use crate::util::check_builtin_macro_attribute; use rustc_ast::expand::allocator::{ AllocatorKind, AllocatorMethod, AllocatorTy, ALLOCATOR_METHODS, }; use rustc_ast::ptr::P; use rustc_ast::{self as ast, AttrVec, Expr, FnHeader, FnSig, Generics, Param, StmtKind}; use rustc_ast::{Fn, ItemKind, Mutability, Stmt, Ty, TyKind, Unsafe}; use rustc_expand::base::{Annotatable, ExtCtxt}; use rustc_span::symbol::{kw, sym, Ident, Symbol}; use rustc_span::Span; use thin_vec::{thin_vec, ThinVec}; pub fn expand( ecx: &mut ExtCtxt<'_>, _span: Span, meta_item: &ast::MetaItem, item: Annotatable, ) -> Vec { check_builtin_macro_attribute(ecx, meta_item, sym::global_allocator); let orig_item = item.clone(); // Allow using `#[global_allocator]` on an item statement // FIXME - if we get deref patterns, use them to reduce duplication here let (item, is_stmt, ty_span) = if let Annotatable::Item(item) = &item && let ItemKind::Static(ty, ..) = &item.kind { (item, false, ecx.with_def_site_ctxt(ty.span)) } else if let Annotatable::Stmt(stmt) = &item && let StmtKind::Item(item) = &stmt.kind && let ItemKind::Static(ty, ..) = &item.kind { (item, true, ecx.with_def_site_ctxt(ty.span)) } else { ecx.sess.parse_sess.span_diagnostic.span_err(item.span(), "allocators must be statics"); return vec![orig_item]; }; // Generate a bunch of new items using the AllocFnFactory let span = ecx.with_def_site_ctxt(item.span); let f = AllocFnFactory { span, ty_span, kind: AllocatorKind::Global, global: item.ident, cx: ecx }; // Generate item statements for the allocator methods. let stmts = ALLOCATOR_METHODS.iter().map(|method| f.allocator_fn(method)).collect(); // Generate anonymous constant serving as container for the allocator methods. let const_ty = ecx.ty(ty_span, TyKind::Tup(ThinVec::new())); let const_body = ecx.expr_block(ecx.block(span, stmts)); let const_item = ecx.item_const(span, Ident::new(kw::Underscore, span), const_ty, const_body); let const_item = if is_stmt { Annotatable::Stmt(P(ecx.stmt_item(span, const_item))) } else { Annotatable::Item(const_item) }; // Return the original item and the new methods. vec![orig_item, const_item] } struct AllocFnFactory<'a, 'b> { span: Span, ty_span: Span, kind: AllocatorKind, global: Ident, cx: &'b ExtCtxt<'a>, } impl AllocFnFactory<'_, '_> { fn allocator_fn(&self, method: &AllocatorMethod) -> Stmt { let mut abi_args = ThinVec::new(); let mut i = 0; let mut mk = || { let name = Ident::from_str_and_span(&format!("arg{}", i), self.span); i += 1; name }; let args = method.inputs.iter().map(|ty| self.arg_ty(ty, &mut abi_args, &mut mk)).collect(); let result = self.call_allocator(method.name, args); let (output_ty, output_expr) = self.ret_ty(&method.output, result); let decl = self.cx.fn_decl(abi_args, ast::FnRetTy::Ty(output_ty)); let header = FnHeader { unsafety: Unsafe::Yes(self.span), ..FnHeader::default() }; let sig = FnSig { decl, header, span: self.span }; let body = Some(self.cx.block_expr(output_expr)); let kind = ItemKind::Fn(Box::new(Fn { defaultness: ast::Defaultness::Final, sig, generics: Generics::default(), body, })); let item = self.cx.item( self.span, Ident::from_str_and_span(&self.kind.fn_name(method.name), self.span), self.attrs(), kind, ); self.cx.stmt_item(self.ty_span, item) } fn call_allocator(&self, method: Symbol, mut args: ThinVec>) -> P { let method = self.cx.std_path(&[sym::alloc, sym::GlobalAlloc, method]); let method = self.cx.expr_path(self.cx.path(self.ty_span, method)); let allocator = self.cx.path_ident(self.ty_span, self.global); let allocator = self.cx.expr_path(allocator); let allocator = self.cx.expr_addr_of(self.ty_span, allocator); args.insert(0, allocator); self.cx.expr_call(self.ty_span, method, args) } fn attrs(&self) -> AttrVec { thin_vec![self.cx.attr_word(sym::rustc_std_internal_symbol, self.span)] } fn arg_ty( &self, ty: &AllocatorTy, args: &mut ThinVec, ident: &mut dyn FnMut() -> Ident, ) -> P { match *ty { AllocatorTy::Layout => { let usize = self.cx.path_ident(self.span, Ident::new(sym::usize, self.span)); let ty_usize = self.cx.ty_path(usize); let size = ident(); let align = ident(); args.push(self.cx.param(self.span, size, ty_usize.clone())); args.push(self.cx.param(self.span, align, ty_usize)); let layout_new = self.cx.std_path(&[sym::alloc, sym::Layout, sym::from_size_align_unchecked]); let layout_new = self.cx.expr_path(self.cx.path(self.span, layout_new)); let size = self.cx.expr_ident(self.span, size); let align = self.cx.expr_ident(self.span, align); let layout = self.cx.expr_call(self.span, layout_new, thin_vec![size, align]); layout } AllocatorTy::Ptr => { let ident = ident(); args.push(self.cx.param(self.span, ident, self.ptr_u8())); let arg = self.cx.expr_ident(self.span, ident); self.cx.expr_cast(self.span, arg, self.ptr_u8()) } AllocatorTy::Usize => { let ident = ident(); args.push(self.cx.param(self.span, ident, self.usize())); self.cx.expr_ident(self.span, ident) } AllocatorTy::ResultPtr | AllocatorTy::Unit => { panic!("can't convert AllocatorTy to an argument") } } } fn ret_ty(&self, ty: &AllocatorTy, expr: P) -> (P, P) { match *ty { AllocatorTy::ResultPtr => { // We're creating: // // #expr as *mut u8 let expr = self.cx.expr_cast(self.span, expr, self.ptr_u8()); (self.ptr_u8(), expr) } AllocatorTy::Unit => (self.cx.ty(self.span, TyKind::Tup(ThinVec::new())), expr), AllocatorTy::Layout | AllocatorTy::Usize | AllocatorTy::Ptr => { panic!("can't convert `AllocatorTy` to an output") } } } fn usize(&self) -> P { let usize = self.cx.path_ident(self.span, Ident::new(sym::usize, self.span)); self.cx.ty_path(usize) } fn ptr_u8(&self) -> P { let u8 = self.cx.path_ident(self.span, Ident::new(sym::u8, self.span)); let ty_u8 = self.cx.ty_path(u8); self.cx.ty_ptr(self.span, ty_u8, Mutability::Mut) } }