#![deny(rustc::untranslatable_diagnostic)] #![deny(rustc::diagnostic_outside_of_impl)] //! The entry point of the NLL borrow checker. use rustc_data_structures::vec_map::VecMap; use rustc_hir::def_id::LocalDefId; use rustc_index::vec::IndexVec; use rustc_infer::infer::InferCtxt; use rustc_middle::mir::{create_dump_file, dump_enabled, dump_mir, PassWhere}; use rustc_middle::mir::{ BasicBlock, Body, ClosureOutlivesSubject, ClosureRegionRequirements, LocalKind, Location, Promoted, }; use rustc_middle::ty::{self, OpaqueHiddenType, Region, RegionVid}; use rustc_span::symbol::sym; use std::env; use std::fmt::Debug; use std::io; use std::path::PathBuf; use std::rc::Rc; use std::str::FromStr; use polonius_engine::{Algorithm, Output}; use rustc_mir_dataflow::impls::MaybeInitializedPlaces; use rustc_mir_dataflow::move_paths::{InitKind, InitLocation, MoveData}; use rustc_mir_dataflow::ResultsCursor; use crate::{ borrow_set::BorrowSet, constraint_generation, diagnostics::RegionErrors, facts::{AllFacts, AllFactsExt, RustcFacts}, invalidation, location::LocationTable, region_infer::{values::RegionValueElements, RegionInferenceContext}, renumber, type_check::{self, MirTypeckRegionConstraints, MirTypeckResults}, universal_regions::UniversalRegions, Upvar, }; pub type PoloniusOutput = Output; /// The output of `nll::compute_regions`. This includes the computed `RegionInferenceContext`, any /// closure requirements to propagate, and any generated errors. pub(crate) struct NllOutput<'tcx> { pub regioncx: RegionInferenceContext<'tcx>, pub opaque_type_values: VecMap>, pub polonius_input: Option>, pub polonius_output: Option>, pub opt_closure_req: Option>, pub nll_errors: RegionErrors<'tcx>, } /// Rewrites the regions in the MIR to use NLL variables, also scraping out the set of universal /// regions (e.g., region parameters) declared on the function. That set will need to be given to /// `compute_regions`. #[instrument(skip(infcx, param_env, body, promoted), level = "debug")] pub(crate) fn replace_regions_in_mir<'tcx>( infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, body: &mut Body<'tcx>, promoted: &mut IndexVec>, ) -> UniversalRegions<'tcx> { let def = body.source.with_opt_param().as_local().unwrap(); debug!(?def); // Compute named region information. This also renumbers the inputs/outputs. let universal_regions = UniversalRegions::new(infcx, def, param_env); // Replace all remaining regions with fresh inference variables. renumber::renumber_mir(infcx, body, promoted); dump_mir(infcx.tcx, false, "renumber", &0, body, |_, _| Ok(())); universal_regions } // This function populates an AllFacts instance with base facts related to // MovePaths and needed for the move analysis. fn populate_polonius_move_facts( all_facts: &mut AllFacts, move_data: &MoveData<'_>, location_table: &LocationTable, body: &Body<'_>, ) { all_facts .path_is_var .extend(move_data.rev_lookup.iter_locals_enumerated().map(|(l, r)| (r, l))); for (child, move_path) in move_data.move_paths.iter_enumerated() { if let Some(parent) = move_path.parent { all_facts.child_path.push((child, parent)); } } let fn_entry_start = location_table .start_index(Location { block: BasicBlock::from_u32(0u32), statement_index: 0 }); // initialized_at for init in move_data.inits.iter() { match init.location { InitLocation::Statement(location) => { let block_data = &body[location.block]; let is_terminator = location.statement_index == block_data.statements.len(); if is_terminator && init.kind == InitKind::NonPanicPathOnly { // We are at the terminator of an init that has a panic path, // and where the init should not happen on panic for successor in block_data.terminator().successors() { if body[successor].is_cleanup { continue; } // The initialization happened in (or rather, when arriving at) // the successors, but not in the unwind block. let first_statement = Location { block: successor, statement_index: 0 }; all_facts .path_assigned_at_base .push((init.path, location_table.start_index(first_statement))); } } else { // In all other cases, the initialization just happens at the // midpoint, like any other effect. all_facts .path_assigned_at_base .push((init.path, location_table.mid_index(location))); } } // Arguments are initialized on function entry InitLocation::Argument(local) => { assert!(body.local_kind(local) == LocalKind::Arg); all_facts.path_assigned_at_base.push((init.path, fn_entry_start)); } } } for (local, path) in move_data.rev_lookup.iter_locals_enumerated() { if body.local_kind(local) != LocalKind::Arg { // Non-arguments start out deinitialised; we simulate this with an // initial move: all_facts.path_moved_at_base.push((path, fn_entry_start)); } } // moved_out_at // deinitialisation is assumed to always happen! all_facts .path_moved_at_base .extend(move_data.moves.iter().map(|mo| (mo.path, location_table.mid_index(mo.source)))); } /// Computes the (non-lexical) regions from the input MIR. /// /// This may result in errors being reported. pub(crate) fn compute_regions<'cx, 'tcx>( infcx: &InferCtxt<'tcx>, universal_regions: UniversalRegions<'tcx>, body: &Body<'tcx>, promoted: &IndexVec>, location_table: &LocationTable, param_env: ty::ParamEnv<'tcx>, flow_inits: &mut ResultsCursor<'cx, 'tcx, MaybeInitializedPlaces<'cx, 'tcx>>, move_data: &MoveData<'tcx>, borrow_set: &BorrowSet<'tcx>, upvars: &[Upvar<'tcx>], use_polonius: bool, ) -> NllOutput<'tcx> { let mut all_facts = (use_polonius || AllFacts::enabled(infcx.tcx)).then_some(AllFacts::default()); let universal_regions = Rc::new(universal_regions); let elements = &Rc::new(RegionValueElements::new(&body)); // Run the MIR type-checker. let MirTypeckResults { constraints, universal_region_relations, opaque_type_values } = type_check::type_check( infcx, param_env, body, promoted, &universal_regions, location_table, borrow_set, &mut all_facts, flow_inits, move_data, elements, upvars, use_polonius, ); if let Some(all_facts) = &mut all_facts { let _prof_timer = infcx.tcx.prof.generic_activity("polonius_fact_generation"); all_facts.universal_region.extend(universal_regions.universal_regions()); populate_polonius_move_facts(all_facts, move_data, location_table, &body); // Emit universal regions facts, and their relations, for Polonius. // // 1: universal regions are modeled in Polonius as a pair: // - the universal region vid itself. // - a "placeholder loan" associated to this universal region. Since they don't exist in // the `borrow_set`, their `BorrowIndex` are synthesized as the universal region index // added to the existing number of loans, as if they succeeded them in the set. // let borrow_count = borrow_set.len(); debug!( "compute_regions: polonius placeholders, num_universals={}, borrow_count={}", universal_regions.len(), borrow_count ); for universal_region in universal_regions.universal_regions() { let universal_region_idx = universal_region.index(); let placeholder_loan_idx = borrow_count + universal_region_idx; all_facts.placeholder.push((universal_region, placeholder_loan_idx.into())); } // 2: the universal region relations `outlives` constraints are emitted as // `known_placeholder_subset` facts. for (fr1, fr2) in universal_region_relations.known_outlives() { if fr1 != fr2 { debug!( "compute_regions: emitting polonius `known_placeholder_subset` \ fr1={:?}, fr2={:?}", fr1, fr2 ); all_facts.known_placeholder_subset.push((fr1, fr2)); } } } // Create the region inference context, taking ownership of the // region inference data that was contained in `infcx`, and the // base constraints generated by the type-check. let var_origins = infcx.take_region_var_origins(); let MirTypeckRegionConstraints { placeholder_indices, placeholder_index_to_region: _, mut liveness_constraints, outlives_constraints, member_constraints, universe_causes, type_tests, } = constraints; let placeholder_indices = Rc::new(placeholder_indices); constraint_generation::generate_constraints( infcx, &mut liveness_constraints, &mut all_facts, location_table, &body, borrow_set, ); let mut regioncx = RegionInferenceContext::new( var_origins, universal_regions, placeholder_indices, universal_region_relations, outlives_constraints, member_constraints, universe_causes, type_tests, liveness_constraints, elements, ); // Generate various additional constraints. invalidation::generate_invalidates(infcx.tcx, &mut all_facts, location_table, body, borrow_set); let def_id = body.source.def_id(); // Dump facts if requested. let polonius_output = all_facts.as_ref().and_then(|all_facts| { if infcx.tcx.sess.opts.unstable_opts.nll_facts { let def_path = infcx.tcx.def_path(def_id); let dir_path = PathBuf::from(&infcx.tcx.sess.opts.unstable_opts.nll_facts_dir) .join(def_path.to_filename_friendly_no_crate()); all_facts.write_to_dir(dir_path, location_table).unwrap(); } if use_polonius { let algorithm = env::var("POLONIUS_ALGORITHM").unwrap_or_else(|_| String::from("Hybrid")); let algorithm = Algorithm::from_str(&algorithm).unwrap(); debug!("compute_regions: using polonius algorithm {:?}", algorithm); let _prof_timer = infcx.tcx.prof.generic_activity("polonius_analysis"); Some(Rc::new(Output::compute(&all_facts, algorithm, false))) } else { None } }); // Solve the region constraints. let (closure_region_requirements, nll_errors) = regioncx.solve(infcx, param_env, &body, polonius_output.clone()); if !nll_errors.is_empty() { // Suppress unhelpful extra errors in `infer_opaque_types`. infcx.set_tainted_by_errors(infcx.tcx.sess.delay_span_bug( body.span, "`compute_regions` tainted `infcx` with errors but did not emit any errors", )); } let remapped_opaque_tys = regioncx.infer_opaque_types(&infcx, opaque_type_values); NllOutput { regioncx, opaque_type_values: remapped_opaque_tys, polonius_input: all_facts.map(Box::new), polonius_output, opt_closure_req: closure_region_requirements, nll_errors, } } pub(super) fn dump_mir_results<'tcx>( infcx: &InferCtxt<'tcx>, body: &Body<'tcx>, regioncx: &RegionInferenceContext<'tcx>, closure_region_requirements: &Option>, ) { if !dump_enabled(infcx.tcx, "nll", body.source.def_id()) { return; } dump_mir(infcx.tcx, false, "nll", &0, body, |pass_where, out| { match pass_where { // Before the CFG, dump out the values for each region variable. PassWhere::BeforeCFG => { regioncx.dump_mir(infcx.tcx, out)?; writeln!(out, "|")?; if let Some(closure_region_requirements) = closure_region_requirements { writeln!(out, "| Free Region Constraints")?; for_each_region_constraint(closure_region_requirements, &mut |msg| { writeln!(out, "| {}", msg) })?; writeln!(out, "|")?; } } PassWhere::BeforeLocation(_) => {} PassWhere::AfterTerminator(_) => {} PassWhere::BeforeBlock(_) | PassWhere::AfterLocation(_) | PassWhere::AfterCFG => {} } Ok(()) }); // Also dump the inference graph constraints as a graphviz file. let _: io::Result<()> = try { let mut file = create_dump_file(infcx.tcx, "regioncx.all.dot", false, "nll", &0, body)?; regioncx.dump_graphviz_raw_constraints(&mut file)?; }; // Also dump the inference graph constraints as a graphviz file. let _: io::Result<()> = try { let mut file = create_dump_file(infcx.tcx, "regioncx.scc.dot", false, "nll", &0, body)?; regioncx.dump_graphviz_scc_constraints(&mut file)?; }; } pub(super) fn dump_annotation<'tcx>( infcx: &InferCtxt<'tcx>, body: &Body<'tcx>, regioncx: &RegionInferenceContext<'tcx>, closure_region_requirements: &Option>, opaque_type_values: &VecMap>, errors: &mut crate::error::BorrowckErrors<'tcx>, ) { let tcx = infcx.tcx; let base_def_id = tcx.typeck_root_def_id(body.source.def_id()); if !tcx.has_attr(base_def_id, sym::rustc_regions) { return; } // When the enclosing function is tagged with `#[rustc_regions]`, // we dump out various bits of state as warnings. This is useful // for verifying that the compiler is behaving as expected. These // warnings focus on the closure region requirements -- for // viewing the intraprocedural state, the -Zdump-mir output is // better. let def_span = tcx.def_span(body.source.def_id()); let mut err = if let Some(closure_region_requirements) = closure_region_requirements { let mut err = tcx.sess.diagnostic().span_note_diag(def_span, "external requirements"); regioncx.annotate(tcx, &mut err); err.note(&format!( "number of external vids: {}", closure_region_requirements.num_external_vids )); // Dump the region constraints we are imposing *between* those // newly created variables. for_each_region_constraint(closure_region_requirements, &mut |msg| { err.note(msg); Ok(()) }) .unwrap(); err } else { let mut err = tcx.sess.diagnostic().span_note_diag(def_span, "no external requirements"); regioncx.annotate(tcx, &mut err); err }; if !opaque_type_values.is_empty() { err.note(&format!("Inferred opaque type values:\n{:#?}", opaque_type_values)); } errors.buffer_non_error_diag(err); } fn for_each_region_constraint( closure_region_requirements: &ClosureRegionRequirements<'_>, with_msg: &mut dyn FnMut(&str) -> io::Result<()>, ) -> io::Result<()> { for req in &closure_region_requirements.outlives_requirements { let subject: &dyn Debug = match &req.subject { ClosureOutlivesSubject::Region(subject) => subject, ClosureOutlivesSubject::Ty(ty) => ty, }; with_msg(&format!("where {:?}: {:?}", subject, req.outlived_free_region,))?; } Ok(()) } /// Right now, we piggy back on the `ReVar` to store our NLL inference /// regions. These are indexed with `RegionVid`. This method will /// assert that the region is a `ReVar` and extract its internal index. /// This is reasonable because in our MIR we replace all universal regions /// with inference variables. pub trait ToRegionVid { fn to_region_vid(self) -> RegionVid; } impl<'tcx> ToRegionVid for Region<'tcx> { fn to_region_vid(self) -> RegionVid { if let ty::ReVar(vid) = *self { vid } else { bug!("region is not an ReVar: {:?}", self) } } } impl ToRegionVid for RegionVid { fn to_region_vid(self) -> RegionVid { self } } pub(crate) trait ConstraintDescription { fn description(&self) -> &'static str; }