use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::sorted_map::SortedMap; use rustc_hir as hir; use rustc_hir::def_id::LocalDefId; use rustc_hir::definitions; use rustc_hir::intravisit::{self, Visitor}; use rustc_hir::*; use rustc_index::vec::{Idx, IndexVec}; use rustc_middle::span_bug; use rustc_session::Session; use rustc_span::source_map::SourceMap; use rustc_span::{Span, DUMMY_SP}; /// A visitor that walks over the HIR and collects `Node`s into a HIR map. pub(super) struct NodeCollector<'a, 'hir> { /// Source map source_map: &'a SourceMap, bodies: &'a SortedMap>, /// Outputs nodes: IndexVec>>, parenting: FxHashMap, /// The parent of this node parent_node: hir::ItemLocalId, owner: OwnerId, definitions: &'a definitions::Definitions, } #[instrument(level = "debug", skip(sess, definitions, bodies))] pub(super) fn index_hir<'hir>( sess: &Session, definitions: &definitions::Definitions, item: hir::OwnerNode<'hir>, bodies: &SortedMap>, ) -> (IndexVec>>, FxHashMap) { let mut nodes = IndexVec::new(); // This node's parent should never be accessed: the owner's parent is computed by the // hir_owner_parent query. Make it invalid (= ItemLocalId::MAX) to force an ICE whenever it is // used. nodes.push(Some(ParentedNode { parent: ItemLocalId::INVALID, node: item.into() })); let mut collector = NodeCollector { source_map: sess.source_map(), definitions, owner: item.def_id(), parent_node: ItemLocalId::new(0), nodes, bodies, parenting: FxHashMap::default(), }; match item { OwnerNode::Crate(citem) => { collector.visit_mod(&citem, citem.spans.inner_span, hir::CRATE_HIR_ID) } OwnerNode::Item(item) => collector.visit_item(item), OwnerNode::TraitItem(item) => collector.visit_trait_item(item), OwnerNode::ImplItem(item) => collector.visit_impl_item(item), OwnerNode::ForeignItem(item) => collector.visit_foreign_item(item), }; (collector.nodes, collector.parenting) } impl<'a, 'hir> NodeCollector<'a, 'hir> { #[instrument(level = "debug", skip(self))] fn insert(&mut self, span: Span, hir_id: HirId, node: Node<'hir>) { debug_assert_eq!(self.owner, hir_id.owner); debug_assert_ne!(hir_id.local_id.as_u32(), 0); debug_assert_ne!(hir_id.local_id, self.parent_node); // Make sure that the DepNode of some node coincides with the HirId // owner of that node. if cfg!(debug_assertions) { if hir_id.owner != self.owner { span_bug!( span, "inconsistent HirId at `{:?}` for `{:?}`: \ current_dep_node_owner={} ({:?}), hir_id.owner={} ({:?})", self.source_map.span_to_diagnostic_string(span), node, self.definitions.def_path(self.owner.def_id).to_string_no_crate_verbose(), self.owner, self.definitions.def_path(hir_id.owner.def_id).to_string_no_crate_verbose(), hir_id.owner, ) } } self.nodes.insert(hir_id.local_id, ParentedNode { parent: self.parent_node, node: node }); } fn with_parent(&mut self, parent_node_id: HirId, f: F) { debug_assert_eq!(parent_node_id.owner, self.owner); let parent_node = self.parent_node; self.parent_node = parent_node_id.local_id; f(self); self.parent_node = parent_node; } fn insert_nested(&mut self, item: LocalDefId) { self.parenting.insert(item, self.parent_node); } } impl<'a, 'hir> Visitor<'hir> for NodeCollector<'a, 'hir> { /// Because we want to track parent items and so forth, enable /// deep walking so that we walk nested items in the context of /// their outer items. fn visit_nested_item(&mut self, item: ItemId) { debug!("visit_nested_item: {:?}", item); self.insert_nested(item.owner_id.def_id); } fn visit_nested_trait_item(&mut self, item_id: TraitItemId) { self.insert_nested(item_id.owner_id.def_id); } fn visit_nested_impl_item(&mut self, item_id: ImplItemId) { self.insert_nested(item_id.owner_id.def_id); } fn visit_nested_foreign_item(&mut self, foreign_id: ForeignItemId) { self.insert_nested(foreign_id.owner_id.def_id); } fn visit_nested_body(&mut self, id: BodyId) { debug_assert_eq!(id.hir_id.owner, self.owner); let body = self.bodies[&id.hir_id.local_id]; self.visit_body(body); } fn visit_param(&mut self, param: &'hir Param<'hir>) { let node = Node::Param(param); self.insert(param.pat.span, param.hir_id, node); self.with_parent(param.hir_id, |this| { intravisit::walk_param(this, param); }); } #[instrument(level = "debug", skip(self))] fn visit_item(&mut self, i: &'hir Item<'hir>) { debug_assert_eq!(i.owner_id, self.owner); self.with_parent(i.hir_id(), |this| { if let ItemKind::Struct(struct_def, _) = &i.kind { // If this is a tuple or unit-like struct, register the constructor. if let Some(ctor_hir_id) = struct_def.ctor_hir_id() { this.insert(i.span, ctor_hir_id, Node::Ctor(struct_def)); } } intravisit::walk_item(this, i); }); } #[instrument(level = "debug", skip(self))] fn visit_foreign_item(&mut self, fi: &'hir ForeignItem<'hir>) { debug_assert_eq!(fi.owner_id, self.owner); self.with_parent(fi.hir_id(), |this| { intravisit::walk_foreign_item(this, fi); }); } fn visit_generic_param(&mut self, param: &'hir GenericParam<'hir>) { self.insert(param.span, param.hir_id, Node::GenericParam(param)); intravisit::walk_generic_param(self, param); } fn visit_const_param_default(&mut self, param: HirId, ct: &'hir AnonConst) { self.with_parent(param, |this| { intravisit::walk_const_param_default(this, ct); }) } #[instrument(level = "debug", skip(self))] fn visit_trait_item(&mut self, ti: &'hir TraitItem<'hir>) { debug_assert_eq!(ti.owner_id, self.owner); self.with_parent(ti.hir_id(), |this| { intravisit::walk_trait_item(this, ti); }); } #[instrument(level = "debug", skip(self))] fn visit_impl_item(&mut self, ii: &'hir ImplItem<'hir>) { debug_assert_eq!(ii.owner_id, self.owner); self.with_parent(ii.hir_id(), |this| { intravisit::walk_impl_item(this, ii); }); } fn visit_pat(&mut self, pat: &'hir Pat<'hir>) { self.insert(pat.span, pat.hir_id, Node::Pat(pat)); self.with_parent(pat.hir_id, |this| { intravisit::walk_pat(this, pat); }); } fn visit_pat_field(&mut self, field: &'hir PatField<'hir>) { self.insert(field.span, field.hir_id, Node::PatField(field)); self.with_parent(field.hir_id, |this| { intravisit::walk_pat_field(this, field); }); } fn visit_arm(&mut self, arm: &'hir Arm<'hir>) { let node = Node::Arm(arm); self.insert(arm.span, arm.hir_id, node); self.with_parent(arm.hir_id, |this| { intravisit::walk_arm(this, arm); }); } fn visit_anon_const(&mut self, constant: &'hir AnonConst) { self.insert(DUMMY_SP, constant.hir_id, Node::AnonConst(constant)); self.with_parent(constant.hir_id, |this| { intravisit::walk_anon_const(this, constant); }); } fn visit_expr(&mut self, expr: &'hir Expr<'hir>) { self.insert(expr.span, expr.hir_id, Node::Expr(expr)); self.with_parent(expr.hir_id, |this| { intravisit::walk_expr(this, expr); }); } fn visit_expr_field(&mut self, field: &'hir ExprField<'hir>) { self.insert(field.span, field.hir_id, Node::ExprField(field)); self.with_parent(field.hir_id, |this| { intravisit::walk_expr_field(this, field); }); } fn visit_stmt(&mut self, stmt: &'hir Stmt<'hir>) { self.insert(stmt.span, stmt.hir_id, Node::Stmt(stmt)); self.with_parent(stmt.hir_id, |this| { intravisit::walk_stmt(this, stmt); }); } fn visit_path_segment(&mut self, path_segment: &'hir PathSegment<'hir>) { self.insert(path_segment.ident.span, path_segment.hir_id, Node::PathSegment(path_segment)); intravisit::walk_path_segment(self, path_segment); } fn visit_ty(&mut self, ty: &'hir Ty<'hir>) { self.insert(ty.span, ty.hir_id, Node::Ty(ty)); self.with_parent(ty.hir_id, |this| { intravisit::walk_ty(this, ty); }); } fn visit_infer(&mut self, inf: &'hir InferArg) { self.insert(inf.span, inf.hir_id, Node::Infer(inf)); self.with_parent(inf.hir_id, |this| { intravisit::walk_inf(this, inf); }); } fn visit_trait_ref(&mut self, tr: &'hir TraitRef<'hir>) { self.insert(tr.path.span, tr.hir_ref_id, Node::TraitRef(tr)); self.with_parent(tr.hir_ref_id, |this| { intravisit::walk_trait_ref(this, tr); }); } fn visit_block(&mut self, block: &'hir Block<'hir>) { self.insert(block.span, block.hir_id, Node::Block(block)); self.with_parent(block.hir_id, |this| { intravisit::walk_block(this, block); }); } fn visit_local(&mut self, l: &'hir Local<'hir>) { self.insert(l.span, l.hir_id, Node::Local(l)); self.with_parent(l.hir_id, |this| { intravisit::walk_local(this, l); }) } fn visit_lifetime(&mut self, lifetime: &'hir Lifetime) { self.insert(lifetime.ident.span, lifetime.hir_id, Node::Lifetime(lifetime)); } fn visit_variant(&mut self, v: &'hir Variant<'hir>) { self.insert(v.span, v.hir_id, Node::Variant(v)); self.with_parent(v.hir_id, |this| { // Register the constructor of this variant. if let Some(ctor_hir_id) = v.data.ctor_hir_id() { this.insert(v.span, ctor_hir_id, Node::Ctor(&v.data)); } intravisit::walk_variant(this, v); }); } fn visit_field_def(&mut self, field: &'hir FieldDef<'hir>) { self.insert(field.span, field.hir_id, Node::Field(field)); self.with_parent(field.hir_id, |this| { intravisit::walk_field_def(this, field); }); } fn visit_assoc_type_binding(&mut self, type_binding: &'hir TypeBinding<'hir>) { self.insert(type_binding.span, type_binding.hir_id, Node::TypeBinding(type_binding)); self.with_parent(type_binding.hir_id, |this| { intravisit::walk_assoc_type_binding(this, type_binding) }) } fn visit_trait_item_ref(&mut self, ii: &'hir TraitItemRef) { // Do not visit the duplicate information in TraitItemRef. We want to // map the actual nodes, not the duplicate ones in the *Ref. let TraitItemRef { id, ident: _, kind: _, span: _ } = *ii; self.visit_nested_trait_item(id); } fn visit_impl_item_ref(&mut self, ii: &'hir ImplItemRef) { // Do not visit the duplicate information in ImplItemRef. We want to // map the actual nodes, not the duplicate ones in the *Ref. let ImplItemRef { id, ident: _, kind: _, span: _, trait_item_def_id: _ } = *ii; self.visit_nested_impl_item(id); } fn visit_foreign_item_ref(&mut self, fi: &'hir ForeignItemRef) { // Do not visit the duplicate information in ForeignItemRef. We want to // map the actual nodes, not the duplicate ones in the *Ref. let ForeignItemRef { id, ident: _, span: _ } = *fi; self.visit_nested_foreign_item(id); } }