From 698f8c2f01ea549d77d7dc3338a12e04c11057b9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Wed, 17 Apr 2024 14:02:58 +0200 Subject: Adding upstream version 1.64.0+dfsg1. Signed-off-by: Daniel Baumann --- vendor/compiler_builtins/libm/src/math/fmaf.rs | 106 +++++++++++++++++++++++++ 1 file changed, 106 insertions(+) create mode 100644 vendor/compiler_builtins/libm/src/math/fmaf.rs (limited to 'vendor/compiler_builtins/libm/src/math/fmaf.rs') diff --git a/vendor/compiler_builtins/libm/src/math/fmaf.rs b/vendor/compiler_builtins/libm/src/math/fmaf.rs new file mode 100644 index 000000000..03d371c55 --- /dev/null +++ b/vendor/compiler_builtins/libm/src/math/fmaf.rs @@ -0,0 +1,106 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_fmaf.c */ +/*- + * Copyright (c) 2005-2011 David Schultz + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +use core::f32; +use core::ptr::read_volatile; + +use super::fenv::{ + feclearexcept, fegetround, feraiseexcept, fesetround, fetestexcept, FE_INEXACT, FE_TONEAREST, + FE_TOWARDZERO, FE_UNDERFLOW, +}; + +/* + * Fused multiply-add: Compute x * y + z with a single rounding error. + * + * A double has more than twice as much precision than a float, so + * direct double-precision arithmetic suffices, except where double + * rounding occurs. + */ + +/// Floating multiply add (f32) +/// +/// Computes `(x*y)+z`, rounded as one ternary operation: +/// Computes the value (as if) to infinite precision and rounds once to the result format, +/// according to the rounding mode characterized by the value of FLT_ROUNDS. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaf(x: f32, y: f32, mut z: f32) -> f32 { + let xy: f64; + let mut result: f64; + let mut ui: u64; + let e: i32; + + xy = x as f64 * y as f64; + result = xy + z as f64; + ui = result.to_bits(); + e = (ui >> 52) as i32 & 0x7ff; + /* Common case: The double precision result is fine. */ + if ( + /* not a halfway case */ + ui & 0x1fffffff) != 0x10000000 || + /* NaN */ + e == 0x7ff || + /* exact */ + (result - xy == z as f64 && result - z as f64 == xy) || + /* not round-to-nearest */ + fegetround() != FE_TONEAREST + { + /* + underflow may not be raised correctly, example: + fmaf(0x1p-120f, 0x1p-120f, 0x1p-149f) + */ + if e < 0x3ff - 126 && e >= 0x3ff - 149 && fetestexcept(FE_INEXACT) != 0 { + feclearexcept(FE_INEXACT); + // prevent `xy + vz` from being CSE'd with `xy + z` above + let vz: f32 = unsafe { read_volatile(&z) }; + result = xy + vz as f64; + if fetestexcept(FE_INEXACT) != 0 { + feraiseexcept(FE_UNDERFLOW); + } else { + feraiseexcept(FE_INEXACT); + } + } + z = result as f32; + return z; + } + + /* + * If result is inexact, and exactly halfway between two float values, + * we need to adjust the low-order bit in the direction of the error. + */ + fesetround(FE_TOWARDZERO); + // prevent `vxy + z` from being CSE'd with `xy + z` above + let vxy: f64 = unsafe { read_volatile(&xy) }; + let mut adjusted_result: f64 = vxy + z as f64; + fesetround(FE_TONEAREST); + if result == adjusted_result { + ui = adjusted_result.to_bits(); + ui += 1; + adjusted_result = f64::from_bits(ui); + } + z = adjusted_result as f32; + z +} -- cgit v1.2.3