use super::ResolverAstLoweringExt; use super::{ImplTraitContext, LoweringContext, ParamMode, ParenthesizedGenericArgs}; use crate::{FnDeclKind, ImplTraitPosition}; use rustc_ast::attr; use rustc_ast::ptr::P as AstP; use rustc_ast::*; use rustc_data_structures::stack::ensure_sufficient_stack; use rustc_data_structures::thin_vec::ThinVec; use rustc_errors::struct_span_err; use rustc_hir as hir; use rustc_hir::def::Res; use rustc_hir::definitions::DefPathData; use rustc_span::source_map::{respan, DesugaringKind, Span, Spanned}; use rustc_span::symbol::{sym, Ident}; use rustc_span::DUMMY_SP; impl<'hir> LoweringContext<'_, 'hir> { fn lower_exprs(&mut self, exprs: &[AstP]) -> &'hir [hir::Expr<'hir>] { self.arena.alloc_from_iter(exprs.iter().map(|x| self.lower_expr_mut(x))) } pub(super) fn lower_expr(&mut self, e: &Expr) -> &'hir hir::Expr<'hir> { self.arena.alloc(self.lower_expr_mut(e)) } pub(super) fn lower_expr_mut(&mut self, e: &Expr) -> hir::Expr<'hir> { ensure_sufficient_stack(|| { let kind = match e.kind { ExprKind::Box(ref inner) => hir::ExprKind::Box(self.lower_expr(inner)), ExprKind::Array(ref exprs) => hir::ExprKind::Array(self.lower_exprs(exprs)), ExprKind::ConstBlock(ref anon_const) => { let anon_const = self.lower_anon_const(anon_const); hir::ExprKind::ConstBlock(anon_const) } ExprKind::Repeat(ref expr, ref count) => { let expr = self.lower_expr(expr); let count = self.lower_array_length(count); hir::ExprKind::Repeat(expr, count) } ExprKind::Tup(ref elts) => hir::ExprKind::Tup(self.lower_exprs(elts)), ExprKind::Call(ref f, ref args) => { if e.attrs.get(0).map_or(false, |a| a.has_name(sym::rustc_box)) { if let [inner] = &args[..] && e.attrs.len() == 1 { let kind = hir::ExprKind::Box(self.lower_expr(&inner)); let hir_id = self.lower_node_id(e.id); return hir::Expr { hir_id, kind, span: self.lower_span(e.span) }; } else { self.tcx.sess .struct_span_err( e.span, "#[rustc_box] requires precisely one argument \ and no other attributes are allowed", ) .emit(); hir::ExprKind::Err } } else if let Some(legacy_args) = self.resolver.legacy_const_generic_args(f) { self.lower_legacy_const_generics((**f).clone(), args.clone(), &legacy_args) } else { let f = self.lower_expr(f); hir::ExprKind::Call(f, self.lower_exprs(args)) } } ExprKind::MethodCall(ref seg, ref args, span) => { let hir_seg = self.arena.alloc(self.lower_path_segment( e.span, seg, ParamMode::Optional, ParenthesizedGenericArgs::Err, ImplTraitContext::Disallowed(ImplTraitPosition::Path), )); let args = self.lower_exprs(args); hir::ExprKind::MethodCall(hir_seg, args, self.lower_span(span)) } ExprKind::Binary(binop, ref lhs, ref rhs) => { let binop = self.lower_binop(binop); let lhs = self.lower_expr(lhs); let rhs = self.lower_expr(rhs); hir::ExprKind::Binary(binop, lhs, rhs) } ExprKind::Unary(op, ref ohs) => { let op = self.lower_unop(op); let ohs = self.lower_expr(ohs); hir::ExprKind::Unary(op, ohs) } ExprKind::Lit(ref l) => { hir::ExprKind::Lit(respan(self.lower_span(l.span), l.kind.clone())) } ExprKind::Cast(ref expr, ref ty) => { let expr = self.lower_expr(expr); let ty = self.lower_ty(ty, ImplTraitContext::Disallowed(ImplTraitPosition::Type)); hir::ExprKind::Cast(expr, ty) } ExprKind::Type(ref expr, ref ty) => { let expr = self.lower_expr(expr); let ty = self.lower_ty(ty, ImplTraitContext::Disallowed(ImplTraitPosition::Type)); hir::ExprKind::Type(expr, ty) } ExprKind::AddrOf(k, m, ref ohs) => { let ohs = self.lower_expr(ohs); hir::ExprKind::AddrOf(k, m, ohs) } ExprKind::Let(ref pat, ref scrutinee, span) => { hir::ExprKind::Let(self.arena.alloc(hir::Let { hir_id: self.next_id(), span: self.lower_span(span), pat: self.lower_pat(pat), ty: None, init: self.lower_expr(scrutinee), })) } ExprKind::If(ref cond, ref then, ref else_opt) => { self.lower_expr_if(cond, then, else_opt.as_deref()) } ExprKind::While(ref cond, ref body, opt_label) => { self.with_loop_scope(e.id, |this| { let span = this.mark_span_with_reason(DesugaringKind::WhileLoop, e.span, None); this.lower_expr_while_in_loop_scope(span, cond, body, opt_label) }) } ExprKind::Loop(ref body, opt_label) => self.with_loop_scope(e.id, |this| { hir::ExprKind::Loop( this.lower_block(body, false), this.lower_label(opt_label), hir::LoopSource::Loop, DUMMY_SP, ) }), ExprKind::TryBlock(ref body) => self.lower_expr_try_block(body), ExprKind::Match(ref expr, ref arms) => hir::ExprKind::Match( self.lower_expr(expr), self.arena.alloc_from_iter(arms.iter().map(|x| self.lower_arm(x))), hir::MatchSource::Normal, ), ExprKind::Async(capture_clause, closure_node_id, ref block) => self .make_async_expr( capture_clause, closure_node_id, None, block.span, hir::AsyncGeneratorKind::Block, |this| this.with_new_scopes(|this| this.lower_block_expr(block)), ), ExprKind::Await(ref expr) => { let span = if expr.span.hi() < e.span.hi() { expr.span.shrink_to_hi().with_hi(e.span.hi()) } else { // this is a recovered `await expr` e.span }; self.lower_expr_await(span, expr) } ExprKind::Closure( ref binder, capture_clause, asyncness, movability, ref decl, ref body, fn_decl_span, ) => { if let Async::Yes { closure_id, .. } = asyncness { self.lower_expr_async_closure( binder, capture_clause, e.id, closure_id, decl, body, fn_decl_span, ) } else { self.lower_expr_closure( binder, capture_clause, e.id, movability, decl, body, fn_decl_span, ) } } ExprKind::Block(ref blk, opt_label) => { let opt_label = self.lower_label(opt_label); hir::ExprKind::Block(self.lower_block(blk, opt_label.is_some()), opt_label) } ExprKind::Assign(ref el, ref er, span) => { self.lower_expr_assign(el, er, span, e.span) } ExprKind::AssignOp(op, ref el, ref er) => hir::ExprKind::AssignOp( self.lower_binop(op), self.lower_expr(el), self.lower_expr(er), ), ExprKind::Field(ref el, ident) => { hir::ExprKind::Field(self.lower_expr(el), self.lower_ident(ident)) } ExprKind::Index(ref el, ref er) => { hir::ExprKind::Index(self.lower_expr(el), self.lower_expr(er)) } ExprKind::Range(Some(ref e1), Some(ref e2), RangeLimits::Closed) => { self.lower_expr_range_closed(e.span, e1, e2) } ExprKind::Range(ref e1, ref e2, lims) => { self.lower_expr_range(e.span, e1.as_deref(), e2.as_deref(), lims) } ExprKind::Underscore => { self.tcx .sess.struct_span_err( e.span, "in expressions, `_` can only be used on the left-hand side of an assignment", ) .span_label(e.span, "`_` not allowed here") .emit(); hir::ExprKind::Err } ExprKind::Path(ref qself, ref path) => { let qpath = self.lower_qpath( e.id, qself, path, ParamMode::Optional, ImplTraitContext::Disallowed(ImplTraitPosition::Path), ); hir::ExprKind::Path(qpath) } ExprKind::Break(opt_label, ref opt_expr) => { let opt_expr = opt_expr.as_ref().map(|x| self.lower_expr(x)); hir::ExprKind::Break(self.lower_jump_destination(e.id, opt_label), opt_expr) } ExprKind::Continue(opt_label) => { hir::ExprKind::Continue(self.lower_jump_destination(e.id, opt_label)) } ExprKind::Ret(ref e) => { let e = e.as_ref().map(|x| self.lower_expr(x)); hir::ExprKind::Ret(e) } ExprKind::Yeet(ref sub_expr) => self.lower_expr_yeet(e.span, sub_expr.as_deref()), ExprKind::InlineAsm(ref asm) => { hir::ExprKind::InlineAsm(self.lower_inline_asm(e.span, asm)) } ExprKind::Struct(ref se) => { let rest = match &se.rest { StructRest::Base(e) => Some(self.lower_expr(e)), StructRest::Rest(sp) => { self.tcx .sess .struct_span_err(*sp, "base expression required after `..`") .span_label(*sp, "add a base expression here") .emit(); Some(&*self.arena.alloc(self.expr_err(*sp))) } StructRest::None => None, }; hir::ExprKind::Struct( self.arena.alloc(self.lower_qpath( e.id, &se.qself, &se.path, ParamMode::Optional, ImplTraitContext::Disallowed(ImplTraitPosition::Path), )), self.arena .alloc_from_iter(se.fields.iter().map(|x| self.lower_expr_field(x))), rest, ) } ExprKind::Yield(ref opt_expr) => self.lower_expr_yield(e.span, opt_expr.as_deref()), ExprKind::Err => hir::ExprKind::Err, ExprKind::Try(ref sub_expr) => self.lower_expr_try(e.span, sub_expr), ExprKind::Paren(ref ex) => { let mut ex = self.lower_expr_mut(ex); // Include parens in span, but only if it is a super-span. if e.span.contains(ex.span) { ex.span = self.lower_span(e.span); } // Merge attributes into the inner expression. if !e.attrs.is_empty() { let old_attrs = self.attrs.get(&ex.hir_id.local_id).map(|la| *la).unwrap_or(&[]); self.attrs.insert( ex.hir_id.local_id, &*self.arena.alloc_from_iter( e.attrs .iter() .map(|a| self.lower_attr(a)) .chain(old_attrs.iter().cloned()), ), ); } return ex; } // Desugar `ExprForLoop` // from: `[opt_ident]: for in ` ExprKind::ForLoop(ref pat, ref head, ref body, opt_label) => { return self.lower_expr_for(e, pat, head, body, opt_label); } ExprKind::MacCall(_) => panic!("{:?} shouldn't exist here", e.span), }; let hir_id = self.lower_node_id(e.id); self.lower_attrs(hir_id, &e.attrs); hir::Expr { hir_id, kind, span: self.lower_span(e.span) } }) } fn lower_unop(&mut self, u: UnOp) -> hir::UnOp { match u { UnOp::Deref => hir::UnOp::Deref, UnOp::Not => hir::UnOp::Not, UnOp::Neg => hir::UnOp::Neg, } } fn lower_binop(&mut self, b: BinOp) -> hir::BinOp { Spanned { node: match b.node { BinOpKind::Add => hir::BinOpKind::Add, BinOpKind::Sub => hir::BinOpKind::Sub, BinOpKind::Mul => hir::BinOpKind::Mul, BinOpKind::Div => hir::BinOpKind::Div, BinOpKind::Rem => hir::BinOpKind::Rem, BinOpKind::And => hir::BinOpKind::And, BinOpKind::Or => hir::BinOpKind::Or, BinOpKind::BitXor => hir::BinOpKind::BitXor, BinOpKind::BitAnd => hir::BinOpKind::BitAnd, BinOpKind::BitOr => hir::BinOpKind::BitOr, BinOpKind::Shl => hir::BinOpKind::Shl, BinOpKind::Shr => hir::BinOpKind::Shr, BinOpKind::Eq => hir::BinOpKind::Eq, BinOpKind::Lt => hir::BinOpKind::Lt, BinOpKind::Le => hir::BinOpKind::Le, BinOpKind::Ne => hir::BinOpKind::Ne, BinOpKind::Ge => hir::BinOpKind::Ge, BinOpKind::Gt => hir::BinOpKind::Gt, }, span: self.lower_span(b.span), } } fn lower_legacy_const_generics( &mut self, mut f: Expr, args: Vec>, legacy_args_idx: &[usize], ) -> hir::ExprKind<'hir> { let ExprKind::Path(None, ref mut path) = f.kind else { unreachable!(); }; // Split the arguments into const generics and normal arguments let mut real_args = vec![]; let mut generic_args = vec![]; for (idx, arg) in args.into_iter().enumerate() { if legacy_args_idx.contains(&idx) { let parent_def_id = self.current_hir_id_owner; let node_id = self.next_node_id(); // Add a definition for the in-band const def. self.create_def(parent_def_id, node_id, DefPathData::AnonConst); let anon_const = AnonConst { id: node_id, value: arg }; generic_args.push(AngleBracketedArg::Arg(GenericArg::Const(anon_const))); } else { real_args.push(arg); } } // Add generic args to the last element of the path. let last_segment = path.segments.last_mut().unwrap(); assert!(last_segment.args.is_none()); last_segment.args = Some(AstP(GenericArgs::AngleBracketed(AngleBracketedArgs { span: DUMMY_SP, args: generic_args, }))); // Now lower everything as normal. let f = self.lower_expr(&f); hir::ExprKind::Call(f, self.lower_exprs(&real_args)) } fn lower_expr_if( &mut self, cond: &Expr, then: &Block, else_opt: Option<&Expr>, ) -> hir::ExprKind<'hir> { let lowered_cond = self.lower_expr(cond); let new_cond = self.manage_let_cond(lowered_cond); let then_expr = self.lower_block_expr(then); if let Some(rslt) = else_opt { hir::ExprKind::If(new_cond, self.arena.alloc(then_expr), Some(self.lower_expr(rslt))) } else { hir::ExprKind::If(new_cond, self.arena.alloc(then_expr), None) } } // If `cond` kind is `let`, returns `let`. Otherwise, wraps and returns `cond` // in a temporary block. fn manage_let_cond(&mut self, cond: &'hir hir::Expr<'hir>) -> &'hir hir::Expr<'hir> { fn has_let_expr<'hir>(expr: &'hir hir::Expr<'hir>) -> bool { match expr.kind { hir::ExprKind::Binary(_, lhs, rhs) => has_let_expr(lhs) || has_let_expr(rhs), hir::ExprKind::Let(..) => true, _ => false, } } if has_let_expr(cond) { cond } else { let reason = DesugaringKind::CondTemporary; let span_block = self.mark_span_with_reason(reason, cond.span, None); self.expr_drop_temps(span_block, cond, AttrVec::new()) } } // We desugar: `'label: while $cond $body` into: // // ``` // 'label: loop { // if { let _t = $cond; _t } { // $body // } // else { // break; // } // } // ``` // // Wrap in a construct equivalent to `{ let _t = $cond; _t }` // to preserve drop semantics since `while $cond { ... }` does not // let temporaries live outside of `cond`. fn lower_expr_while_in_loop_scope( &mut self, span: Span, cond: &Expr, body: &Block, opt_label: Option