_unstable(feature = "const_slice_index", issue = "none")] + #[inline] + pub const unsafe fn get_unchecked>(&self, i: I) -> &I::Output { + // SAFETY: the caller must uphold the safety contract for `get_unchecked`; + // the slice is dereferenceable because `self` is a safe reference. + // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. + unsafe { &*i.get_unchecked(self) } + } + + /// Returns a mutable, unchecked subslice of `str`. + /// + /// This is the unchecked alternative to indexing the `str`. + /// + /// # Safety + /// + /// Callers of this function are responsible that these preconditions are + /// satisfied: + /// + /// * The starting index must not exceed the ending index; + /// * Indexes must be within bounds of the original slice; + /// * Indexes must lie on UTF-8 sequence boundaries. + /// + /// Failing that, the returned string slice may reference invalid memory or + /// violate the invariants communicated by the `str` type. + /// + /// # Examples + /// + /// ``` + /// let mut v = String::from("🗻∈🌏"); + /// unsafe { + /// assert_eq!("🗻", v.get_unchecked_mut(0..4)); + /// assert_eq!("∈", v.get_unchecked_mut(4..7)); + /// assert_eq!("🌏", v.get_unchecked_mut(7..11)); + /// } + /// ``` + #[stable(feature = "str_checked_slicing", since = "1.20.0")] + #[rustc_const_unstable(feature = "const_slice_index", issue = "none")] + #[inline] + pub const unsafe fn get_unchecked_mut>( + &mut self, + i: I, + ) -> &mut I::Output { + // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`; + // the slice is dereferenceable because `self` is a safe reference. + // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. + unsafe { &mut *i.get_unchecked_mut(self) } + } + + /// Creates a string slice from another string slice, bypassing safety + /// checks. + /// + /// This is generally not recommended, use with caution! For a safe + /// alternative see [`str`] and [`Index`]. + /// + /// [`Index`]: crate::ops::Index + /// + /// This new slice goes from `begin` to `end`, including `begin` but + /// excluding `end`. + /// + /// To get a mutable string slice instead, see the + /// [`slice_mut_unchecked`] method. + /// + /// [`slice_mut_unchecked`]: str::slice_mut_unchecked + /// + /// # Safety + /// + /// Callers of this function are responsible that three preconditions are + /// satisfied: + /// + /// * `begin` must not exceed `end`. + /// * `begin` and `end` must be byte positions within the string slice. + /// * `begin` and `end` must lie on UTF-8 sequence boundaries. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// unsafe { + /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21)); + /// } + /// + /// let s = "Hello, world!"; + /// + /// unsafe { + /// assert_eq!("world", s.slice_unchecked(7, 12)); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")] + #[must_use] + #[inline] + pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str { + // SAFETY: the caller must uphold the safety contract for `get_unchecked`; + // the slice is dereferenceable because `self` is a safe reference. + // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. + unsafe { &*(begin..end).get_unchecked(self) } + } + + /// Creates a string slice from another string slice, bypassing safety + /// checks. + /// This is generally not recommended, use with caution! For a safe + /// alternative see [`str`] and [`IndexMut`]. + /// + /// [`IndexMut`]: crate::ops::IndexMut + /// + /// This new slice goes from `begin` to `end`, including `begin` but + /// excluding `end`. + /// + /// To get an immutable string slice instead, see the + /// [`slice_unchecked`] method. + /// + /// [`slice_unchecked`]: str::slice_unchecked + /// + /// # Safety + /// + /// Callers of this function are responsible that three preconditions are + /// satisfied: + /// + /// * `begin` must not exceed `end`. + /// * `begin` and `end` must be byte positions within the string slice. + /// * `begin` and `end` must lie on UTF-8 sequence boundaries. + #[stable(feature = "str_slice_mut", since = "1.5.0")] + #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")] + #[inline] + pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str { + // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`; + // the slice is dereferenceable because `self` is a safe reference. + // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. + unsafe { &mut *(begin..end).get_unchecked_mut(self) } + } + + /// Divide one string slice into two at an index. + /// + /// The argument, `mid`, should be a byte offset from the start of the + /// string. It must also be on the boundary of a UTF-8 code point. + /// + /// The two slices returned go from the start of the string slice to `mid`, + /// and from `mid` to the end of the string slice. + /// + /// To get mutable string slices instead, see the [`split_at_mut`] + /// method. + /// + /// [`split_at_mut`]: str::split_at_mut + /// + /// # Panics + /// + /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is + /// past the end of the last code point of the string slice. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "Per Martin-Löf"; + /// + /// let (first, last) = s.split_at(3); + /// + /// assert_eq!("Per", first); + /// assert_eq!(" Martin-Löf", last); + /// ``` + #[inline] + #[must_use] + #[stable(feature = "str_split_at", since = "1.4.0")] + pub fn split_at(&self, mid: usize) -> (&str, &str) { + // is_char_boundary checks that the index is in [0, .len()] + if self.is_char_boundary(mid) { + // SAFETY: just checked that `mid` is on a char boundary. + unsafe { (self.get_unchecked(0..mid), self.get_unchecked(mid..self.len())) } + } else { + slice_error_fail(self, 0, mid) + } + } + + /// Divide one mutable string slice into two at an index. + /// + /// The argument, `mid`, should be a byte offset from the start of the + /// string. It must also be on the boundary of a UTF-8 code point. + /// + /// The two slices returned go from the start of the string slice to `mid`, + /// and from `mid` to the end of the string slice. + /// + /// To get immutable string slices instead, see the [`split_at`] method. + /// + /// [`split_at`]: str::split_at + /// + /// # Panics + /// + /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is + /// past the end of the last code point of the string slice. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = "Per Martin-Löf".to_string(); + /// { + /// let (first, last) = s.split_at_mut(3); + /// first.make_ascii_uppercase(); + /// assert_eq!("PER", first); + /// assert_eq!(" Martin-Löf", last); + /// } + /// assert_eq!("PER Martin-Löf", s); + /// ``` + #[inline] + #[must_use] + #[stable(feature = "str_split_at", since = "1.4.0")] + pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) { + // is_char_boundary checks that the index is in [0, .len()] + if self.is_char_boundary(mid) { + let len = self.len(); + let ptr = self.as_mut_ptr(); + // SAFETY: just checked that `mid` is on a char boundary. + unsafe { + ( + from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)), + from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)), + ) + } + } else { + slice_error_fail(self, 0, mid) + } + } + + /// Returns an iterator over the [`char`]s of a string slice. + /// + /// As a string slice consists of valid UTF-8, we can iterate through a + /// string slice by [`char`]. This method returns such an iterator. + /// + /// It's important to remember that [`char`] represents a Unicode Scalar + /// Value, and might not match your idea of what a 'character' is. Iteration + /// over grapheme clusters may be what you actually want. This functionality + /// is not provided by Rust's standard library, check crates.io instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let word = "goodbye"; + /// + /// let count = word.chars().count(); + /// assert_eq!(7, count); + /// + /// let mut chars = word.chars(); + /// + /// assert_eq!(Some('g'), chars.next()); + /// assert_eq!(Some('o'), chars.next()); + /// assert_eq!(Some('o'), chars.next()); + /// assert_eq!(Some('d'), chars.next()); + /// assert_eq!(Some('b'), chars.next()); + /// assert_eq!(Some('y'), chars.next()); + /// assert_eq!(Some('e'), chars.next()); + /// + /// assert_eq!(None, chars.next()); + /// ``` + /// + /// Remember, [`char`]s might not match your intuition about characters: + /// + /// [`char`]: prim@char + /// + /// ``` + /// let y = "y̆"; + /// + /// let mut chars = y.chars(); + /// + /// assert_eq!(Some('y'), chars.next()); // not 'y̆' + /// assert_eq!(Some('\u{0306}'), chars.next()); + /// + /// assert_eq!(None, chars.next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn chars(&self) -> Chars<'_> { + Chars { iter: self.as_bytes().iter() } + } + + /// Returns an iterator over the [`char`]s of a string slice, and their + /// positions. + /// + /// As a string slice consists of valid UTF-8, we can iterate through a + /// string slice by [`char`]. This method returns an iterator of both + /// these [`char`]s, as well as their byte positions. + /// + /// The iterator yields tuples. The position is first, the [`char`] is + /// second. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let word = "goodbye"; + /// + /// let count = word.char_indices().count(); + /// assert_eq!(7, count); + /// + /// let mut char_indices = word.char_indices(); + /// + /// assert_eq!(Some((0, 'g')), char_indices.next()); + /// assert_eq!(Some((1, 'o')), char_indices.next()); + /// assert_eq!(Some((2, 'o')), char_indices.next()); + /// assert_eq!(Some((3, 'd')), char_indices.next()); + /// assert_eq!(Some((4, 'b')), char_indices.next()); + /// assert_eq!(Some((5, 'y')), char_indices.next()); + /// assert_eq!(Some((6, 'e')), char_indices.next()); + /// + /// assert_eq!(None, char_indices.next()); + /// ``` + /// + /// Remember, [`char`]s might not match your intuition about characters: + /// + /// [`char`]: prim@char + /// + /// ``` + /// let yes = "y̆es"; + /// + /// let mut char_indices = yes.char_indices(); + /// + /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆') + /// assert_eq!(Some((1, '\u{0306}')), char_indices.next()); + /// + /// // note the 3 here - the last character took up two bytes + /// assert_eq!(Some((3, 'e')), char_indices.next()); + /// assert_eq!(Some((4, 's')), char_indices.next()); + /// + /// assert_eq!(None, char_indices.next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn char_indices(&self) -> CharIndices<'_> { + CharIndices { front_offset: 0, iter: self.chars() } + } + + /// An iterator over the bytes of a string slice. + /// + /// As a string slice consists of a sequence of bytes, we can iterate + /// through a string slice by byte. This method returns such an iterator. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut bytes = "bors".bytes(); + /// + /// assert_eq!(Some(b'b'), bytes.next()); + /// assert_eq!(Some(b'o'), bytes.next()); + /// assert_eq!(Some(b'r'), bytes.next()); + /// assert_eq!(Some(b's'), bytes.next()); + /// + /// assert_eq!(None, bytes.next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn bytes(&self) -> Bytes<'_> { + Bytes(self.as_bytes().iter().copied()) + } + + /// Splits a string slice by whitespace. + /// + /// The iterator returned will return string slices that are sub-slices of + /// the original string slice, separated by any amount of whitespace. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`. If you only want to split on ASCII whitespace + /// instead, use [`split_ascii_whitespace`]. + /// + /// [`split_ascii_whitespace`]: str::split_ascii_whitespace + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut iter = "A few words".split_whitespace(); + /// + /// assert_eq!(Some("A"), iter.next()); + /// assert_eq!(Some("few"), iter.next()); + /// assert_eq!(Some("words"), iter.next()); + /// + /// assert_eq!(None, iter.next()); + /// ``` + /// + /// All kinds of whitespace are considered: + /// + /// ``` + /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace(); + /// assert_eq!(Some("Mary"), iter.next()); + /// assert_eq!(Some("had"), iter.next()); + /// assert_eq!(Some("a"), iter.next()); + /// assert_eq!(Some("little"), iter.next()); + /// assert_eq!(Some("lamb"), iter.next()); + /// + /// assert_eq!(None, iter.next()); + /// ``` + #[must_use = "this returns the split string as an iterator, \ + without modifying the original"] + #[stable(feature = "split_whitespace", since = "1.1.0")] + #[cfg_attr(not(test), rustc_diagnostic_item = "str_split_whitespace")] + #[inline] + pub fn split_whitespace(&self) -> SplitWhitespace<'_> { + SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) } + } + + /// Splits a string slice by ASCII whitespace. + /// + /// The iterator returned will return string slices that are sub-slices of + /// the original string slice, separated by any amount of ASCII whitespace. + /// + /// To split by Unicode `Whitespace` instead, use [`split_whitespace`]. + /// + /// [`split_whitespace`]: str::split_whitespace + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut iter = "A few words".split_ascii_whitespace(); + /// + /// assert_eq!(Some("A"), iter.next()); + /// assert_eq!(Some("few"), iter.next()); + /// assert_eq!(Some("words"), iter.next()); + /// + /// assert_eq!(None, iter.next()); + /// ``` + /// + /// All kinds of ASCII whitespace are considered: + /// + /// ``` + /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace(); + /// assert_eq!(Some("Mary"), iter.next()); + /// assert_eq!(Some("had"), iter.next()); + /// assert_eq!(Some("a"), iter.next()); + /// assert_eq!(Some("little"), iter.next()); + /// assert_eq!(Some("lamb"), iter.next()); + /// + /// assert_eq!(None, iter.next()); + /// ``` + #[must_use = "this returns the split string as an iterator, \ + without modifying the original"] + #[stable(feature = "split_ascii_whitespace", since = "1.34.0")] + #[inline] + pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> { + let inner = + self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr); + SplitAsciiWhitespace { inner } + } + + /// An iterator over the lines of a string, as string slices. + /// + /// Lines are ended with either a newline (`\n`) or a carriage return with + /// a line feed (`\r\n`). + /// + /// The final line ending is optional. A string that ends with a final line + /// ending will return the same lines as an otherwise identical string + /// without a final line ending. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let text = "foo\r\nbar\n\nbaz\n"; + /// let mut lines = text.lines(); + /// + /// assert_eq!(Some("foo"), lines.next()); + /// assert_eq!(Some("bar"), lines.next()); + /// assert_eq!(Some(""), lines.next()); + /// assert_eq!(Some("baz"), lines.next()); + /// + /// assert_eq!(None, lines.next()); + /// ``` + /// + /// The final line ending isn't required: + /// + /// ``` + /// let text = "foo\nbar\n\r\nbaz"; + /// let mut lines = text.lines(); + /// + /// assert_eq!(Some("foo"), lines.next()); + /// assert_eq!(Some("bar"), lines.next()); + /// assert_eq!(Some(""), lines.next()); + /// assert_eq!(Some("baz"), lines.next()); + /// + /// assert_eq!(None, lines.next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn lines(&self) -> Lines<'_> { + Lines(self.split_terminator('\n').map(LinesAnyMap)) + } + + /// An iterator over the lines of a string. + #[stable(feature = "rust1", since = "1.0.0")] + #[deprecated(since = "1.4.0", note = "use lines() instead now")] + #[inline] + #[allow(deprecated)] + pub fn lines_any(&self) -> LinesAny<'_> { + LinesAny(self.lines()) + } + + /// Returns an iterator of `u16` over the string encoded as UTF-16. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let text = "Zażółć gęślą jaźń"; + /// + /// let utf8_len = text.len(); + /// let utf16_len = text.encode_utf16().count(); + /// + /// assert!(utf16_len <= utf8_len); + /// ``` + #[must_use = "this returns the encoded string as an iterator, \ + without modifying the original"] + #[stable(feature = "encode_utf16", since = "1.8.0")] + pub fn encode_utf16(&self) -> EncodeUtf16<'_> { + EncodeUtf16 { chars: self.chars(), extra: 0 } + } + + /// Returns `true` if the given pattern matches a sub-slice of + /// this string slice. + /// + /// Returns `false` if it does not. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let bananas = "bananas"; + /// + /// assert!(bananas.contains("nana")); + /// assert!(!bananas.contains("apples")); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { + pat.is_contained_in(self) + } + + /// Returns `true` if the given pattern matches a prefix of this + /// string slice. + /// + /// Returns `false` if it does not. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let bananas = "bananas"; + /// + /// assert!(bananas.starts_with("bana")); + /// assert!(!bananas.starts_with("nana")); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { + pat.is_prefix_of(self) + } + + /// Returns `true` if the given pattern matches a suffix of this + /// string slice. + /// + /// Returns `false` if it does not. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let bananas = "bananas"; + /// + /// assert!(bananas.ends_with("anas")); + /// assert!(!bananas.ends_with("nana")); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn ends_with<'a, P>(&'a self, pat: P) -> bool + where + P: Pattern<'a, Searcher: ReverseSearcher<'a>>, + { + pat.is_suffix_of(self) + } + + /// Returns the byte index of the first character of this string slice that + /// matches the pattern. + /// + /// Returns [`None`] if the pattern doesn't match. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard Gepardi"; + /// + /// assert_eq!(s.find('L'), Some(0)); + /// assert_eq!(s.find('é'), Some(14)); + /// assert_eq!(s.find("pard"), Some(17)); + /// ``` + /// + /// More complex patterns using point-free style and closures: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// assert_eq!(s.find(char::is_whitespace), Some(5)); + /// assert_eq!(s.find(char::is_lowercase), Some(1)); + /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1)); + /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4)); + /// ``` + /// + /// Not finding the pattern: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// let x: &[_] = &['1', '2']; + /// + /// assert_eq!(s.find(x), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option { + pat.into_searcher(self).next_match().map(|(i, _)| i) + } + + /// Returns the byte index for the first character of the last match of the pattern in + /// this string slice. + /// + /// Returns [`None`] if the pattern doesn't match. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard Gepardi"; + /// + /// assert_eq!(s.rfind('L'), Some(13)); + /// assert_eq!(s.rfind('é'), Some(14)); + /// assert_eq!(s.rfind("pard"), Some(24)); + /// ``` + /// + /// More complex patterns with closures: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// assert_eq!(s.rfind(char::is_whitespace), Some(12)); + /// assert_eq!(s.rfind(char::is_lowercase), Some(20)); + /// ``` + /// + /// Not finding the pattern: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// let x: &[_] = &['1', '2']; + /// + /// assert_eq!(s.rfind(x), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rfind<'a, P>(&'a self, pat: P) -> Option + where + P: Pattern<'a, Searcher: ReverseSearcher<'a>>, + { + pat.into_searcher(self).next_match_back().map(|(i, _)| i) + } + + /// An iterator over substrings of this string slice, separated by + /// characters matched by a pattern. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Iterator behavior + /// + /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern + /// allows a reverse search and forward/reverse search yields the same + /// elements. This is true for, e.g., [`char`], but not for `&str`. + /// + /// If the pattern allows a reverse search but its results might differ + /// from a forward search, the [`rsplit`] method can be used. + /// + /// [`rsplit`]: str::rsplit + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect(); + /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]); + /// + /// let v: Vec<&str> = "".split('X').collect(); + /// assert_eq!(v, [""]); + /// + /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect(); + /// assert_eq!(v, ["lion", "", "tiger", "leopard"]); + /// + /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect(); + /// assert_eq!(v, ["lion", "tiger", "leopard"]); + /// + /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect(); + /// assert_eq!(v, ["abc", "def", "ghi"]); + /// + /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect(); + /// assert_eq!(v, ["lion", "tiger", "leopard"]); + /// ``` + /// + /// If the pattern is a slice of chars, split on each occurrence of any of the characters: + /// + /// ``` + /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect(); + /// assert_eq!(v, ["2020", "11", "03", "23", "59"]); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect(); + /// assert_eq!(v, ["abc", "def", "ghi"]); + /// ``` + /// + /// If a string contains multiple contiguous separators, you will end up + /// with empty strings in the output: + /// + /// ``` + /// let x = "||||a||b|c".to_string(); + /// let d: Vec<_> = x.split('|').collect(); + /// + /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); + /// ``` + /// + /// Contiguous separators are separated by the empty string. + /// + /// ``` + /// let x = "(///)".to_string(); + /// let d: Vec<_> = x.split('/').collect(); + /// + /// assert_eq!(d, &["(", "", "", ")"]); + /// ``` + /// + /// Separators at the start or end of a string are neighbored + /// by empty strings. + /// + /// ``` + /// let d: Vec<_> = "010".split("0").collect(); + /// assert_eq!(d, &["", "1", ""]); + /// ``` + /// + /// When the empty string is used as a separator, it separates + /// every character in the string, along with the beginning + /// and end of the string. + /// + /// ``` + /// let f: Vec<_> = "rust".split("").collect(); + /// assert_eq!(f, &["", "r", "u", "s", "t", ""]); + /// ``` + /// + /// Contiguous separators can lead to possibly surprising behavior + /// when whitespace is used as the separator. This code is correct: + /// + /// ``` + /// let x = " a b c".to_string(); + /// let d: Vec<_> = x.split(' ').collect(); + /// + /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); + /// ``` + /// + /// It does _not_ give you: + /// + /// ```,ignore + /// assert_eq!(d, &["a", "b", "c"]); + /// ``` + /// + /// Use [`split_whitespace`] for this behavior. + /// + /// [`split_whitespace`]: str::split_whitespace + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> { + Split(SplitInternal { + start: 0, + end: self.len(), + matcher: pat.into_searcher(self), + allow_trailing_empty: true, + finished: false, + }) + } + + /// An iterator over substrings of this string slice, separated by + /// characters matched by a pattern. Differs from the iterator produced by + /// `split` in that `split_inclusive` leaves the matched part as the + /// terminator of the substring. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Examples + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb." + /// .split_inclusive('\n').collect(); + /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]); + /// ``` + /// + /// If the last element of the string is matched, + /// that element will be considered the terminator of the preceding substring. + /// That substring will be the last item returned by the iterator. + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n" + /// .split_inclusive('\n').collect(); + /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]); + /// ``` + #[stable(feature = "split_inclusive", since = "1.51.0")] + #[inline] + pub fn split_inclusive<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitInclusive<'a, P> { + SplitInclusive(SplitInternal { + start: 0, + end: self.len(), + matcher: pat.into_searcher(self), + allow_trailing_empty: false, + finished: false, + }) + } + + /// An iterator over substrings of the given string slice, separated by + /// characters matched by a pattern and yielded in reverse order. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Iterator behavior + /// + /// The returned iterator requires that the pattern supports a reverse + /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse + /// search yields the same elements. + /// + /// For iterating from the front, the [`split`] method can be used. + /// + /// [`split`]: str::split + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect(); + /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]); + /// + /// let v: Vec<&str> = "".rsplit('X').collect(); + /// assert_eq!(v, [""]); + /// + /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect(); + /// assert_eq!(v, ["leopard", "tiger", "", "lion"]); + /// + /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect(); + /// assert_eq!(v, ["leopard", "tiger", "lion"]); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect(); + /// assert_eq!(v, ["ghi", "def", "abc"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P> + where + P: Pattern<'a, Searcher: ReverseSearcher<'a>>, + { + RSplit(self.split(pat).0) + } + + /// An iterator over substrings of the given string slice, separated by + /// characters matched by a pattern. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// Equivalent to [`split`], except that the trailing substring + /// is skipped if empty. + /// + /// [`split`]: str::split + /// + /// This method can be used for string data that is _terminated_, + /// rather than _separated_ by a pattern. + /// + /// # Iterator behavior + /// + /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern + /// allows a reverse search and forward/reverse search yields the same + /// elements. This is true for, e.g., [`char`], but not for `&str`. + /// + /// If the pattern allows a reverse search but its results might differ + /// from a forward search, the [`rsplit_terminator`] method can be used. + /// + /// [`rsplit_terminator`]: str::rsplit_terminator + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<&str> = "A.B.".split_terminator('.').collect(); + /// assert_eq!(v, ["A", "B"]); + /// + /// let v: Vec<&str> = "A..B..".split_terminator(".").collect(); + /// assert_eq!(v, ["A", "", "B", ""]); + /// + /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect(); + /// assert_eq!(v, ["A", "B", "C", "D"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P> { + SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 }) + } + + /// An iterator over substrings of `self`, separated by characters + /// matched by a pattern and yielded in reverse order. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// Equivalent to [`split`], except that the trailing substring is + /// skipped if empty. + /// + /// [`split`]: str::split + /// + /// This method can be used for string data that is _terminated_, + /// rather than _separated_ by a pattern. + /// + /// # Iterator behavior + /// + /// The returned iterator requires that the pattern supports a + /// reverse search, and it will be double ended if a forward/reverse + /// search yields the same elements. + /// + /// For iterating from the front, the [`split_terminator`] method can be + /// used. + /// + /// [`split_terminator`]: str::split_terminator + /// + /// # Examples + /// + /// ``` + /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect(); + /// assert_eq!(v, ["B", "A"]); + /// + /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect(); + /// assert_eq!(v, ["", "B", "", "A"]); + /// + /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect(); + /// assert_eq!(v, ["D", "C", "B", "A"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P> + where + P: Pattern<'a, Searcher: ReverseSearcher<'a>>, + { + RSplitTerminator(self.split_terminator(pat).0) + } + + /// An iterator over substrings of the given string slice, separated by a + /// pattern, restricted to returning at most `n` items. + /// + /// If `n` substrings are returned, the last substring (the `n`th substring) + /// will contain the remainder of the string. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Iterator behavior + /// + /// The returned iterator will not be double ended, because it is + /// not efficient to support. + /// + /// If the pattern allows a reverse search, the [`rsplitn`] method can be + /// used. + /// + /// [`rsplitn`]: str::rsplitn + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect(); + /// assert_eq!(v, ["Mary", "had", "a little lambda"]); + /// + /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect(); + /// assert_eq!(v, ["lion", "", "tigerXleopard"]); + /// + /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect(); + /// assert_eq!(v, ["abcXdef"]); + /// + /// let v: Vec<&str> = "".splitn(1, 'X').collect(); + /// assert_eq!(v, [""]); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect(); + /// assert_eq!(v, ["abc", "defXghi"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn splitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> SplitN<'a, P> { + SplitN(SplitNInternal { iter: self.split(pat).0, count: n }) + } + + /// An iterator over substrings of this string slice, separated by a + /// pattern, starting from the end of the string, restricted to returning + /// at most `n` items. + /// + /// If `n` substrings are returned, the last substring (the `n`th substring) + /// will contain the remainder of the string. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Iterator behavior + /// + /// The returned iterator will not be double ended, because it is not + /// efficient to support. + /// + /// For splitting from the front, the [`splitn`] method can be used. + /// + /// [`splitn`]: str::splitn + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect(); + /// assert_eq!(v, ["lamb", "little", "Mary had a"]); + /// + /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect(); + /// assert_eq!(v, ["leopard", "tiger", "lionX"]); + /// + /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect(); + /// assert_eq!(v, ["leopard", "lion::tiger"]); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect(); + /// assert_eq!(v, ["ghi", "abc1def"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> + where + P: Pattern<'a, Searcher: ReverseSearcher<'a>>, + { + RSplitN(self.splitn(n, pat).0) + } + + /// Splits the string on the first occurrence of the specified delimiter and + /// returns prefix before delimiter and suffix after delimiter. + /// + /// # Examples + /// + /// ``` + /// assert_eq!("cfg".split_once('='), None); + /// assert_eq!("cfg=".split_once('='), Some(("cfg", ""))); + /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo"))); + /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar"))); + /// ``` + #[stable(feature = "str_split_once", since = "1.52.0")] + #[inline] + pub fn split_once<'a, P: Pattern<'a>>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> { + let (start, end) = delimiter.into_searcher(self).next_match()?; + // SAFETY: `Searcher` is known to return valid indices. + unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) } + } + + /// Splits the string on the last occurrence of the specified delimiter and + /// returns prefix before delimiter and suffix after delimiter. + /// + /// # Examples + /// + /// ``` + /// assert_eq!("cfg".rsplit_once('='), None); + /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo"))); + /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar"))); + /// ``` + #[stable(feature = "str_split_once", since = "1.52.0")] + #[inline] + pub fn rsplit_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> + where + P: Pattern<'a, Searcher: ReverseSearcher<'a>>, + { + let (start, end) = delimiter.into_searcher(self).next_match_back()?; + // SAFETY: `Searcher` is known to return valid indices. + unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) } + } + + /// An iterator over the disjoint matches of a pattern within the given string + /// slice. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Iterator behavior + /// + /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern + /// allows a reverse search and forward/reverse search yields the same + /// elements. This is true for, e.g., [`char`], but not for `&str`. + /// + /// If the pattern allows a reverse search but its results might differ + /// from a forward search, the [`rmatches`] method can be used. + /// + /// [`rmatches`]: str::matches + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect(); + /// assert_eq!(v, ["abc", "abc", "abc"]); + /// + /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect(); + /// assert_eq!(v, ["1", "2", "3"]); + /// ``` + #[stable(feature = "str_matches", since = "1.2.0")] + #[inline] + pub fn matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> Matches<'a, P> { + Matches(MatchesInternal(pat.into_searcher(self))) + } + + /// An iterator over the disjoint matches of a pattern within this string slice, + /// yielded in reverse order. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Iterator behavior + /// + /// The returned iterator requires that the pattern supports a reverse + /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse + /// search yields the same elements. + /// + /// For iterating from the front, the [`matches`] method can be used. + /// + /// [`matches`]: str::matches + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect(); + /// assert_eq!(v, ["abc", "abc", "abc"]); + /// + /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect(); + /// assert_eq!(v, ["3", "2", "1"]); + /// ``` + #[stable(feature = "str_matches", since = "1.2.0")] + #[inline] + pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P> + where + P: Pattern<'a, Searcher: ReverseSearcher<'a>>, + { + RMatches(self.matches(pat).0) + } + + /// An iterator over the disjoint matches of a pattern within this string + /// slice as well as the index that the match starts at. + /// + /// For matches of `pat` within `self` that overlap, only the indices + /// corresponding to the first match are returned. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Iterator behavior + /// + /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern + /// allows a reverse search and forward/reverse search yields the same + /// elements. This is true for, e.g., [`char`], but not for `&str`. + /// + /// If the pattern allows a reverse search but its results might differ + /// from a forward search, the [`rmatch_indices`] method can be used. + /// + /// [`rmatch_indices`]: str::rmatch_indices + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect(); + /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]); + /// + /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect(); + /// assert_eq!(v, [(1, "abc"), (4, "abc")]); + /// + /// let v: Vec<_> = "ababa".match_indices("aba").collect(); + /// assert_eq!(v, [(0, "aba")]); // only the first `aba` + /// ``` + #[stable(feature = "str_match_indices", since = "1.5.0")] + #[inline] + pub fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P> { + MatchIndices(MatchIndicesInternal(pat.into_searcher(self))) + } + + /// An iterator over the disjoint matches of a pattern within `self`, + /// yielded in reverse order along with the index of the match. + /// + /// For matches of `pat` within `self` that overlap, only the indices + /// corresponding to the last match are returned. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Iterator behavior + /// + /// The returned iterator requires that the pattern supports a reverse + /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse + /// search yields the same elements. + /// + /// For iterating from the front, the [`match_indices`] method can be used. + /// + /// [`match_indices`]: str::match_indices + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect(); + /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]); + /// + /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect(); + /// assert_eq!(v, [(4, "abc"), (1, "abc")]); + /// + /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect(); + /// assert_eq!(v, [(2, "aba")]); // only the last `aba` + /// ``` + #[stable(feature = "str_match_indices", since = "1.5.0")] + #[inline] + pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P> + where + P: Pattern<'a, Searcher: ReverseSearcher<'a>>, + { + RMatchIndices(self.match_indices(pat).0) + } + + /// Returns a string slice with leading and trailing whitespace removed. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`, which includes newlines. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "\n Hello\tworld\t\n"; + /// + /// assert_eq!("Hello\tworld", s.trim()); + /// ``` + #[inline] + #[must_use = "this returns the trimmed string as a slice, \ + without modifying the original"] + #[stable(feature = "rust1", since = "1.0.0")] + #[cfg_attr(not(test), rustc_diagnostic_item = "str_trim")] + pub fn trim(&self) -> &str { + self.trim_matches(|c: char| c.is_whitespace()) + } + + /// Returns a string slice with leading whitespace removed. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`, which includes newlines. + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. `start` in this context means the first + /// position of that byte string; for a left-to-right language like English or + /// Russian, this will be left side, and for right-to-left languages like + /// Arabic or Hebrew, this will be the right side. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "\n Hello\tworld\t\n"; + /// assert_eq!("Hello\tworld\t\n", s.trim_start()); + /// ``` + /// + /// Directionality: + /// + /// ``` + /// let s = " English "; + /// assert!(Some('E') == s.trim_start().chars().next()); + /// + /// let s = " עברית "; + /// assert!(Some('ע') == s.trim_start().chars().next()); + /// ``` + #[inline] + #[must_use = "this returns the trimmed string as a new slice, \ + without modifying the original"] + #[stable(feature = "trim_direction", since = "1.30.0")] + #[cfg_attr(not(test), rustc_diagnostic_item = "str_trim_start")] + pub fn trim_start(&self) -> &str { + self.trim_start_matches(|c: char| c.is_whitespace()) + } + + /// Returns a string slice with trailing whitespace removed. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`, which includes newlines. + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. `end` in this context means the last + /// position of that byte string; for a left-to-right language like English or + /// Russian, this will be right side, and for right-to-left languages like + /// Arabic or Hebrew, this will be the left side. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "\n Hello\tworld\t\n"; + /// assert_eq!("\n Hello\tworld", s.trim_end()); + /// ``` + /// + /// Directionality: + /// + /// ``` + /// let s = " English "; + /// assert!(Some('h') == s.trim_end().chars().rev().next()); + /// + /// let s = " עברית "; + /// assert!(Some('ת') == s.trim_end().chars().rev().next()); + /// ``` + #[inline] + #[must_use = "this returns the trimmed string as a new slice, \ + without modifying the original"] + #[stable(feature = "trim_direction", since = "1.30.0")] + #[cfg_attr(not(test), rustc_diagnostic_item = "str_trim_end")] + pub fn trim_end(&self) -> &str { + self.trim_end_matches(|c: char| c.is_whitespace()) + } + + /// Returns a string slice with leading whitespace removed. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`. + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. 'Left' in this context means the first + /// position of that byte string; for a language like Arabic or Hebrew + /// which are 'right to left' rather than 'left to right', this will be + /// the _right_ side, not the left. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = " Hello\tworld\t"; + /// + /// assert_eq!("Hello\tworld\t", s.trim_left()); + /// ``` + /// + /// Directionality: + /// + /// ``` + /// let s = " English"; + /// assert!(Some('E') == s.trim_left().chars().next()); + /// + /// let s = " עברית"; + /// assert!(Some('ע') == s.trim_left().chars().next()); + /// ``` + #[must_use = "this returns the trimmed string as a new slice, \ + without modifying the original"] + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")] + pub fn trim_left(&self) -> &str { + self.trim_start() + } + + /// Returns a string slice with trailing whitespace removed. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`. + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. 'Right' in this context means the last + /// position of that byte string; for a language like Arabic or Hebrew + /// which are 'right to left' rather than 'left to right', this will be + /// the _left_ side, not the right. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = " Hello\tworld\t"; + /// + /// assert_eq!(" Hello\tworld", s.trim_right()); + /// ``` + /// + /// Directionality: + /// + /// ``` + /// let s = "English "; + /// assert!(Some('h') == s.trim_right().chars().rev().next()); + /// + /// let s = "עברית "; + /// assert!(Some('ת') == s.trim_right().chars().rev().next()); + /// ``` + #[must_use = "this returns the trimmed string as a new slice, \ + without modifying the original"] + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")] + pub fn trim_right(&self) -> &str { + self.trim_end() + } + + /// Returns a string slice with all prefixes and suffixes that match a + /// pattern repeatedly removed. + /// + /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function + /// or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar"); + /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar"); + /// + /// let x: &[_] = &['1', '2']; + /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar"); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar"); + /// ``` + #[must_use = "this returns the trimmed string as a new slice, \ + without modifying the original"] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str + where + P: Pattern<'a, Searcher: DoubleEndedSearcher<'a>>, + { + let mut i = 0; + let mut j = 0; + let mut matcher = pat.into_searcher(self); + if let Some((a, b)) = matcher.next_reject() { + i = a; + j = b; // Remember earliest known match, correct it below if + // last match is different + } + if let Some((_, b)) = matcher.next_reject_back() { + j = b; + } + // SAFETY: `Searcher` is known to return valid indices. + unsafe { self.get_unchecked(i..j) } + } + + /// Returns a string slice with all prefixes that match a pattern + /// repeatedly removed. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. `start` in this context means the first + /// position of that byte string; for a left-to-right language like English or + /// Russian, this will be left side, and for right-to-left languages like + /// Arabic or Hebrew, this will be the right side. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11"); + /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123"); + /// + /// let x: &[_] = &['1', '2']; + /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12"); + /// ``` + #[must_use = "this returns the trimmed string as a new slice, \ + without modifying the original"] + #[stable(feature = "trim_direction", since = "1.30.0")] + pub fn trim_start_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str { + let mut i = self.len(); + let mut matcher = pat.into_searcher(self); + if let Some((a, _)) = matcher.next_reject() { + i = a; + } + // SAFETY: `Searcher` is known to return valid indices. + unsafe { self.get_unchecked(i..self.len()) } + } + + /// Returns a string slice with the prefix removed. + /// + /// If the string starts with the pattern `prefix`, returns substring after the prefix, wrapped + /// in `Some`. Unlike `trim_start_matches`, this method removes the prefix exactly once. + /// + /// If the string does not start with `prefix`, returns `None`. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Examples + /// + /// ``` + /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar")); + /// assert_eq!("foo:bar".strip_prefix("bar"), None); + /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo")); + /// ``` + #[must_use = "this returns the remaining substring as a new slice, \ + without modifying the original"] + #[stable(feature = "str_strip", since = "1.45.0")] + pub fn strip_prefix<'a, P: Pattern<'a>>(&'a self, prefix: P) -> Option<&'a str> { + prefix.strip_prefix_of(self) + } + + /// Returns a string slice with the suffix removed. + /// + /// If the string ends with the pattern `suffix`, returns the substring before the suffix, + /// wrapped in `Some`. Unlike `trim_end_matches`, this method removes the suffix exactly once. + /// + /// If the string does not end with `suffix`, returns `None`. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Examples + /// + /// ``` + /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar")); + /// assert_eq!("bar:foo".strip_suffix("bar"), None); + /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo")); + /// ``` + #[must_use = "this returns the remaining substring as a new slice, \ + without modifying the original"] + #[stable(feature = "str_strip", since = "1.45.0")] + pub fn strip_suffix<'a, P>(&'a self, suffix: P) -> Option<&'a str> + where + P: Pattern<'a>, +

>::Searcher: ReverseSearcher<'a>, + { + suffix.strip_suffix_of(self) + } + + /// Returns a string slice with all suffixes that match a pattern + /// repeatedly removed. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. `end` in this context means the last + /// position of that byte string; for a left-to-right language like English or + /// Russian, this will be right side, and for right-to-left languages like + /// Arabic or Hebrew, this will be the left side. + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar"); + /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar"); + /// + /// let x: &[_] = &['1', '2']; + /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar"); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo"); + /// ``` + #[must_use = "this returns the trimmed string as a new slice, \ + without modifying the original"] + #[stable(feature = "trim_direction", since = "1.30.0")] + pub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str + where + P: Pattern<'a, Searcher: ReverseSearcher<'a>>, + { + let mut j = 0; + let mut matcher = pat.into_searcher(self); + if let Some((_, b)) = matcher.next_reject_back() { + j = b; + } + // SAFETY: `Searcher` is known to return valid indices. + unsafe { self.get_unchecked(0..j) } + } + + /// Returns a string slice with all prefixes that match a pattern + /// repeatedly removed. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. 'Left' in this context means the first + /// position of that byte string; for a language like Arabic or Hebrew + /// which are 'right to left' rather than 'left to right', this will be + /// the _right_ side, not the left. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11"); + /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123"); + /// + /// let x: &[_] = &['1', '2']; + /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12"); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[deprecated( + since = "1.33.0", + note = "superseded by `trim_start_matches`", + suggestion = "trim_start_matches" + )] + pub fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str { + self.trim_start_matches(pat) + } + + /// Returns a string slice with all suffixes that match a pattern + /// repeatedly removed. + /// + /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a + /// function or closure that determines if a character matches. + /// + /// [`char`]: prim@char + /// [pattern]: self::pattern + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. 'Right' in this context means the last + /// position of that byte string; for a language like Arabic or Hebrew + /// which are 'right to left' rather than 'left to right', this will be + /// the _left_ side, not the right. + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar"); + /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar"); + /// + /// let x: &[_] = &['1', '2']; + /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar"); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo"); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[deprecated( + since = "1.33.0", + note = "superseded by `trim_end_matches`", + suggestion = "trim_end_matches" + )] + pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str + where + P: Pattern<'a, Searcher: ReverseSearcher<'a>>, + { + self.trim_end_matches(pat) + } + + /// Parses this string slice into another type. + /// + /// Because `parse` is so general, it can cause problems with type + /// inference. As such, `parse` is one of the few times you'll see + /// the syntax affectionately known as the 'turbofish': `::<>`. This + /// helps the inference algorithm understand specifically which type + /// you're trying to parse into. + /// + /// `parse` can parse into any type that implements the [`FromStr`] trait. + + /// + /// # Errors + /// + /// Will return [`Err`] if it's not possible to parse this string slice into + /// the desired type. + /// + /// [`Err`]: FromStr::Err + /// + /// # Examples + /// + /// Basic usage + /// + /// ``` + /// let four: u32 = "4".parse().unwrap(); + /// + /// assert_eq!(4, four); + /// ``` + /// + /// Using the 'turbofish' instead of annotating `four`: + /// + /// ``` + /// let four = "4".parse::(); + /// + /// assert_eq!(Ok(4), four); + /// ``` + /// + /// Failing to parse: + /// + /// ``` + /// let nope = "j".parse::(); + /// + /// assert!(nope.is_err()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn parse(&self) -> Result { + FromStr::from_str(self) + } + + /// Checks if all characters in this string are within the ASCII range. + /// + /// # Examples + /// + /// ``` + /// let ascii = "hello!\n"; + /// let non_ascii = "Grüße, Jürgen ❤"; + /// + /// assert!(ascii.is_ascii()); + /// assert!(!non_ascii.is_ascii()); + /// ``` + #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] + #[must_use] + #[inline] + pub fn is_ascii(&self) -> bool { + // We can treat each byte as character here: all multibyte characters + // start with a byte that is not in the ascii range, so we will stop + // there already. + self.as_bytes().is_ascii() + } + + /// Checks that two strings are an ASCII case-insensitive match. + /// + /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, + /// but without allocating and copying temporaries. + /// + /// # Examples + /// + /// ``` + /// assert!("Ferris".eq_ignore_ascii_case("FERRIS")); + /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS")); + /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS")); + /// ``` + #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] + #[must_use] + #[inline] + pub fn eq_ignore_ascii_case(&self, other: &str) -> bool { + self.as_bytes().eq_ignore_ascii_case(other.as_bytes()) + } + + /// Converts this string to its ASCII upper case equivalent in-place. + /// + /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', + /// but non-ASCII letters are unchanged. + /// + /// To return a new uppercased value without modifying the existing one, use + /// [`to_ascii_uppercase()`]. + /// + /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase + /// + /// # Examples + /// + /// ``` + /// let mut s = String::from("Grüße, Jürgen ❤"); + /// + /// s.make_ascii_uppercase(); + /// + /// assert_eq!("GRüßE, JüRGEN ❤", s); + /// ``` + #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] + #[inline] + pub fn make_ascii_uppercase(&mut self) { + // SAFETY: changing ASCII letters only does not invalidate UTF-8. + let me = unsafe { self.as_bytes_mut() }; + me.make_ascii_uppercase() + } + + /// Converts this string to its ASCII lower case equivalent in-place. + /// + /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', + /// but non-ASCII letters are unchanged. + /// + /// To return a new lowercased value without modifying the existing one, use + /// [`to_ascii_lowercase()`]. + /// + /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase + /// + /// # Examples + /// + /// ``` + /// let mut s = String::from("GRÜßE, JÜRGEN ❤"); + /// + /// s.make_ascii_lowercase(); + /// + /// assert_eq!("grÜße, jÜrgen ❤", s); + /// ``` + #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] + #[inline] + pub fn make_ascii_lowercase(&mut self) { + // SAFETY: changing ASCII letters only does not invalidate UTF-8. + let me = unsafe { self.as_bytes_mut() }; + me.make_ascii_lowercase() + } + + /// Return an iterator that escapes each char in `self` with [`char::escape_debug`]. + /// + /// Note: only extended grapheme codepoints that begin the string will be + /// escaped. + /// + /// # Examples + /// + /// As an iterator: + /// + /// ``` + /// for c in "❤\n!".escape_debug() { + /// print!("{c}"); + /// } + /// println!(); + /// ``` + /// + /// Using `println!` directly: + /// + /// ``` + /// println!("{}", "❤\n!".escape_debug()); + /// ``` + /// + /// + /// Both are equivalent to: + /// + /// ``` + /// println!("❤\\n!"); + /// ``` + /// + /// Using `to_string`: + /// + /// ``` + /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!"); + /// ``` + #[must_use = "this returns the escaped string as an iterator, \ + without modifying the original"] + #[stable(feature = "str_escape", since = "1.34.0")] + pub fn escape_debug(&self) -> EscapeDebug<'_> { + let mut chars = self.chars(); + EscapeDebug { + inner: chars + .next() + .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL)) + .into_iter() + .flatten() + .chain(chars.flat_map(CharEscapeDebugContinue)), + } + } + + /// Return an iterator that escapes each char in `self` with [`char::escape_default`]. + /// + /// # Examples + /// + /// As an iterator: + /// + /// ``` + /// for c in "❤\n!".escape_default() { + /// print!("{c}"); + /// } + /// println!(); + /// ``` + /// + /// Using `println!` directly: + /// + /// ``` + /// println!("{}", "❤\n!".escape_default()); + /// ``` + /// + /// + /// Both are equivalent to: + /// + /// ``` + /// println!("\\u{{2764}}\\n!"); + /// ``` + /// + /// Using `to_string`: + /// + /// ``` + /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!"); + /// ``` + #[must_use = "this returns the escaped string as an iterator, \ + without modifying the original"] + #[stable(feature = "str_escape", since = "1.34.0")] + pub fn escape_default(&self) -> EscapeDefault<'_> { + EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) } + } + + /// Return an iterator that escapes each char in `self` with [`char::escape_unicode`]. + /// + /// # Examples + /// + /// As an iterator: + /// + /// ``` + /// for c in "❤\n!".escape_unicode() { + /// print!("{c}"); + /// } + /// println!(); + /// ``` + /// + /// Using `println!` directly: + /// + /// ``` + /// println!("{}", "❤\n!".escape_unicode()); + /// ``` + /// + /// + /// Both are equivalent to: + /// + /// ``` + /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}"); + /// ``` + /// + /// Using `to_string`: + /// + /// ``` + /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}"); + /// ``` + #[must_use = "this returns the escaped string as an iterator, \ + without modifying the original"] + #[stable(feature = "str_escape", since = "1.34.0")] + pub fn escape_unicode(&self) -> EscapeUnicode<'_> { + EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl AsRef<[u8]> for str { + #[inline] + fn as_ref(&self) -> &[u8] { + self.as_bytes() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")] +impl const Default for &str { + /// Creates an empty str + #[inline] + fn default() -> Self { + "" + } +} + +#[stable(feature = "default_mut_str", since = "1.28.0")] +impl Default for &mut str { + /// Creates an empty mutable str + #[inline] + fn default() -> Self { + // SAFETY: The empty string is valid UTF-8. + unsafe { from_utf8_unchecked_mut(&mut []) } + } +} + +impl_fn_for_zst! { + /// A nameable, cloneable fn type + #[derive(Clone)] + struct LinesAnyMap impl<'a> Fn = |line: &'a str| -> &'a str { + let l = line.len(); + if l > 0 && line.as_bytes()[l - 1] == b'\r' { &line[0 .. l - 1] } + else { line } + }; + + #[derive(Clone)] + struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug { + c.escape_debug_ext(EscapeDebugExtArgs { + escape_grapheme_extended: false, + escape_single_quote: true, + escape_double_quote: true + }) + }; + + #[derive(Clone)] + struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode { + c.escape_unicode() + }; + #[derive(Clone)] + struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault { + c.escape_default() + }; + + #[derive(Clone)] + struct IsWhitespace impl Fn = |c: char| -> bool { + c.is_whitespace() + }; + + #[derive(Clone)] + struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool { + byte.is_ascii_whitespace() + }; + + #[derive(Clone)] + struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool { + !s.is_empty() + }; + + #[derive(Clone)] + struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool { + !s.is_empty() + }; + + #[derive(Clone)] + struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str { + // SAFETY: not safe + unsafe { from_utf8_unchecked(bytes) } + }; +} -- cgit v1.2.3