From 698f8c2f01ea549d77d7dc3338a12e04c11057b9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:02:58 +0200 Subject: Adding upstream version 1.64.0+dfsg1. Signed-off-by: Daniel Baumann --- library/std/src/sync/mpsc/sync.rs | 495 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 495 insertions(+) create mode 100644 library/std/src/sync/mpsc/sync.rs (limited to 'library/std/src/sync/mpsc/sync.rs') diff --git a/library/std/src/sync/mpsc/sync.rs b/library/std/src/sync/mpsc/sync.rs new file mode 100644 index 000000000..733761671 --- /dev/null +++ b/library/std/src/sync/mpsc/sync.rs @@ -0,0 +1,495 @@ +use self::Blocker::*; +/// Synchronous channels/ports +/// +/// This channel implementation differs significantly from the asynchronous +/// implementations found next to it (oneshot/stream/share). This is an +/// implementation of a synchronous, bounded buffer channel. +/// +/// Each channel is created with some amount of backing buffer, and sends will +/// *block* until buffer space becomes available. A buffer size of 0 is valid, +/// which means that every successful send is paired with a successful recv. +/// +/// This flavor of channels defines a new `send_opt` method for channels which +/// is the method by which a message is sent but the thread does not panic if it +/// cannot be delivered. +/// +/// Another major difference is that send() will *always* return back the data +/// if it couldn't be sent. This is because it is deterministically known when +/// the data is received and when it is not received. +/// +/// Implementation-wise, it can all be summed up with "use a mutex plus some +/// logic". The mutex used here is an OS native mutex, meaning that no user code +/// is run inside of the mutex (to prevent context switching). This +/// implementation shares almost all code for the buffered and unbuffered cases +/// of a synchronous channel. There are a few branches for the unbuffered case, +/// but they're mostly just relevant to blocking senders. +pub use self::Failure::*; + +use core::intrinsics::abort; +use core::mem; +use core::ptr; + +use crate::sync::atomic::{AtomicUsize, Ordering}; +use crate::sync::mpsc::blocking::{self, SignalToken, WaitToken}; +use crate::sync::{Mutex, MutexGuard}; +use crate::time::Instant; + +const MAX_REFCOUNT: usize = (isize::MAX) as usize; + +pub struct Packet { + /// Only field outside of the mutex. Just done for kicks, but mainly because + /// the other shared channel already had the code implemented + channels: AtomicUsize, + + lock: Mutex>, +} + +unsafe impl Send for Packet {} + +unsafe impl Sync for Packet {} + +struct State { + disconnected: bool, // Is the channel disconnected yet? + queue: Queue, // queue of senders waiting to send data + blocker: Blocker, // currently blocked thread on this channel + buf: Buffer, // storage for buffered messages + cap: usize, // capacity of this channel + + /// A curious flag used to indicate whether a sender failed or succeeded in + /// blocking. This is used to transmit information back to the thread that it + /// must dequeue its message from the buffer because it was not received. + /// This is only relevant in the 0-buffer case. This obviously cannot be + /// safely constructed, but it's guaranteed to always have a valid pointer + /// value. + canceled: Option<&'static mut bool>, +} + +unsafe impl Send for State {} + +/// Possible flavors of threads who can be blocked on this channel. +enum Blocker { + BlockedSender(SignalToken), + BlockedReceiver(SignalToken), + NoneBlocked, +} + +/// Simple queue for threading threads together. Nodes are stack-allocated, so +/// this structure is not safe at all +struct Queue { + head: *mut Node, + tail: *mut Node, +} + +struct Node { + token: Option, + next: *mut Node, +} + +unsafe impl Send for Node {} + +/// A simple ring-buffer +struct Buffer { + buf: Vec>, + start: usize, + size: usize, +} + +#[derive(Debug)] +pub enum Failure { + Empty, + Disconnected, +} + +/// Atomically blocks the current thread, placing it into `slot`, unlocking `lock` +/// in the meantime. This re-locks the mutex upon returning. +fn wait<'a, 'b, T>( + lock: &'a Mutex>, + mut guard: MutexGuard<'b, State>, + f: fn(SignalToken) -> Blocker, +) -> MutexGuard<'a, State> { + let (wait_token, signal_token) = blocking::tokens(); + match mem::replace(&mut guard.blocker, f(signal_token)) { + NoneBlocked => {} + _ => unreachable!(), + } + drop(guard); // unlock + wait_token.wait(); // block + lock.lock().unwrap() // relock +} + +/// Same as wait, but waiting at most until `deadline`. +fn wait_timeout_receiver<'a, 'b, T>( + lock: &'a Mutex>, + deadline: Instant, + mut guard: MutexGuard<'b, State>, + success: &mut bool, +) -> MutexGuard<'a, State> { + let (wait_token, signal_token) = blocking::tokens(); + match mem::replace(&mut guard.blocker, BlockedReceiver(signal_token)) { + NoneBlocked => {} + _ => unreachable!(), + } + drop(guard); // unlock + *success = wait_token.wait_max_until(deadline); // block + let mut new_guard = lock.lock().unwrap(); // relock + if !*success { + abort_selection(&mut new_guard); + } + new_guard +} + +fn abort_selection(guard: &mut MutexGuard<'_, State>) -> bool { + match mem::replace(&mut guard.blocker, NoneBlocked) { + NoneBlocked => true, + BlockedSender(token) => { + guard.blocker = BlockedSender(token); + true + } + BlockedReceiver(token) => { + drop(token); + false + } + } +} + +/// Wakes up a thread, dropping the lock at the correct time +fn wakeup(token: SignalToken, guard: MutexGuard<'_, State>) { + // We need to be careful to wake up the waiting thread *outside* of the mutex + // in case it incurs a context switch. + drop(guard); + token.signal(); +} + +impl Packet { + pub fn new(capacity: usize) -> Packet { + Packet { + channels: AtomicUsize::new(1), + lock: Mutex::new(State { + disconnected: false, + blocker: NoneBlocked, + cap: capacity, + canceled: None, + queue: Queue { head: ptr::null_mut(), tail: ptr::null_mut() }, + buf: Buffer { + buf: (0..capacity + if capacity == 0 { 1 } else { 0 }).map(|_| None).collect(), + start: 0, + size: 0, + }, + }), + } + } + + // wait until a send slot is available, returning locked access to + // the channel state. + fn acquire_send_slot(&self) -> MutexGuard<'_, State> { + let mut node = Node { token: None, next: ptr::null_mut() }; + loop { + let mut guard = self.lock.lock().unwrap(); + // are we ready to go? + if guard.disconnected || guard.buf.size() < guard.buf.capacity() { + return guard; + } + // no room; actually block + let wait_token = guard.queue.enqueue(&mut node); + drop(guard); + wait_token.wait(); + } + } + + pub fn send(&self, t: T) -> Result<(), T> { + let mut guard = self.acquire_send_slot(); + if guard.disconnected { + return Err(t); + } + guard.buf.enqueue(t); + + match mem::replace(&mut guard.blocker, NoneBlocked) { + // if our capacity is 0, then we need to wait for a receiver to be + // available to take our data. After waiting, we check again to make + // sure the port didn't go away in the meantime. If it did, we need + // to hand back our data. + NoneBlocked if guard.cap == 0 => { + let mut canceled = false; + assert!(guard.canceled.is_none()); + guard.canceled = Some(unsafe { mem::transmute(&mut canceled) }); + let mut guard = wait(&self.lock, guard, BlockedSender); + if canceled { Err(guard.buf.dequeue()) } else { Ok(()) } + } + + // success, we buffered some data + NoneBlocked => Ok(()), + + // success, someone's about to receive our buffered data. + BlockedReceiver(token) => { + wakeup(token, guard); + Ok(()) + } + + BlockedSender(..) => panic!("lolwut"), + } + } + + pub fn try_send(&self, t: T) -> Result<(), super::TrySendError> { + let mut guard = self.lock.lock().unwrap(); + if guard.disconnected { + Err(super::TrySendError::Disconnected(t)) + } else if guard.buf.size() == guard.buf.capacity() { + Err(super::TrySendError::Full(t)) + } else if guard.cap == 0 { + // With capacity 0, even though we have buffer space we can't + // transfer the data unless there's a receiver waiting. + match mem::replace(&mut guard.blocker, NoneBlocked) { + NoneBlocked => Err(super::TrySendError::Full(t)), + BlockedSender(..) => unreachable!(), + BlockedReceiver(token) => { + guard.buf.enqueue(t); + wakeup(token, guard); + Ok(()) + } + } + } else { + // If the buffer has some space and the capacity isn't 0, then we + // just enqueue the data for later retrieval, ensuring to wake up + // any blocked receiver if there is one. + assert!(guard.buf.size() < guard.buf.capacity()); + guard.buf.enqueue(t); + match mem::replace(&mut guard.blocker, NoneBlocked) { + BlockedReceiver(token) => wakeup(token, guard), + NoneBlocked => {} + BlockedSender(..) => unreachable!(), + } + Ok(()) + } + } + + // Receives a message from this channel + // + // When reading this, remember that there can only ever be one receiver at + // time. + pub fn recv(&self, deadline: Option) -> Result { + let mut guard = self.lock.lock().unwrap(); + + let mut woke_up_after_waiting = false; + // Wait for the buffer to have something in it. No need for a + // while loop because we're the only receiver. + if !guard.disconnected && guard.buf.size() == 0 { + if let Some(deadline) = deadline { + guard = + wait_timeout_receiver(&self.lock, deadline, guard, &mut woke_up_after_waiting); + } else { + guard = wait(&self.lock, guard, BlockedReceiver); + woke_up_after_waiting = true; + } + } + + // N.B., channel could be disconnected while waiting, so the order of + // these conditionals is important. + if guard.disconnected && guard.buf.size() == 0 { + return Err(Disconnected); + } + + // Pick up the data, wake up our neighbors, and carry on + assert!(guard.buf.size() > 0 || (deadline.is_some() && !woke_up_after_waiting)); + + if guard.buf.size() == 0 { + return Err(Empty); + } + + let ret = guard.buf.dequeue(); + self.wakeup_senders(woke_up_after_waiting, guard); + Ok(ret) + } + + pub fn try_recv(&self) -> Result { + let mut guard = self.lock.lock().unwrap(); + + // Easy cases first + if guard.disconnected && guard.buf.size() == 0 { + return Err(Disconnected); + } + if guard.buf.size() == 0 { + return Err(Empty); + } + + // Be sure to wake up neighbors + let ret = Ok(guard.buf.dequeue()); + self.wakeup_senders(false, guard); + ret + } + + // Wake up pending senders after some data has been received + // + // * `waited` - flag if the receiver blocked to receive some data, or if it + // just picked up some data on the way out + // * `guard` - the lock guard that is held over this channel's lock + fn wakeup_senders(&self, waited: bool, mut guard: MutexGuard<'_, State>) { + let pending_sender1: Option = guard.queue.dequeue(); + + // If this is a no-buffer channel (cap == 0), then if we didn't wait we + // need to ACK the sender. If we waited, then the sender waking us up + // was already the ACK. + let pending_sender2 = if guard.cap == 0 && !waited { + match mem::replace(&mut guard.blocker, NoneBlocked) { + NoneBlocked => None, + BlockedReceiver(..) => unreachable!(), + BlockedSender(token) => { + guard.canceled.take(); + Some(token) + } + } + } else { + None + }; + mem::drop(guard); + + // only outside of the lock do we wake up the pending threads + if let Some(token) = pending_sender1 { + token.signal(); + } + if let Some(token) = pending_sender2 { + token.signal(); + } + } + + // Prepares this shared packet for a channel clone, essentially just bumping + // a refcount. + pub fn clone_chan(&self) { + let old_count = self.channels.fetch_add(1, Ordering::SeqCst); + + // See comments on Arc::clone() on why we do this (for `mem::forget`). + if old_count > MAX_REFCOUNT { + abort(); + } + } + + pub fn drop_chan(&self) { + // Only flag the channel as disconnected if we're the last channel + match self.channels.fetch_sub(1, Ordering::SeqCst) { + 1 => {} + _ => return, + } + + // Not much to do other than wake up a receiver if one's there + let mut guard = self.lock.lock().unwrap(); + if guard.disconnected { + return; + } + guard.disconnected = true; + match mem::replace(&mut guard.blocker, NoneBlocked) { + NoneBlocked => {} + BlockedSender(..) => unreachable!(), + BlockedReceiver(token) => wakeup(token, guard), + } + } + + pub fn drop_port(&self) { + let mut guard = self.lock.lock().unwrap(); + + if guard.disconnected { + return; + } + guard.disconnected = true; + + // If the capacity is 0, then the sender may want its data back after + // we're disconnected. Otherwise it's now our responsibility to destroy + // the buffered data. As with many other portions of this code, this + // needs to be careful to destroy the data *outside* of the lock to + // prevent deadlock. + let _data = if guard.cap != 0 { mem::take(&mut guard.buf.buf) } else { Vec::new() }; + let mut queue = + mem::replace(&mut guard.queue, Queue { head: ptr::null_mut(), tail: ptr::null_mut() }); + + let waiter = match mem::replace(&mut guard.blocker, NoneBlocked) { + NoneBlocked => None, + BlockedSender(token) => { + *guard.canceled.take().unwrap() = true; + Some(token) + } + BlockedReceiver(..) => unreachable!(), + }; + mem::drop(guard); + + while let Some(token) = queue.dequeue() { + token.signal(); + } + if let Some(token) = waiter { + token.signal(); + } + } +} + +impl Drop for Packet { + fn drop(&mut self) { + assert_eq!(self.channels.load(Ordering::SeqCst), 0); + let mut guard = self.lock.lock().unwrap(); + assert!(guard.queue.dequeue().is_none()); + assert!(guard.canceled.is_none()); + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Buffer, a simple ring buffer backed by Vec +//////////////////////////////////////////////////////////////////////////////// + +impl Buffer { + fn enqueue(&mut self, t: T) { + let pos = (self.start + self.size) % self.buf.len(); + self.size += 1; + let prev = mem::replace(&mut self.buf[pos], Some(t)); + assert!(prev.is_none()); + } + + fn dequeue(&mut self) -> T { + let start = self.start; + self.size -= 1; + self.start = (self.start + 1) % self.buf.len(); + let result = &mut self.buf[start]; + result.take().unwrap() + } + + fn size(&self) -> usize { + self.size + } + fn capacity(&self) -> usize { + self.buf.len() + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Queue, a simple queue to enqueue threads with (stack-allocated nodes) +//////////////////////////////////////////////////////////////////////////////// + +impl Queue { + fn enqueue(&mut self, node: &mut Node) -> WaitToken { + let (wait_token, signal_token) = blocking::tokens(); + node.token = Some(signal_token); + node.next = ptr::null_mut(); + + if self.tail.is_null() { + self.head = node as *mut Node; + self.tail = node as *mut Node; + } else { + unsafe { + (*self.tail).next = node as *mut Node; + self.tail = node as *mut Node; + } + } + + wait_token + } + + fn dequeue(&mut self) -> Option { + if self.head.is_null() { + return None; + } + let node = self.head; + self.head = unsafe { (*node).next }; + if self.head.is_null() { + self.tail = ptr::null_mut(); + } + unsafe { + (*node).next = ptr::null_mut(); + Some((*node).token.take().unwrap()) + } + } +} -- cgit v1.2.3