use crate::util::{check_builtin_macro_attribute, warn_on_duplicate_attribute}; use rustc_ast as ast; use rustc_ast::mut_visit::MutVisitor; use rustc_ast::ptr::P; use rustc_ast::visit::Visitor; use rustc_ast::NodeId; use rustc_ast::{mut_visit, visit}; use rustc_ast::{Attribute, HasAttrs, HasTokens}; use rustc_expand::base::{Annotatable, ExtCtxt}; use rustc_expand::config::StripUnconfigured; use rustc_expand::configure; use rustc_feature::Features; use rustc_parse::parser::{ForceCollect, Parser}; use rustc_session::Session; use rustc_span::symbol::sym; use rustc_span::Span; use smallvec::SmallVec; pub(crate) fn expand( ecx: &mut ExtCtxt<'_>, _span: Span, meta_item: &ast::MetaItem, annotatable: Annotatable, ) -> Vec { check_builtin_macro_attribute(ecx, meta_item, sym::cfg_eval); warn_on_duplicate_attribute(&ecx, &annotatable, sym::cfg_eval); vec![cfg_eval(ecx.sess, ecx.ecfg.features, annotatable, ecx.current_expansion.lint_node_id)] } pub(crate) fn cfg_eval( sess: &Session, features: Option<&Features>, annotatable: Annotatable, lint_node_id: NodeId, ) -> Annotatable { CfgEval { cfg: &mut StripUnconfigured { sess, features, config_tokens: true, lint_node_id } } .configure_annotatable(annotatable) // Since the item itself has already been configured by the `InvocationCollector`, // we know that fold result vector will contain exactly one element. .unwrap() } struct CfgEval<'a, 'b> { cfg: &'a mut StripUnconfigured<'b>, } fn flat_map_annotatable( vis: &mut impl MutVisitor, annotatable: Annotatable, ) -> Option { match annotatable { Annotatable::Item(item) => vis.flat_map_item(item).pop().map(Annotatable::Item), Annotatable::TraitItem(item) => { vis.flat_map_trait_item(item).pop().map(Annotatable::TraitItem) } Annotatable::ImplItem(item) => { vis.flat_map_impl_item(item).pop().map(Annotatable::ImplItem) } Annotatable::ForeignItem(item) => { vis.flat_map_foreign_item(item).pop().map(Annotatable::ForeignItem) } Annotatable::Stmt(stmt) => { vis.flat_map_stmt(stmt.into_inner()).pop().map(P).map(Annotatable::Stmt) } Annotatable::Expr(mut expr) => { vis.visit_expr(&mut expr); Some(Annotatable::Expr(expr)) } Annotatable::Arm(arm) => vis.flat_map_arm(arm).pop().map(Annotatable::Arm), Annotatable::ExprField(field) => { vis.flat_map_expr_field(field).pop().map(Annotatable::ExprField) } Annotatable::PatField(fp) => vis.flat_map_pat_field(fp).pop().map(Annotatable::PatField), Annotatable::GenericParam(param) => { vis.flat_map_generic_param(param).pop().map(Annotatable::GenericParam) } Annotatable::Param(param) => vis.flat_map_param(param).pop().map(Annotatable::Param), Annotatable::FieldDef(sf) => vis.flat_map_field_def(sf).pop().map(Annotatable::FieldDef), Annotatable::Variant(v) => vis.flat_map_variant(v).pop().map(Annotatable::Variant), Annotatable::Crate(mut krate) => { vis.visit_crate(&mut krate); Some(Annotatable::Crate(krate)) } } } struct CfgFinder { has_cfg_or_cfg_attr: bool, } impl CfgFinder { fn has_cfg_or_cfg_attr(annotatable: &Annotatable) -> bool { let mut finder = CfgFinder { has_cfg_or_cfg_attr: false }; match annotatable { Annotatable::Item(item) => finder.visit_item(&item), Annotatable::TraitItem(item) => finder.visit_assoc_item(&item, visit::AssocCtxt::Trait), Annotatable::ImplItem(item) => finder.visit_assoc_item(&item, visit::AssocCtxt::Impl), Annotatable::ForeignItem(item) => finder.visit_foreign_item(&item), Annotatable::Stmt(stmt) => finder.visit_stmt(&stmt), Annotatable::Expr(expr) => finder.visit_expr(&expr), Annotatable::Arm(arm) => finder.visit_arm(&arm), Annotatable::ExprField(field) => finder.visit_expr_field(&field), Annotatable::PatField(field) => finder.visit_pat_field(&field), Annotatable::GenericParam(param) => finder.visit_generic_param(¶m), Annotatable::Param(param) => finder.visit_param(¶m), Annotatable::FieldDef(field) => finder.visit_field_def(&field), Annotatable::Variant(variant) => finder.visit_variant(&variant), Annotatable::Crate(krate) => finder.visit_crate(krate), }; finder.has_cfg_or_cfg_attr } } impl<'ast> visit::Visitor<'ast> for CfgFinder { fn visit_attribute(&mut self, attr: &'ast Attribute) { // We want short-circuiting behavior, so don't use the '|=' operator. self.has_cfg_or_cfg_attr = self.has_cfg_or_cfg_attr || attr .ident() .map_or(false, |ident| ident.name == sym::cfg || ident.name == sym::cfg_attr); } } impl CfgEval<'_, '_> { fn configure(&mut self, node: T) -> Option { self.cfg.configure(node) } fn configure_annotatable(&mut self, mut annotatable: Annotatable) -> Option { // Tokenizing and re-parsing the `Annotatable` can have a significant // performance impact, so try to avoid it if possible if !CfgFinder::has_cfg_or_cfg_attr(&annotatable) { return Some(annotatable); } // The majority of parsed attribute targets will never need to have early cfg-expansion // run (e.g. they are not part of a `#[derive]` or `#[cfg_eval]` macro input). // Therefore, we normally do not capture the necessary information about `#[cfg]` // and `#[cfg_attr]` attributes during parsing. // // Therefore, when we actually *do* run early cfg-expansion, we need to tokenize // and re-parse the attribute target, this time capturing information about // the location of `#[cfg]` and `#[cfg_attr]` in the token stream. The tokenization // process is lossless, so this process is invisible to proc-macros. let parse_annotatable_with: fn(&mut Parser<'_>) -> _ = match annotatable { Annotatable::Item(_) => { |parser| Annotatable::Item(parser.parse_item(ForceCollect::Yes).unwrap().unwrap()) } Annotatable::TraitItem(_) => |parser| { Annotatable::TraitItem( parser.parse_trait_item(ForceCollect::Yes).unwrap().unwrap().unwrap(), ) }, Annotatable::ImplItem(_) => |parser| { Annotatable::ImplItem( parser.parse_impl_item(ForceCollect::Yes).unwrap().unwrap().unwrap(), ) }, Annotatable::ForeignItem(_) => |parser| { Annotatable::ForeignItem( parser.parse_foreign_item(ForceCollect::Yes).unwrap().unwrap().unwrap(), ) }, Annotatable::Stmt(_) => |parser| { Annotatable::Stmt(P(parser.parse_stmt(ForceCollect::Yes).unwrap().unwrap())) }, Annotatable::Expr(_) => { |parser| Annotatable::Expr(parser.parse_expr_force_collect().unwrap()) } _ => unreachable!(), }; // 'Flatten' all nonterminals (i.e. `TokenKind::Interpolated`) // to `None`-delimited groups containing the corresponding tokens. This // is normally delayed until the proc-macro server actually needs to // provide a `TokenKind::Interpolated` to a proc-macro. We do this earlier, // so that we can handle cases like: // // ```rust // #[cfg_eval] #[cfg] $item //``` // // where `$item` is `#[cfg_attr] struct Foo {}`. We want to make // sure to evaluate *all* `#[cfg]` and `#[cfg_attr]` attributes - the simplest // way to do this is to do a single parse of a stream without any nonterminals. let orig_tokens = annotatable.to_tokens().flattened(); // Re-parse the tokens, setting the `capture_cfg` flag to save extra information // to the captured `AttrAnnotatedTokenStream` (specifically, we capture // `AttrAnnotatedTokenTree::AttributesData` for all occurrences of `#[cfg]` and `#[cfg_attr]`) let mut parser = rustc_parse::stream_to_parser(&self.cfg.sess.parse_sess, orig_tokens, None); parser.capture_cfg = true; annotatable = parse_annotatable_with(&mut parser); // Now that we have our re-parsed `AttrAnnotatedTokenStream`, recursively configuring // our attribute target will correctly the tokens as well. flat_map_annotatable(self, annotatable) } } impl MutVisitor for CfgEval<'_, '_> { fn visit_expr(&mut self, expr: &mut P) { self.cfg.configure_expr(expr); mut_visit::noop_visit_expr(expr, self); } fn filter_map_expr(&mut self, expr: P) -> Option> { let mut expr = configure!(self, expr); mut_visit::noop_visit_expr(&mut expr, self); Some(expr) } fn flat_map_generic_param( &mut self, param: ast::GenericParam, ) -> SmallVec<[ast::GenericParam; 1]> { mut_visit::noop_flat_map_generic_param(configure!(self, param), self) } fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> { mut_visit::noop_flat_map_stmt(configure!(self, stmt), self) } fn flat_map_item(&mut self, item: P) -> SmallVec<[P; 1]> { mut_visit::noop_flat_map_item(configure!(self, item), self) } fn flat_map_impl_item(&mut self, item: P) -> SmallVec<[P; 1]> { mut_visit::noop_flat_map_assoc_item(configure!(self, item), self) } fn flat_map_trait_item(&mut self, item: P) -> SmallVec<[P; 1]> { mut_visit::noop_flat_map_assoc_item(configure!(self, item), self) } fn flat_map_foreign_item( &mut self, foreign_item: P, ) -> SmallVec<[P; 1]> { mut_visit::noop_flat_map_foreign_item(configure!(self, foreign_item), self) } fn flat_map_arm(&mut self, arm: ast::Arm) -> SmallVec<[ast::Arm; 1]> { mut_visit::noop_flat_map_arm(configure!(self, arm), self) } fn flat_map_expr_field(&mut self, field: ast::ExprField) -> SmallVec<[ast::ExprField; 1]> { mut_visit::noop_flat_map_expr_field(configure!(self, field), self) } fn flat_map_pat_field(&mut self, fp: ast::PatField) -> SmallVec<[ast::PatField; 1]> { mut_visit::noop_flat_map_pat_field(configure!(self, fp), self) } fn flat_map_param(&mut self, p: ast::Param) -> SmallVec<[ast::Param; 1]> { mut_visit::noop_flat_map_param(configure!(self, p), self) } fn flat_map_field_def(&mut self, sf: ast::FieldDef) -> SmallVec<[ast::FieldDef; 1]> { mut_visit::noop_flat_map_field_def(configure!(self, sf), self) } fn flat_map_variant(&mut self, variant: ast::Variant) -> SmallVec<[ast::Variant; 1]> { mut_visit::noop_flat_map_variant(configure!(self, variant), self) } }