From 3e3e70d529d8c7d7c4d7bc4fefc9f109393b9245 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:19:43 +0200 Subject: Merging upstream version 1.69.0+dfsg1. Signed-off-by: Daniel Baumann --- .../stdarch/crates/core_arch/src/x86/avx512gfni.rs | 1492 -------------------- 1 file changed, 1492 deletions(-) delete mode 100644 library/stdarch/crates/core_arch/src/x86/avx512gfni.rs (limited to 'library/stdarch/crates/core_arch/src/x86/avx512gfni.rs') diff --git a/library/stdarch/crates/core_arch/src/x86/avx512gfni.rs b/library/stdarch/crates/core_arch/src/x86/avx512gfni.rs deleted file mode 100644 index 66fd1c2e1..000000000 --- a/library/stdarch/crates/core_arch/src/x86/avx512gfni.rs +++ /dev/null @@ -1,1492 +0,0 @@ -//! Galois Field New Instructions (GFNI) -//! -//! The intrinsics here correspond to those in the `immintrin.h` C header. -//! -//! The reference is [Intel 64 and IA-32 Architectures Software Developer's -//! Manual Volume 2: Instruction Set Reference, A-Z][intel64_ref]. -//! -//! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf - -use crate::core_arch::simd::i8x16; -use crate::core_arch::simd::i8x32; -use crate::core_arch::simd::i8x64; -use crate::core_arch::simd_llvm::simd_select_bitmask; -use crate::core_arch::x86::__m128i; -use crate::core_arch::x86::__m256i; -use crate::core_arch::x86::__m512i; -use crate::core_arch::x86::__mmask16; -use crate::core_arch::x86::__mmask32; -use crate::core_arch::x86::__mmask64; -use crate::core_arch::x86::_mm256_setzero_si256; -use crate::core_arch::x86::_mm512_setzero_si512; -use crate::core_arch::x86::_mm_setzero_si128; -use crate::core_arch::x86::m128iExt; -use crate::core_arch::x86::m256iExt; -use crate::core_arch::x86::m512iExt; -use crate::mem::transmute; - -#[cfg(test)] -use stdarch_test::assert_instr; - -#[allow(improper_ctypes)] -extern "C" { - #[link_name = "llvm.x86.vgf2p8affineinvqb.512"] - fn vgf2p8affineinvqb_512(x: i8x64, a: i8x64, imm8: u8) -> i8x64; - #[link_name = "llvm.x86.vgf2p8affineinvqb.256"] - fn vgf2p8affineinvqb_256(x: i8x32, a: i8x32, imm8: u8) -> i8x32; - #[link_name = "llvm.x86.vgf2p8affineinvqb.128"] - fn vgf2p8affineinvqb_128(x: i8x16, a: i8x16, imm8: u8) -> i8x16; - #[link_name = "llvm.x86.vgf2p8affineqb.512"] - fn vgf2p8affineqb_512(x: i8x64, a: i8x64, imm8: u8) -> i8x64; - #[link_name = "llvm.x86.vgf2p8affineqb.256"] - fn vgf2p8affineqb_256(x: i8x32, a: i8x32, imm8: u8) -> i8x32; - #[link_name = "llvm.x86.vgf2p8affineqb.128"] - fn vgf2p8affineqb_128(x: i8x16, a: i8x16, imm8: u8) -> i8x16; - #[link_name = "llvm.x86.vgf2p8mulb.512"] - fn vgf2p8mulb_512(a: i8x64, b: i8x64) -> i8x64; - #[link_name = "llvm.x86.vgf2p8mulb.256"] - fn vgf2p8mulb_256(a: i8x32, b: i8x32) -> i8x32; - #[link_name = "llvm.x86.vgf2p8mulb.128"] - fn vgf2p8mulb_128(a: i8x16, b: i8x16) -> i8x16; -} - -// LLVM requires AVX512BW for a lot of these instructions, see -// https://github.com/llvm/llvm-project/blob/release/9.x/clang/include/clang/Basic/BuiltinsX86.def#L457 -// however our tests also require the target feature list to match Intel's -// which *doesn't* require AVX512BW but only AVX512F, so we added the redundant AVX512F -// requirement (for now) -// also see -// https://github.com/llvm/llvm-project/blob/release/9.x/clang/lib/Headers/gfniintrin.h -// for forcing GFNI, BW and optionally VL extension - -/// Performs a multiplication in GF(2^8) on the packed bytes. -/// The field is in polynomial representation with the reduction polynomial -/// x^8 + x^4 + x^3 + x + 1. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_gf2p8mul_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512f")] -#[cfg_attr(test, assert_instr(vgf2p8mulb))] -pub unsafe fn _mm512_gf2p8mul_epi8(a: __m512i, b: __m512i) -> __m512i { - transmute(vgf2p8mulb_512(a.as_i8x64(), b.as_i8x64())) -} - -/// Performs a multiplication in GF(2^8) on the packed bytes. -/// The field is in polynomial representation with the reduction polynomial -/// x^8 + x^4 + x^3 + x + 1. -/// -/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_gf2p8mul_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512f")] -#[cfg_attr(test, assert_instr(vgf2p8mulb))] -pub unsafe fn _mm512_mask_gf2p8mul_epi8( - src: __m512i, - k: __mmask64, - a: __m512i, - b: __m512i, -) -> __m512i { - transmute(simd_select_bitmask( - k, - vgf2p8mulb_512(a.as_i8x64(), b.as_i8x64()), - src.as_i8x64(), - )) -} - -/// Performs a multiplication in GF(2^8) on the packed bytes. -/// The field is in polynomial representation with the reduction polynomial -/// x^8 + x^4 + x^3 + x + 1. -/// -/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_gf2p8mul_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512f")] -#[cfg_attr(test, assert_instr(vgf2p8mulb))] -pub unsafe fn _mm512_maskz_gf2p8mul_epi8(k: __mmask64, a: __m512i, b: __m512i) -> __m512i { - let zero = _mm512_setzero_si512().as_i8x64(); - transmute(simd_select_bitmask( - k, - vgf2p8mulb_512(a.as_i8x64(), b.as_i8x64()), - zero, - )) -} - -/// Performs a multiplication in GF(2^8) on the packed bytes. -/// The field is in polynomial representation with the reduction polynomial -/// x^8 + x^4 + x^3 + x + 1. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_gf2p8mul_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8mulb))] -pub unsafe fn _mm256_gf2p8mul_epi8(a: __m256i, b: __m256i) -> __m256i { - transmute(vgf2p8mulb_256(a.as_i8x32(), b.as_i8x32())) -} - -/// Performs a multiplication in GF(2^8) on the packed bytes. -/// The field is in polynomial representation with the reduction polynomial -/// x^8 + x^4 + x^3 + x + 1. -/// -/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_gf2p8mul_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8mulb))] -pub unsafe fn _mm256_mask_gf2p8mul_epi8( - src: __m256i, - k: __mmask32, - a: __m256i, - b: __m256i, -) -> __m256i { - transmute(simd_select_bitmask( - k, - vgf2p8mulb_256(a.as_i8x32(), b.as_i8x32()), - src.as_i8x32(), - )) -} - -/// Performs a multiplication in GF(2^8) on the packed bytes. -/// The field is in polynomial representation with the reduction polynomial -/// x^8 + x^4 + x^3 + x + 1. -/// -/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_gf2p8mul_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8mulb))] -pub unsafe fn _mm256_maskz_gf2p8mul_epi8(k: __mmask32, a: __m256i, b: __m256i) -> __m256i { - let zero = _mm256_setzero_si256().as_i8x32(); - transmute(simd_select_bitmask( - k, - vgf2p8mulb_256(a.as_i8x32(), b.as_i8x32()), - zero, - )) -} - -/// Performs a multiplication in GF(2^8) on the packed bytes. -/// The field is in polynomial representation with the reduction polynomial -/// x^8 + x^4 + x^3 + x + 1. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_gf2p8mul_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8mulb))] -pub unsafe fn _mm_gf2p8mul_epi8(a: __m128i, b: __m128i) -> __m128i { - transmute(vgf2p8mulb_128(a.as_i8x16(), b.as_i8x16())) -} - -/// Performs a multiplication in GF(2^8) on the packed bytes. -/// The field is in polynomial representation with the reduction polynomial -/// x^8 + x^4 + x^3 + x + 1. -/// -/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_gf2p8mul_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8mulb))] -pub unsafe fn _mm_mask_gf2p8mul_epi8( - src: __m128i, - k: __mmask16, - a: __m128i, - b: __m128i, -) -> __m128i { - transmute(simd_select_bitmask( - k, - vgf2p8mulb_128(a.as_i8x16(), b.as_i8x16()), - src.as_i8x16(), - )) -} - -/// Performs a multiplication in GF(2^8) on the packed bytes. -/// The field is in polynomial representation with the reduction polynomial -/// x^8 + x^4 + x^3 + x + 1. -/// -/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_gf2p8mul_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8mulb))] -pub unsafe fn _mm_maskz_gf2p8mul_epi8(k: __mmask16, a: __m128i, b: __m128i) -> __m128i { - let zero = _mm_setzero_si128().as_i8x16(); - transmute(simd_select_bitmask( - k, - vgf2p8mulb_128(a.as_i8x16(), b.as_i8x16()), - zero, - )) -} - -/// Performs an affine transformation on the packed bytes in x. -/// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_gf2p8affine_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512f")] -#[cfg_attr(test, assert_instr(vgf2p8affineqb, B = 0))] -#[rustc_legacy_const_generics(2)] -pub unsafe fn _mm512_gf2p8affine_epi64_epi8(x: __m512i, a: __m512i) -> __m512i { - static_assert_imm8!(B); - let b = B as u8; - let x = x.as_i8x64(); - let a = a.as_i8x64(); - let r = vgf2p8affineqb_512(x, a, b); - transmute(r) -} - -/// Performs an affine transformation on the packed bytes in x. -/// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_gf2p8affine_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512f")] -#[cfg_attr(test, assert_instr(vgf2p8affineqb, B = 0))] -#[rustc_legacy_const_generics(3)] -pub unsafe fn _mm512_maskz_gf2p8affine_epi64_epi8( - k: __mmask64, - x: __m512i, - a: __m512i, -) -> __m512i { - static_assert_imm8!(B); - let b = B as u8; - let zero = _mm512_setzero_si512().as_i8x64(); - let x = x.as_i8x64(); - let a = a.as_i8x64(); - let r = vgf2p8affineqb_512(x, a, b); - transmute(simd_select_bitmask(k, r, zero)) -} - -/// Performs an affine transformation on the packed bytes in x. -/// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_gf2p8affine_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512f")] -#[cfg_attr(test, assert_instr(vgf2p8affineqb, B = 0))] -#[rustc_legacy_const_generics(4)] -pub unsafe fn _mm512_mask_gf2p8affine_epi64_epi8( - src: __m512i, - k: __mmask64, - x: __m512i, - a: __m512i, -) -> __m512i { - static_assert_imm8!(B); - let b = B as u8; - let x = x.as_i8x64(); - let a = a.as_i8x64(); - let r = vgf2p8affineqb_512(x, a, b); - transmute(simd_select_bitmask(k, r, src.as_i8x64())) -} - -/// Performs an affine transformation on the packed bytes in x. -/// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_gf2p8affine_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8affineqb, B = 0))] -#[rustc_legacy_const_generics(2)] -pub unsafe fn _mm256_gf2p8affine_epi64_epi8(x: __m256i, a: __m256i) -> __m256i { - static_assert_imm8!(B); - let b = B as u8; - let x = x.as_i8x32(); - let a = a.as_i8x32(); - let r = vgf2p8affineqb_256(x, a, b); - transmute(r) -} - -/// Performs an affine transformation on the packed bytes in x. -/// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_gf2p8affine_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8affineqb, B = 0))] -#[rustc_legacy_const_generics(3)] -pub unsafe fn _mm256_maskz_gf2p8affine_epi64_epi8( - k: __mmask32, - x: __m256i, - a: __m256i, -) -> __m256i { - static_assert_imm8!(B); - let b = B as u8; - let zero = _mm256_setzero_si256().as_i8x32(); - let x = x.as_i8x32(); - let a = a.as_i8x32(); - let r = vgf2p8affineqb_256(x, a, b); - transmute(simd_select_bitmask(k, r, zero)) -} - -/// Performs an affine transformation on the packed bytes in x. -/// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_gf2p8affine_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8affineqb, B = 0))] -#[rustc_legacy_const_generics(4)] -pub unsafe fn _mm256_mask_gf2p8affine_epi64_epi8( - src: __m256i, - k: __mmask32, - x: __m256i, - a: __m256i, -) -> __m256i { - static_assert_imm8!(B); - let b = B as u8; - let x = x.as_i8x32(); - let a = a.as_i8x32(); - let r = vgf2p8affineqb_256(x, a, b); - transmute(simd_select_bitmask(k, r, src.as_i8x32())) -} - -/// Performs an affine transformation on the packed bytes in x. -/// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_gf2p8affine_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8affineqb, B = 0))] -#[rustc_legacy_const_generics(2)] -pub unsafe fn _mm_gf2p8affine_epi64_epi8(x: __m128i, a: __m128i) -> __m128i { - static_assert_imm8!(B); - let b = B as u8; - let x = x.as_i8x16(); - let a = a.as_i8x16(); - let r = vgf2p8affineqb_128(x, a, b); - transmute(r) -} - -/// Performs an affine transformation on the packed bytes in x. -/// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_gf2p8affine_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8affineqb, B = 0))] -#[rustc_legacy_const_generics(3)] -pub unsafe fn _mm_maskz_gf2p8affine_epi64_epi8( - k: __mmask16, - x: __m128i, - a: __m128i, -) -> __m128i { - static_assert_imm8!(B); - let b = B as u8; - let zero = _mm_setzero_si128().as_i8x16(); - let x = x.as_i8x16(); - let a = a.as_i8x16(); - let r = vgf2p8affineqb_128(x, a, b); - transmute(simd_select_bitmask(k, r, zero)) -} - -/// Performs an affine transformation on the packed bytes in x. -/// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_gf2p8affine_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8affineqb, B = 0))] -#[rustc_legacy_const_generics(4)] -pub unsafe fn _mm_mask_gf2p8affine_epi64_epi8( - src: __m128i, - k: __mmask16, - x: __m128i, - a: __m128i, -) -> __m128i { - static_assert_imm8!(B); - let b = B as u8; - let x = x.as_i8x16(); - let a = a.as_i8x16(); - let r = vgf2p8affineqb_128(x, a, b); - transmute(simd_select_bitmask(k, r, src.as_i8x16())) -} - -/// Performs an affine transformation on the inverted packed bytes in x. -/// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. -/// The inverse of 0 is 0. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_gf2p8affineinv_epi64_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512f")] -#[cfg_attr(test, assert_instr(vgf2p8affineinvqb, B = 0))] -#[rustc_legacy_const_generics(2)] -pub unsafe fn _mm512_gf2p8affineinv_epi64_epi8(x: __m512i, a: __m512i) -> __m512i { - static_assert_imm8!(B); - let b = B as u8; - let x = x.as_i8x64(); - let a = a.as_i8x64(); - let r = vgf2p8affineinvqb_512(x, a, b); - transmute(r) -} - -/// Performs an affine transformation on the inverted packed bytes in x. -/// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. -/// The inverse of 0 is 0. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_gf2p8affineinv_epi64_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512f")] -#[cfg_attr(test, assert_instr(vgf2p8affineinvqb, B = 0))] -#[rustc_legacy_const_generics(3)] -pub unsafe fn _mm512_maskz_gf2p8affineinv_epi64_epi8( - k: __mmask64, - x: __m512i, - a: __m512i, -) -> __m512i { - static_assert_imm8!(B); - let b = B as u8; - let zero = _mm512_setzero_si512().as_i8x64(); - let x = x.as_i8x64(); - let a = a.as_i8x64(); - let r = vgf2p8affineinvqb_512(x, a, b); - transmute(simd_select_bitmask(k, r, zero)) -} - -/// Performs an affine transformation on the inverted packed bytes in x. -/// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. -/// The inverse of 0 is 0. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_gf2p8affineinv_epi64_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512f")] -#[cfg_attr(test, assert_instr(vgf2p8affineinvqb, B = 0))] -#[rustc_legacy_const_generics(4)] -pub unsafe fn _mm512_mask_gf2p8affineinv_epi64_epi8( - src: __m512i, - k: __mmask64, - x: __m512i, - a: __m512i, -) -> __m512i { - static_assert_imm8!(B); - let b = B as u8; - let x = x.as_i8x64(); - let a = a.as_i8x64(); - let r = vgf2p8affineinvqb_512(x, a, b); - transmute(simd_select_bitmask(k, r, src.as_i8x64())) -} - -/// Performs an affine transformation on the inverted packed bytes in x. -/// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. -/// The inverse of 0 is 0. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_gf2p8affineinv_epi64_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8affineinvqb, B = 0))] -#[rustc_legacy_const_generics(2)] -pub unsafe fn _mm256_gf2p8affineinv_epi64_epi8(x: __m256i, a: __m256i) -> __m256i { - static_assert_imm8!(B); - let b = B as u8; - let x = x.as_i8x32(); - let a = a.as_i8x32(); - let r = vgf2p8affineinvqb_256(x, a, b); - transmute(r) -} - -/// Performs an affine transformation on the inverted packed bytes in x. -/// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. -/// The inverse of 0 is 0. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_gf2p8affineinv_epi64_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8affineinvqb, B = 0))] -#[rustc_legacy_const_generics(3)] -pub unsafe fn _mm256_maskz_gf2p8affineinv_epi64_epi8( - k: __mmask32, - x: __m256i, - a: __m256i, -) -> __m256i { - static_assert_imm8!(B); - let b = B as u8; - let zero = _mm256_setzero_si256().as_i8x32(); - let x = x.as_i8x32(); - let a = a.as_i8x32(); - let r = vgf2p8affineinvqb_256(x, a, b); - transmute(simd_select_bitmask(k, r, zero)) -} - -/// Performs an affine transformation on the inverted packed bytes in x. -/// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. -/// The inverse of 0 is 0. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_gf2p8affineinv_epi64_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8affineinvqb, B = 0))] -#[rustc_legacy_const_generics(4)] -pub unsafe fn _mm256_mask_gf2p8affineinv_epi64_epi8( - src: __m256i, - k: __mmask32, - x: __m256i, - a: __m256i, -) -> __m256i { - static_assert_imm8!(B); - let b = B as u8; - let x = x.as_i8x32(); - let a = a.as_i8x32(); - let r = vgf2p8affineinvqb_256(x, a, b); - transmute(simd_select_bitmask(k, r, src.as_i8x32())) -} - -/// Performs an affine transformation on the inverted packed bytes in x. -/// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. -/// The inverse of 0 is 0. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_gf2p8affineinv_epi64_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8affineinvqb, B = 0))] -#[rustc_legacy_const_generics(2)] -pub unsafe fn _mm_gf2p8affineinv_epi64_epi8(x: __m128i, a: __m128i) -> __m128i { - static_assert_imm8!(B); - let b = B as u8; - let x = x.as_i8x16(); - let a = a.as_i8x16(); - let r = vgf2p8affineinvqb_128(x, a, b); - transmute(r) -} - -/// Performs an affine transformation on the inverted packed bytes in x. -/// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. -/// The inverse of 0 is 0. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_gf2p8affineinv_epi64_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8affineinvqb, B = 0))] -#[rustc_legacy_const_generics(3)] -pub unsafe fn _mm_maskz_gf2p8affineinv_epi64_epi8( - k: __mmask16, - x: __m128i, - a: __m128i, -) -> __m128i { - static_assert_imm8!(B); - let b = B as u8; - let zero = _mm_setzero_si128().as_i8x16(); - let x = x.as_i8x16(); - let a = a.as_i8x16(); - let r = vgf2p8affineinvqb_128(x, a, b); - transmute(simd_select_bitmask(k, r, zero)) -} - -/// Performs an affine transformation on the inverted packed bytes in x. -/// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix -/// and b being a constant 8-bit immediate value. -/// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. -/// The inverse of 0 is 0. -/// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. -/// -/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. -/// Otherwise the computation result is written into the result. -/// -/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_gf2p8affineinv_epi64_epi8) -#[inline] -#[target_feature(enable = "avx512gfni,avx512bw,avx512vl")] -#[cfg_attr(test, assert_instr(vgf2p8affineinvqb, B = 0))] -#[rustc_legacy_const_generics(4)] -pub unsafe fn _mm_mask_gf2p8affineinv_epi64_epi8( - src: __m128i, - k: __mmask16, - x: __m128i, - a: __m128i, -) -> __m128i { - static_assert_imm8!(B); - let b = B as u8; - let x = x.as_i8x16(); - let a = a.as_i8x16(); - let r = vgf2p8affineinvqb_128(x, a, b); - transmute(simd_select_bitmask(k, r, src.as_i8x16())) -} - -#[cfg(test)] -mod tests { - // The constants in the tests below are just bit patterns. They should not - // be interpreted as integers; signedness does not make sense for them, but - // __mXXXi happens to be defined in terms of signed integers. - #![allow(overflowing_literals)] - - use core::hint::black_box; - use core::intrinsics::size_of; - use stdarch_test::simd_test; - - use crate::core_arch::x86::*; - - fn mulbyte(left: u8, right: u8) -> u8 { - // this implementation follows the description in - // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_gf2p8mul_epi8 - const REDUCTION_POLYNOMIAL: u16 = 0x11b; - let left: u16 = left.into(); - let right: u16 = right.into(); - let mut carryless_product: u16 = 0; - - // Carryless multiplication - for i in 0..8 { - if ((left >> i) & 0x01) != 0 { - carryless_product ^= right << i; - } - } - - // reduction, adding in "0" where appropriate to clear out high bits - // note that REDUCTION_POLYNOMIAL is zero in this context - for i in (8..=14).rev() { - if ((carryless_product >> i) & 0x01) != 0 { - carryless_product ^= REDUCTION_POLYNOMIAL << (i - 8); - } - } - - carryless_product as u8 - } - - const NUM_TEST_WORDS_512: usize = 4; - const NUM_TEST_WORDS_256: usize = NUM_TEST_WORDS_512 * 2; - const NUM_TEST_WORDS_128: usize = NUM_TEST_WORDS_256 * 2; - const NUM_TEST_ENTRIES: usize = NUM_TEST_WORDS_512 * 64; - const NUM_TEST_WORDS_64: usize = NUM_TEST_WORDS_128 * 2; - const NUM_BYTES: usize = 256; - const NUM_BYTES_WORDS_128: usize = NUM_BYTES / 16; - const NUM_BYTES_WORDS_256: usize = NUM_BYTES_WORDS_128 / 2; - const NUM_BYTES_WORDS_512: usize = NUM_BYTES_WORDS_256 / 2; - - fn parity(input: u8) -> u8 { - let mut accumulator = 0; - for i in 0..8 { - accumulator ^= (input >> i) & 0x01; - } - accumulator - } - - fn mat_vec_multiply_affine(matrix: u64, x: u8, b: u8) -> u8 { - // this implementation follows the description in - // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_gf2p8affine_epi64_epi8 - let mut accumulator = 0; - - for bit in 0..8 { - accumulator |= parity(x & matrix.to_le_bytes()[bit]) << (7 - bit); - } - - accumulator ^ b - } - - fn generate_affine_mul_test_data( - immediate: u8, - ) -> ( - [u64; NUM_TEST_WORDS_64], - [u8; NUM_TEST_ENTRIES], - [u8; NUM_TEST_ENTRIES], - ) { - let mut left: [u64; NUM_TEST_WORDS_64] = [0; NUM_TEST_WORDS_64]; - let mut right: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; - let mut result: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; - - for i in 0..NUM_TEST_WORDS_64 { - left[i] = (i as u64) * 103 * 101; - for j in 0..8 { - let j64 = j as u64; - right[i * 8 + j] = ((left[i] + j64) % 256) as u8; - result[i * 8 + j] = mat_vec_multiply_affine(left[i], right[i * 8 + j], immediate); - } - } - - (left, right, result) - } - - fn generate_inv_tests_data() -> ([u8; NUM_BYTES], [u8; NUM_BYTES]) { - let mut input: [u8; NUM_BYTES] = [0; NUM_BYTES]; - let mut result: [u8; NUM_BYTES] = [0; NUM_BYTES]; - - for i in 0..NUM_BYTES { - input[i] = (i % 256) as u8; - result[i] = if i == 0 { 0 } else { 1 }; - } - - (input, result) - } - - const AES_S_BOX: [u8; NUM_BYTES] = [ - 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, - 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, - 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, - 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, - 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, - 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, - 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, - 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, - 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, - 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, - 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, - 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, - 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, - 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, - 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, - 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, - 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, - 0x16, - ]; - - fn generate_byte_mul_test_data() -> ( - [u8; NUM_TEST_ENTRIES], - [u8; NUM_TEST_ENTRIES], - [u8; NUM_TEST_ENTRIES], - ) { - let mut left: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; - let mut right: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; - let mut result: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; - - for i in 0..NUM_TEST_ENTRIES { - left[i] = (i % 256) as u8; - right[i] = left[i].wrapping_mul(101); - result[i] = mulbyte(left[i], right[i]); - } - - (left, right, result) - } - - #[target_feature(enable = "sse2")] - unsafe fn load_m128i_word(data: &[T], word_index: usize) -> __m128i { - let byte_offset = word_index * 16 / size_of::(); - let pointer = data.as_ptr().add(byte_offset) as *const __m128i; - _mm_loadu_si128(black_box(pointer)) - } - - #[target_feature(enable = "avx")] - unsafe fn load_m256i_word(data: &[T], word_index: usize) -> __m256i { - let byte_offset = word_index * 32 / size_of::(); - let pointer = data.as_ptr().add(byte_offset) as *const __m256i; - _mm256_loadu_si256(black_box(pointer)) - } - - #[target_feature(enable = "avx512f")] - unsafe fn load_m512i_word(data: &[T], word_index: usize) -> __m512i { - let byte_offset = word_index * 64 / size_of::(); - let pointer = data.as_ptr().add(byte_offset) as *const i32; - _mm512_loadu_si512(black_box(pointer)) - } - - #[simd_test(enable = "avx512gfni,avx512bw")] - unsafe fn test_mm512_gf2p8mul_epi8() { - let (left, right, expected) = generate_byte_mul_test_data(); - - for i in 0..NUM_TEST_WORDS_512 { - let left = load_m512i_word(&left, i); - let right = load_m512i_word(&right, i); - let expected = load_m512i_word(&expected, i); - let result = _mm512_gf2p8mul_epi8(left, right); - assert_eq_m512i(result, expected); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw")] - unsafe fn test_mm512_maskz_gf2p8mul_epi8() { - let (left, right, _expected) = generate_byte_mul_test_data(); - - for i in 0..NUM_TEST_WORDS_512 { - let left = load_m512i_word(&left, i); - let right = load_m512i_word(&right, i); - let result_zero = _mm512_maskz_gf2p8mul_epi8(0, left, right); - assert_eq_m512i(result_zero, _mm512_setzero_si512()); - let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; - let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; - let expected_result = _mm512_gf2p8mul_epi8(left, right); - let result_masked = _mm512_maskz_gf2p8mul_epi8(mask_bytes, left, right); - let expected_masked = - _mm512_mask_blend_epi32(mask_words, _mm512_setzero_si512(), expected_result); - assert_eq_m512i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw")] - unsafe fn test_mm512_mask_gf2p8mul_epi8() { - let (left, right, _expected) = generate_byte_mul_test_data(); - - for i in 0..NUM_TEST_WORDS_512 { - let left = load_m512i_word(&left, i); - let right = load_m512i_word(&right, i); - let result_left = _mm512_mask_gf2p8mul_epi8(left, 0, left, right); - assert_eq_m512i(result_left, left); - let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; - let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; - let expected_result = _mm512_gf2p8mul_epi8(left, right); - let result_masked = _mm512_mask_gf2p8mul_epi8(left, mask_bytes, left, right); - let expected_masked = _mm512_mask_blend_epi32(mask_words, left, expected_result); - assert_eq_m512i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm256_gf2p8mul_epi8() { - let (left, right, expected) = generate_byte_mul_test_data(); - - for i in 0..NUM_TEST_WORDS_256 { - let left = load_m256i_word(&left, i); - let right = load_m256i_word(&right, i); - let expected = load_m256i_word(&expected, i); - let result = _mm256_gf2p8mul_epi8(left, right); - assert_eq_m256i(result, expected); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm256_maskz_gf2p8mul_epi8() { - let (left, right, _expected) = generate_byte_mul_test_data(); - - for i in 0..NUM_TEST_WORDS_256 { - let left = load_m256i_word(&left, i); - let right = load_m256i_word(&right, i); - let result_zero = _mm256_maskz_gf2p8mul_epi8(0, left, right); - assert_eq_m256i(result_zero, _mm256_setzero_si256()); - let mask_bytes: __mmask32 = 0x0F_F0_FF_00; - const MASK_WORDS: i32 = 0b01_10_11_00; - let expected_result = _mm256_gf2p8mul_epi8(left, right); - let result_masked = _mm256_maskz_gf2p8mul_epi8(mask_bytes, left, right); - let expected_masked = - _mm256_blend_epi32::(_mm256_setzero_si256(), expected_result); - assert_eq_m256i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm256_mask_gf2p8mul_epi8() { - let (left, right, _expected) = generate_byte_mul_test_data(); - - for i in 0..NUM_TEST_WORDS_256 { - let left = load_m256i_word(&left, i); - let right = load_m256i_word(&right, i); - let result_left = _mm256_mask_gf2p8mul_epi8(left, 0, left, right); - assert_eq_m256i(result_left, left); - let mask_bytes: __mmask32 = 0x0F_F0_FF_00; - const MASK_WORDS: i32 = 0b01_10_11_00; - let expected_result = _mm256_gf2p8mul_epi8(left, right); - let result_masked = _mm256_mask_gf2p8mul_epi8(left, mask_bytes, left, right); - let expected_masked = _mm256_blend_epi32::(left, expected_result); - assert_eq_m256i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm_gf2p8mul_epi8() { - let (left, right, expected) = generate_byte_mul_test_data(); - - for i in 0..NUM_TEST_WORDS_128 { - let left = load_m128i_word(&left, i); - let right = load_m128i_word(&right, i); - let expected = load_m128i_word(&expected, i); - let result = _mm_gf2p8mul_epi8(left, right); - assert_eq_m128i(result, expected); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm_maskz_gf2p8mul_epi8() { - let (left, right, _expected) = generate_byte_mul_test_data(); - - for i in 0..NUM_TEST_WORDS_128 { - let left = load_m128i_word(&left, i); - let right = load_m128i_word(&right, i); - let result_zero = _mm_maskz_gf2p8mul_epi8(0, left, right); - assert_eq_m128i(result_zero, _mm_setzero_si128()); - let mask_bytes: __mmask16 = 0x0F_F0; - const MASK_WORDS: i32 = 0b01_10; - let expected_result = _mm_gf2p8mul_epi8(left, right); - let result_masked = _mm_maskz_gf2p8mul_epi8(mask_bytes, left, right); - let expected_masked = - _mm_blend_epi32::(_mm_setzero_si128(), expected_result); - assert_eq_m128i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm_mask_gf2p8mul_epi8() { - let (left, right, _expected) = generate_byte_mul_test_data(); - - for i in 0..NUM_TEST_WORDS_128 { - let left = load_m128i_word(&left, i); - let right = load_m128i_word(&right, i); - let result_left = _mm_mask_gf2p8mul_epi8(left, 0, left, right); - assert_eq_m128i(result_left, left); - let mask_bytes: __mmask16 = 0x0F_F0; - const MASK_WORDS: i32 = 0b01_10; - let expected_result = _mm_gf2p8mul_epi8(left, right); - let result_masked = _mm_mask_gf2p8mul_epi8(left, mask_bytes, left, right); - let expected_masked = _mm_blend_epi32::(left, expected_result); - assert_eq_m128i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw")] - unsafe fn test_mm512_gf2p8affine_epi64_epi8() { - let identity: i64 = 0x01_02_04_08_10_20_40_80; - const IDENTITY_BYTE: i32 = 0; - let constant: i64 = 0; - const CONSTANT_BYTE: i32 = 0x63; - let identity = _mm512_set1_epi64(identity); - let constant = _mm512_set1_epi64(constant); - let constant_reference = _mm512_set1_epi8(CONSTANT_BYTE as i8); - - let (bytes, more_bytes, _) = generate_byte_mul_test_data(); - let (matrices, vectors, references) = generate_affine_mul_test_data(IDENTITY_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_512 { - let data = load_m512i_word(&bytes, i); - let result = _mm512_gf2p8affine_epi64_epi8::(data, identity); - assert_eq_m512i(result, data); - let result = _mm512_gf2p8affine_epi64_epi8::(data, constant); - assert_eq_m512i(result, constant_reference); - let data = load_m512i_word(&more_bytes, i); - let result = _mm512_gf2p8affine_epi64_epi8::(data, identity); - assert_eq_m512i(result, data); - let result = _mm512_gf2p8affine_epi64_epi8::(data, constant); - assert_eq_m512i(result, constant_reference); - - let matrix = load_m512i_word(&matrices, i); - let vector = load_m512i_word(&vectors, i); - let reference = load_m512i_word(&references, i); - - let result = _mm512_gf2p8affine_epi64_epi8::(vector, matrix); - assert_eq_m512i(result, reference); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw")] - unsafe fn test_mm512_maskz_gf2p8affine_epi64_epi8() { - const CONSTANT_BYTE: i32 = 0x63; - let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_512 { - let matrix = load_m512i_word(&matrices, i); - let vector = load_m512i_word(&vectors, i); - let result_zero = - _mm512_maskz_gf2p8affine_epi64_epi8::(0, vector, matrix); - assert_eq_m512i(result_zero, _mm512_setzero_si512()); - let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; - let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; - let expected_result = _mm512_gf2p8affine_epi64_epi8::(vector, matrix); - let result_masked = - _mm512_maskz_gf2p8affine_epi64_epi8::(mask_bytes, vector, matrix); - let expected_masked = - _mm512_mask_blend_epi32(mask_words, _mm512_setzero_si512(), expected_result); - assert_eq_m512i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw")] - unsafe fn test_mm512_mask_gf2p8affine_epi64_epi8() { - const CONSTANT_BYTE: i32 = 0x63; - let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_512 { - let left = load_m512i_word(&vectors, i); - let right = load_m512i_word(&matrices, i); - let result_left = - _mm512_mask_gf2p8affine_epi64_epi8::(left, 0, left, right); - assert_eq_m512i(result_left, left); - let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; - let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; - let expected_result = _mm512_gf2p8affine_epi64_epi8::(left, right); - let result_masked = - _mm512_mask_gf2p8affine_epi64_epi8::(left, mask_bytes, left, right); - let expected_masked = _mm512_mask_blend_epi32(mask_words, left, expected_result); - assert_eq_m512i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm256_gf2p8affine_epi64_epi8() { - let identity: i64 = 0x01_02_04_08_10_20_40_80; - const IDENTITY_BYTE: i32 = 0; - let constant: i64 = 0; - const CONSTANT_BYTE: i32 = 0x63; - let identity = _mm256_set1_epi64x(identity); - let constant = _mm256_set1_epi64x(constant); - let constant_reference = _mm256_set1_epi8(CONSTANT_BYTE as i8); - - let (bytes, more_bytes, _) = generate_byte_mul_test_data(); - let (matrices, vectors, references) = generate_affine_mul_test_data(IDENTITY_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_256 { - let data = load_m256i_word(&bytes, i); - let result = _mm256_gf2p8affine_epi64_epi8::(data, identity); - assert_eq_m256i(result, data); - let result = _mm256_gf2p8affine_epi64_epi8::(data, constant); - assert_eq_m256i(result, constant_reference); - let data = load_m256i_word(&more_bytes, i); - let result = _mm256_gf2p8affine_epi64_epi8::(data, identity); - assert_eq_m256i(result, data); - let result = _mm256_gf2p8affine_epi64_epi8::(data, constant); - assert_eq_m256i(result, constant_reference); - - let matrix = load_m256i_word(&matrices, i); - let vector = load_m256i_word(&vectors, i); - let reference = load_m256i_word(&references, i); - - let result = _mm256_gf2p8affine_epi64_epi8::(vector, matrix); - assert_eq_m256i(result, reference); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm256_maskz_gf2p8affine_epi64_epi8() { - const CONSTANT_BYTE: i32 = 0x63; - let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_256 { - let matrix = load_m256i_word(&matrices, i); - let vector = load_m256i_word(&vectors, i); - let result_zero = - _mm256_maskz_gf2p8affine_epi64_epi8::(0, vector, matrix); - assert_eq_m256i(result_zero, _mm256_setzero_si256()); - let mask_bytes: __mmask32 = 0xFF_0F_F0_00; - const MASK_WORDS: i32 = 0b11_01_10_00; - let expected_result = _mm256_gf2p8affine_epi64_epi8::(vector, matrix); - let result_masked = - _mm256_maskz_gf2p8affine_epi64_epi8::(mask_bytes, vector, matrix); - let expected_masked = - _mm256_blend_epi32::(_mm256_setzero_si256(), expected_result); - assert_eq_m256i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm256_mask_gf2p8affine_epi64_epi8() { - const CONSTANT_BYTE: i32 = 0x63; - let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_256 { - let left = load_m256i_word(&vectors, i); - let right = load_m256i_word(&matrices, i); - let result_left = - _mm256_mask_gf2p8affine_epi64_epi8::(left, 0, left, right); - assert_eq_m256i(result_left, left); - let mask_bytes: __mmask32 = 0xFF_0F_F0_00; - const MASK_WORDS: i32 = 0b11_01_10_00; - let expected_result = _mm256_gf2p8affine_epi64_epi8::(left, right); - let result_masked = - _mm256_mask_gf2p8affine_epi64_epi8::(left, mask_bytes, left, right); - let expected_masked = _mm256_blend_epi32::(left, expected_result); - assert_eq_m256i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm_gf2p8affine_epi64_epi8() { - let identity: i64 = 0x01_02_04_08_10_20_40_80; - const IDENTITY_BYTE: i32 = 0; - let constant: i64 = 0; - const CONSTANT_BYTE: i32 = 0x63; - let identity = _mm_set1_epi64x(identity); - let constant = _mm_set1_epi64x(constant); - let constant_reference = _mm_set1_epi8(CONSTANT_BYTE as i8); - - let (bytes, more_bytes, _) = generate_byte_mul_test_data(); - let (matrices, vectors, references) = generate_affine_mul_test_data(IDENTITY_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_128 { - let data = load_m128i_word(&bytes, i); - let result = _mm_gf2p8affine_epi64_epi8::(data, identity); - assert_eq_m128i(result, data); - let result = _mm_gf2p8affine_epi64_epi8::(data, constant); - assert_eq_m128i(result, constant_reference); - let data = load_m128i_word(&more_bytes, i); - let result = _mm_gf2p8affine_epi64_epi8::(data, identity); - assert_eq_m128i(result, data); - let result = _mm_gf2p8affine_epi64_epi8::(data, constant); - assert_eq_m128i(result, constant_reference); - - let matrix = load_m128i_word(&matrices, i); - let vector = load_m128i_word(&vectors, i); - let reference = load_m128i_word(&references, i); - - let result = _mm_gf2p8affine_epi64_epi8::(vector, matrix); - assert_eq_m128i(result, reference); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm_maskz_gf2p8affine_epi64_epi8() { - const CONSTANT_BYTE: i32 = 0x63; - let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_128 { - let matrix = load_m128i_word(&matrices, i); - let vector = load_m128i_word(&vectors, i); - let result_zero = _mm_maskz_gf2p8affine_epi64_epi8::(0, vector, matrix); - assert_eq_m128i(result_zero, _mm_setzero_si128()); - let mask_bytes: __mmask16 = 0x0F_F0; - const MASK_WORDS: i32 = 0b01_10; - let expected_result = _mm_gf2p8affine_epi64_epi8::(vector, matrix); - let result_masked = - _mm_maskz_gf2p8affine_epi64_epi8::(mask_bytes, vector, matrix); - let expected_masked = - _mm_blend_epi32::(_mm_setzero_si128(), expected_result); - assert_eq_m128i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm_mask_gf2p8affine_epi64_epi8() { - const CONSTANT_BYTE: i32 = 0x63; - let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_128 { - let left = load_m128i_word(&vectors, i); - let right = load_m128i_word(&matrices, i); - let result_left = - _mm_mask_gf2p8affine_epi64_epi8::(left, 0, left, right); - assert_eq_m128i(result_left, left); - let mask_bytes: __mmask16 = 0x0F_F0; - const MASK_WORDS: i32 = 0b01_10; - let expected_result = _mm_gf2p8affine_epi64_epi8::(left, right); - let result_masked = - _mm_mask_gf2p8affine_epi64_epi8::(left, mask_bytes, left, right); - let expected_masked = _mm_blend_epi32::(left, expected_result); - assert_eq_m128i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw")] - unsafe fn test_mm512_gf2p8affineinv_epi64_epi8() { - let identity: i64 = 0x01_02_04_08_10_20_40_80; - const IDENTITY_BYTE: i32 = 0; - const CONSTANT_BYTE: i32 = 0x63; - let identity = _mm512_set1_epi64(identity); - - // validate inversion - let (inputs, results) = generate_inv_tests_data(); - - for i in 0..NUM_BYTES_WORDS_512 { - let input = load_m512i_word(&inputs, i); - let reference = load_m512i_word(&results, i); - let result = _mm512_gf2p8affineinv_epi64_epi8::(input, identity); - let remultiplied = _mm512_gf2p8mul_epi8(result, input); - assert_eq_m512i(remultiplied, reference); - } - - // validate subsequent affine operation - let (matrices, vectors, _affine_expected) = - generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_512 { - let vector = load_m512i_word(&vectors, i); - let matrix = load_m512i_word(&matrices, i); - - let inv_vec = _mm512_gf2p8affineinv_epi64_epi8::(vector, identity); - let reference = _mm512_gf2p8affine_epi64_epi8::(inv_vec, matrix); - let result = _mm512_gf2p8affineinv_epi64_epi8::(vector, matrix); - assert_eq_m512i(result, reference); - } - - // validate everything by virtue of checking against the AES SBox - const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8; - let sbox_matrix = _mm512_set1_epi64(AES_S_BOX_MATRIX); - - for i in 0..NUM_BYTES_WORDS_512 { - let reference = load_m512i_word(&AES_S_BOX, i); - let input = load_m512i_word(&inputs, i); - let result = _mm512_gf2p8affineinv_epi64_epi8::(input, sbox_matrix); - assert_eq_m512i(result, reference); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw")] - unsafe fn test_mm512_maskz_gf2p8affineinv_epi64_epi8() { - const CONSTANT_BYTE: i32 = 0x63; - let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_512 { - let matrix = load_m512i_word(&matrices, i); - let vector = load_m512i_word(&vectors, i); - let result_zero = - _mm512_maskz_gf2p8affineinv_epi64_epi8::(0, vector, matrix); - assert_eq_m512i(result_zero, _mm512_setzero_si512()); - let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; - let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; - let expected_result = _mm512_gf2p8affineinv_epi64_epi8::(vector, matrix); - let result_masked = - _mm512_maskz_gf2p8affineinv_epi64_epi8::(mask_bytes, vector, matrix); - let expected_masked = - _mm512_mask_blend_epi32(mask_words, _mm512_setzero_si512(), expected_result); - assert_eq_m512i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw")] - unsafe fn test_mm512_mask_gf2p8affineinv_epi64_epi8() { - const CONSTANT_BYTE: i32 = 0x63; - let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_512 { - let left = load_m512i_word(&vectors, i); - let right = load_m512i_word(&matrices, i); - let result_left = - _mm512_mask_gf2p8affineinv_epi64_epi8::(left, 0, left, right); - assert_eq_m512i(result_left, left); - let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; - let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; - let expected_result = _mm512_gf2p8affineinv_epi64_epi8::(left, right); - let result_masked = _mm512_mask_gf2p8affineinv_epi64_epi8::( - left, mask_bytes, left, right, - ); - let expected_masked = _mm512_mask_blend_epi32(mask_words, left, expected_result); - assert_eq_m512i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm256_gf2p8affineinv_epi64_epi8() { - let identity: i64 = 0x01_02_04_08_10_20_40_80; - const IDENTITY_BYTE: i32 = 0; - const CONSTANT_BYTE: i32 = 0x63; - let identity = _mm256_set1_epi64x(identity); - - // validate inversion - let (inputs, results) = generate_inv_tests_data(); - - for i in 0..NUM_BYTES_WORDS_256 { - let input = load_m256i_word(&inputs, i); - let reference = load_m256i_word(&results, i); - let result = _mm256_gf2p8affineinv_epi64_epi8::(input, identity); - let remultiplied = _mm256_gf2p8mul_epi8(result, input); - assert_eq_m256i(remultiplied, reference); - } - - // validate subsequent affine operation - let (matrices, vectors, _affine_expected) = - generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_256 { - let vector = load_m256i_word(&vectors, i); - let matrix = load_m256i_word(&matrices, i); - - let inv_vec = _mm256_gf2p8affineinv_epi64_epi8::(vector, identity); - let reference = _mm256_gf2p8affine_epi64_epi8::(inv_vec, matrix); - let result = _mm256_gf2p8affineinv_epi64_epi8::(vector, matrix); - assert_eq_m256i(result, reference); - } - - // validate everything by virtue of checking against the AES SBox - const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8; - let sbox_matrix = _mm256_set1_epi64x(AES_S_BOX_MATRIX); - - for i in 0..NUM_BYTES_WORDS_256 { - let reference = load_m256i_word(&AES_S_BOX, i); - let input = load_m256i_word(&inputs, i); - let result = _mm256_gf2p8affineinv_epi64_epi8::(input, sbox_matrix); - assert_eq_m256i(result, reference); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm256_maskz_gf2p8affineinv_epi64_epi8() { - const CONSTANT_BYTE: i32 = 0x63; - let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_256 { - let matrix = load_m256i_word(&matrices, i); - let vector = load_m256i_word(&vectors, i); - let result_zero = - _mm256_maskz_gf2p8affineinv_epi64_epi8::(0, vector, matrix); - assert_eq_m256i(result_zero, _mm256_setzero_si256()); - let mask_bytes: __mmask32 = 0xFF_0F_F0_00; - const MASK_WORDS: i32 = 0b11_01_10_00; - let expected_result = _mm256_gf2p8affineinv_epi64_epi8::(vector, matrix); - let result_masked = - _mm256_maskz_gf2p8affineinv_epi64_epi8::(mask_bytes, vector, matrix); - let expected_masked = - _mm256_blend_epi32::(_mm256_setzero_si256(), expected_result); - assert_eq_m256i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm256_mask_gf2p8affineinv_epi64_epi8() { - const CONSTANT_BYTE: i32 = 0x63; - let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_256 { - let left = load_m256i_word(&vectors, i); - let right = load_m256i_word(&matrices, i); - let result_left = - _mm256_mask_gf2p8affineinv_epi64_epi8::(left, 0, left, right); - assert_eq_m256i(result_left, left); - let mask_bytes: __mmask32 = 0xFF_0F_F0_00; - const MASK_WORDS: i32 = 0b11_01_10_00; - let expected_result = _mm256_gf2p8affineinv_epi64_epi8::(left, right); - let result_masked = _mm256_mask_gf2p8affineinv_epi64_epi8::( - left, mask_bytes, left, right, - ); - let expected_masked = _mm256_blend_epi32::(left, expected_result); - assert_eq_m256i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm_gf2p8affineinv_epi64_epi8() { - let identity: i64 = 0x01_02_04_08_10_20_40_80; - const IDENTITY_BYTE: i32 = 0; - const CONSTANT_BYTE: i32 = 0x63; - let identity = _mm_set1_epi64x(identity); - - // validate inversion - let (inputs, results) = generate_inv_tests_data(); - - for i in 0..NUM_BYTES_WORDS_128 { - let input = load_m128i_word(&inputs, i); - let reference = load_m128i_word(&results, i); - let result = _mm_gf2p8affineinv_epi64_epi8::(input, identity); - let remultiplied = _mm_gf2p8mul_epi8(result, input); - assert_eq_m128i(remultiplied, reference); - } - - // validate subsequent affine operation - let (matrices, vectors, _affine_expected) = - generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_128 { - let vector = load_m128i_word(&vectors, i); - let matrix = load_m128i_word(&matrices, i); - - let inv_vec = _mm_gf2p8affineinv_epi64_epi8::(vector, identity); - let reference = _mm_gf2p8affine_epi64_epi8::(inv_vec, matrix); - let result = _mm_gf2p8affineinv_epi64_epi8::(vector, matrix); - assert_eq_m128i(result, reference); - } - - // validate everything by virtue of checking against the AES SBox - const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8; - let sbox_matrix = _mm_set1_epi64x(AES_S_BOX_MATRIX); - - for i in 0..NUM_BYTES_WORDS_128 { - let reference = load_m128i_word(&AES_S_BOX, i); - let input = load_m128i_word(&inputs, i); - let result = _mm_gf2p8affineinv_epi64_epi8::(input, sbox_matrix); - assert_eq_m128i(result, reference); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm_maskz_gf2p8affineinv_epi64_epi8() { - const CONSTANT_BYTE: i32 = 0x63; - let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_128 { - let matrix = load_m128i_word(&matrices, i); - let vector = load_m128i_word(&vectors, i); - let result_zero = - _mm_maskz_gf2p8affineinv_epi64_epi8::(0, vector, matrix); - assert_eq_m128i(result_zero, _mm_setzero_si128()); - let mask_bytes: __mmask16 = 0x0F_F0; - const MASK_WORDS: i32 = 0b01_10; - let expected_result = _mm_gf2p8affineinv_epi64_epi8::(vector, matrix); - let result_masked = - _mm_maskz_gf2p8affineinv_epi64_epi8::(mask_bytes, vector, matrix); - let expected_masked = - _mm_blend_epi32::(_mm_setzero_si128(), expected_result); - assert_eq_m128i(result_masked, expected_masked); - } - } - - #[simd_test(enable = "avx512gfni,avx512bw,avx512vl")] - unsafe fn test_mm_mask_gf2p8affineinv_epi64_epi8() { - const CONSTANT_BYTE: i32 = 0x63; - let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); - - for i in 0..NUM_TEST_WORDS_128 { - let left = load_m128i_word(&vectors, i); - let right = load_m128i_word(&matrices, i); - let result_left = - _mm_mask_gf2p8affineinv_epi64_epi8::(left, 0, left, right); - assert_eq_m128i(result_left, left); - let mask_bytes: __mmask16 = 0x0F_F0; - const MASK_WORDS: i32 = 0b01_10; - let expected_result = _mm_gf2p8affineinv_epi64_epi8::(left, right); - let result_masked = - _mm_mask_gf2p8affineinv_epi64_epi8::(left, mask_bytes, left, right); - let expected_masked = _mm_blend_epi32::(left, expected_result); - assert_eq_m128i(result_masked, expected_masked); - } - } -} -- cgit v1.2.3