//! Codegen of intrinsics. This includes `extern "rust-intrinsic"`, `extern "platform-intrinsic"` //! and LLVM intrinsics that have symbol names starting with `llvm.`. macro_rules! intrinsic_args { ($fx:expr, $args:expr => ($($arg:tt),*); $intrinsic:expr) => { #[allow(unused_parens)] let ($($arg),*) = if let [$($arg),*] = $args { ($(codegen_operand($fx, $arg)),*) } else { $crate::intrinsics::bug_on_incorrect_arg_count($intrinsic); }; } } mod cpuid; mod llvm; mod llvm_aarch64; mod llvm_x86; mod simd; pub(crate) use cpuid::codegen_cpuid_call; pub(crate) use llvm::codegen_llvm_intrinsic_call; use rustc_middle::ty; use rustc_middle::ty::layout::{HasParamEnv, ValidityRequirement}; use rustc_middle::ty::print::{with_no_trimmed_paths, with_no_visible_paths}; use rustc_middle::ty::subst::SubstsRef; use rustc_span::symbol::{kw, sym, Symbol}; use crate::prelude::*; use cranelift_codegen::ir::AtomicRmwOp; fn bug_on_incorrect_arg_count(intrinsic: impl std::fmt::Display) -> ! { bug!("wrong number of args for intrinsic {}", intrinsic); } fn report_atomic_type_validation_error<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, intrinsic: Symbol, span: Span, ty: Ty<'tcx>, ) { fx.tcx.sess.span_err( span, format!( "`{}` intrinsic: expected basic integer or raw pointer type, found `{:?}`", intrinsic, ty ), ); // Prevent verifier error fx.bcx.ins().trap(TrapCode::UnreachableCodeReached); } pub(crate) fn clif_vector_type<'tcx>(tcx: TyCtxt<'tcx>, layout: TyAndLayout<'tcx>) -> Type { let (element, count) = match layout.abi { Abi::Vector { element, count } => (element, count), _ => unreachable!(), }; scalar_to_clif_type(tcx, element).by(u32::try_from(count).unwrap()).unwrap() } fn simd_for_each_lane<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, val: CValue<'tcx>, ret: CPlace<'tcx>, f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Ty<'tcx>, Ty<'tcx>, Value) -> Value, ) { let layout = val.layout(); let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx); let lane_layout = fx.layout_of(lane_ty); let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx); let ret_lane_layout = fx.layout_of(ret_lane_ty); assert_eq!(lane_count, ret_lane_count); for lane_idx in 0..lane_count { let lane = val.value_lane(fx, lane_idx).load_scalar(fx); let res_lane = f(fx, lane_layout.ty, ret_lane_layout.ty, lane); let res_lane = CValue::by_val(res_lane, ret_lane_layout); ret.place_lane(fx, lane_idx).write_cvalue(fx, res_lane); } } fn simd_pair_for_each_lane_typed<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, x: CValue<'tcx>, y: CValue<'tcx>, ret: CPlace<'tcx>, f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, CValue<'tcx>, CValue<'tcx>) -> CValue<'tcx>, ) { assert_eq!(x.layout(), y.layout()); let layout = x.layout(); let (lane_count, _lane_ty) = layout.ty.simd_size_and_type(fx.tcx); let (ret_lane_count, _ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx); assert_eq!(lane_count, ret_lane_count); for lane_idx in 0..lane_count { let x_lane = x.value_lane(fx, lane_idx); let y_lane = y.value_lane(fx, lane_idx); let res_lane = f(fx, x_lane, y_lane); ret.place_lane(fx, lane_idx).write_cvalue(fx, res_lane); } } fn simd_pair_for_each_lane<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, x: CValue<'tcx>, y: CValue<'tcx>, ret: CPlace<'tcx>, f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Ty<'tcx>, Ty<'tcx>, Value, Value) -> Value, ) { assert_eq!(x.layout(), y.layout()); let layout = x.layout(); let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx); let lane_layout = fx.layout_of(lane_ty); let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx); let ret_lane_layout = fx.layout_of(ret_lane_ty); assert_eq!(lane_count, ret_lane_count); for lane_idx in 0..lane_count { let x_lane = x.value_lane(fx, lane_idx).load_scalar(fx); let y_lane = y.value_lane(fx, lane_idx).load_scalar(fx); let res_lane = f(fx, lane_layout.ty, ret_lane_layout.ty, x_lane, y_lane); let res_lane = CValue::by_val(res_lane, ret_lane_layout); ret.place_lane(fx, lane_idx).write_cvalue(fx, res_lane); } } fn simd_reduce<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, val: CValue<'tcx>, acc: Option, ret: CPlace<'tcx>, f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Ty<'tcx>, Value, Value) -> Value, ) { let (lane_count, lane_ty) = val.layout().ty.simd_size_and_type(fx.tcx); let lane_layout = fx.layout_of(lane_ty); assert_eq!(lane_layout, ret.layout()); let (mut res_val, start_lane) = if let Some(acc) = acc { (acc, 0) } else { (val.value_lane(fx, 0).load_scalar(fx), 1) }; for lane_idx in start_lane..lane_count { let lane = val.value_lane(fx, lane_idx).load_scalar(fx); res_val = f(fx, lane_layout.ty, res_val, lane); } let res = CValue::by_val(res_val, lane_layout); ret.write_cvalue(fx, res); } // FIXME move all uses to `simd_reduce` fn simd_reduce_bool<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, val: CValue<'tcx>, ret: CPlace<'tcx>, f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Value, Value) -> Value, ) { let (lane_count, _lane_ty) = val.layout().ty.simd_size_and_type(fx.tcx); assert!(ret.layout().ty.is_bool()); let res_val = val.value_lane(fx, 0).load_scalar(fx); let mut res_val = fx.bcx.ins().band_imm(res_val, 1); // mask to boolean for lane_idx in 1..lane_count { let lane = val.value_lane(fx, lane_idx).load_scalar(fx); let lane = fx.bcx.ins().band_imm(lane, 1); // mask to boolean res_val = f(fx, res_val, lane); } let res_val = if fx.bcx.func.dfg.value_type(res_val) != types::I8 { fx.bcx.ins().ireduce(types::I8, res_val) } else { res_val }; let res = CValue::by_val(res_val, ret.layout()); ret.write_cvalue(fx, res); } fn bool_to_zero_or_max_uint<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, ty: Ty<'tcx>, val: Value, ) -> Value { let ty = fx.clif_type(ty).unwrap(); let int_ty = match ty { types::F32 => types::I32, types::F64 => types::I64, ty => ty, }; let mut res = fx.bcx.ins().bmask(int_ty, val); if ty.is_float() { res = codegen_bitcast(fx, ty, res); } res } pub(crate) fn codegen_intrinsic_call<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, instance: Instance<'tcx>, args: &[mir::Operand<'tcx>], destination: CPlace<'tcx>, target: Option, source_info: mir::SourceInfo, ) { let intrinsic = fx.tcx.item_name(instance.def_id()); let substs = instance.substs; if intrinsic.as_str().starts_with("simd_") { self::simd::codegen_simd_intrinsic_call( fx, intrinsic, substs, args, destination, target.expect("target for simd intrinsic"), source_info.span, ); } else if codegen_float_intrinsic_call(fx, intrinsic, args, destination) { let ret_block = fx.get_block(target.expect("target for float intrinsic")); fx.bcx.ins().jump(ret_block, &[]); } else { codegen_regular_intrinsic_call( fx, instance, intrinsic, substs, args, destination, target, source_info, ); } } fn codegen_float_intrinsic_call<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, intrinsic: Symbol, args: &[mir::Operand<'tcx>], ret: CPlace<'tcx>, ) -> bool { let (name, arg_count, ty, clif_ty) = match intrinsic { sym::expf32 => ("expf", 1, fx.tcx.types.f32, types::F32), sym::expf64 => ("exp", 1, fx.tcx.types.f64, types::F64), sym::exp2f32 => ("exp2f", 1, fx.tcx.types.f32, types::F32), sym::exp2f64 => ("exp2", 1, fx.tcx.types.f64, types::F64), sym::sqrtf32 => ("sqrtf", 1, fx.tcx.types.f32, types::F32), sym::sqrtf64 => ("sqrt", 1, fx.tcx.types.f64, types::F64), sym::powif32 => ("__powisf2", 2, fx.tcx.types.f32, types::F32), // compiler-builtins sym::powif64 => ("__powidf2", 2, fx.tcx.types.f64, types::F64), // compiler-builtins sym::powf32 => ("powf", 2, fx.tcx.types.f32, types::F32), sym::powf64 => ("pow", 2, fx.tcx.types.f64, types::F64), sym::logf32 => ("logf", 1, fx.tcx.types.f32, types::F32), sym::logf64 => ("log", 1, fx.tcx.types.f64, types::F64), sym::log2f32 => ("log2f", 1, fx.tcx.types.f32, types::F32), sym::log2f64 => ("log2", 1, fx.tcx.types.f64, types::F64), sym::log10f32 => ("log10f", 1, fx.tcx.types.f32, types::F32), sym::log10f64 => ("log10", 1, fx.tcx.types.f64, types::F64), sym::fabsf32 => ("fabsf", 1, fx.tcx.types.f32, types::F32), sym::fabsf64 => ("fabs", 1, fx.tcx.types.f64, types::F64), sym::fmaf32 => ("fmaf", 3, fx.tcx.types.f32, types::F32), sym::fmaf64 => ("fma", 3, fx.tcx.types.f64, types::F64), sym::copysignf32 => ("copysignf", 2, fx.tcx.types.f32, types::F32), sym::copysignf64 => ("copysign", 2, fx.tcx.types.f64, types::F64), sym::floorf32 => ("floorf", 1, fx.tcx.types.f32, types::F32), sym::floorf64 => ("floor", 1, fx.tcx.types.f64, types::F64), sym::ceilf32 => ("ceilf", 1, fx.tcx.types.f32, types::F32), sym::ceilf64 => ("ceil", 1, fx.tcx.types.f64, types::F64), sym::truncf32 => ("truncf", 1, fx.tcx.types.f32, types::F32), sym::truncf64 => ("trunc", 1, fx.tcx.types.f64, types::F64), sym::rintf32 => ("rintf", 1, fx.tcx.types.f32, types::F32), sym::rintf64 => ("rint", 1, fx.tcx.types.f64, types::F64), sym::roundf32 => ("roundf", 1, fx.tcx.types.f32, types::F32), sym::roundf64 => ("round", 1, fx.tcx.types.f64, types::F64), sym::roundevenf32 => ("roundevenf", 1, fx.tcx.types.f32, types::F32), sym::roundevenf64 => ("roundeven", 1, fx.tcx.types.f64, types::F64), sym::sinf32 => ("sinf", 1, fx.tcx.types.f32, types::F32), sym::sinf64 => ("sin", 1, fx.tcx.types.f64, types::F64), sym::cosf32 => ("cosf", 1, fx.tcx.types.f32, types::F32), sym::cosf64 => ("cos", 1, fx.tcx.types.f64, types::F64), _ => return false, }; if args.len() != arg_count { bug!("wrong number of args for intrinsic {:?}", intrinsic); } let (a, b, c); let args = match args { [x] => { a = [codegen_operand(fx, x).load_scalar(fx)]; &a as &[_] } [x, y] => { b = [codegen_operand(fx, x).load_scalar(fx), codegen_operand(fx, y).load_scalar(fx)]; &b } [x, y, z] => { c = [ codegen_operand(fx, x).load_scalar(fx), codegen_operand(fx, y).load_scalar(fx), codegen_operand(fx, z).load_scalar(fx), ]; &c } _ => unreachable!(), }; let layout = fx.layout_of(ty); let res = match intrinsic { sym::fmaf32 | sym::fmaf64 => { CValue::by_val(fx.bcx.ins().fma(args[0], args[1], args[2]), layout) } sym::copysignf32 | sym::copysignf64 => { CValue::by_val(fx.bcx.ins().fcopysign(args[0], args[1]), layout) } sym::fabsf32 | sym::fabsf64 | sym::floorf32 | sym::floorf64 | sym::ceilf32 | sym::ceilf64 | sym::truncf32 | sym::truncf64 => { let val = match intrinsic { sym::fabsf32 | sym::fabsf64 => fx.bcx.ins().fabs(args[0]), sym::floorf32 | sym::floorf64 => fx.bcx.ins().floor(args[0]), sym::ceilf32 | sym::ceilf64 => fx.bcx.ins().ceil(args[0]), sym::truncf32 | sym::truncf64 => fx.bcx.ins().trunc(args[0]), _ => unreachable!(), }; CValue::by_val(val, layout) } // These intrinsics aren't supported natively by Cranelift. // Lower them to a libcall. sym::powif32 | sym::powif64 => { let input_tys: Vec<_> = vec![AbiParam::new(clif_ty), AbiParam::new(types::I32)]; let ret_val = fx.lib_call(name, input_tys, vec![AbiParam::new(clif_ty)], &args)[0]; CValue::by_val(ret_val, fx.layout_of(ty)) } _ => { let input_tys: Vec<_> = args.iter().map(|_| AbiParam::new(clif_ty)).collect(); let ret_val = fx.lib_call(name, input_tys, vec![AbiParam::new(clif_ty)], &args)[0]; CValue::by_val(ret_val, fx.layout_of(ty)) } }; ret.write_cvalue(fx, res); true } fn codegen_regular_intrinsic_call<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, instance: Instance<'tcx>, intrinsic: Symbol, substs: SubstsRef<'tcx>, args: &[mir::Operand<'tcx>], ret: CPlace<'tcx>, destination: Option, source_info: mir::SourceInfo, ) { let usize_layout = fx.layout_of(fx.tcx.types.usize); match intrinsic { sym::abort => { fx.bcx.ins().trap(TrapCode::User(0)); return; } sym::likely | sym::unlikely => { intrinsic_args!(fx, args => (a); intrinsic); ret.write_cvalue(fx, a); } sym::breakpoint => { intrinsic_args!(fx, args => (); intrinsic); fx.bcx.ins().debugtrap(); } sym::copy => { intrinsic_args!(fx, args => (src, dst, count); intrinsic); let src = src.load_scalar(fx); let dst = dst.load_scalar(fx); let count = count.load_scalar(fx); let elem_ty = substs.type_at(0); let elem_size: u64 = fx.layout_of(elem_ty).size.bytes(); assert_eq!(args.len(), 3); let byte_amount = if elem_size != 1 { fx.bcx.ins().imul_imm(count, elem_size as i64) } else { count }; // FIXME emit_small_memmove fx.bcx.call_memmove(fx.target_config, dst, src, byte_amount); } sym::volatile_copy_memory | sym::volatile_copy_nonoverlapping_memory => { // NOTE: the volatile variants have src and dst swapped intrinsic_args!(fx, args => (dst, src, count); intrinsic); let dst = dst.load_scalar(fx); let src = src.load_scalar(fx); let count = count.load_scalar(fx); let elem_ty = substs.type_at(0); let elem_size: u64 = fx.layout_of(elem_ty).size.bytes(); assert_eq!(args.len(), 3); let byte_amount = if elem_size != 1 { fx.bcx.ins().imul_imm(count, elem_size as i64) } else { count }; // FIXME make the copy actually volatile when using emit_small_mem{cpy,move} if intrinsic == sym::volatile_copy_nonoverlapping_memory { // FIXME emit_small_memcpy fx.bcx.call_memcpy(fx.target_config, dst, src, byte_amount); } else { // FIXME emit_small_memmove fx.bcx.call_memmove(fx.target_config, dst, src, byte_amount); } } sym::size_of_val => { intrinsic_args!(fx, args => (ptr); intrinsic); let layout = fx.layout_of(substs.type_at(0)); // Note: Can't use is_unsized here as truly unsized types need to take the fixed size // branch let size = if let Abi::ScalarPair(_, _) = ptr.layout().abi { let (_ptr, info) = ptr.load_scalar_pair(fx); let (size, _align) = crate::unsize::size_and_align_of_dst(fx, layout, info); size } else { fx.bcx.ins().iconst(fx.pointer_type, layout.size.bytes() as i64) }; ret.write_cvalue(fx, CValue::by_val(size, usize_layout)); } sym::min_align_of_val => { intrinsic_args!(fx, args => (ptr); intrinsic); let layout = fx.layout_of(substs.type_at(0)); // Note: Can't use is_unsized here as truly unsized types need to take the fixed size // branch let align = if let Abi::ScalarPair(_, _) = ptr.layout().abi { let (_ptr, info) = ptr.load_scalar_pair(fx); let (_size, align) = crate::unsize::size_and_align_of_dst(fx, layout, info); align } else { fx.bcx.ins().iconst(fx.pointer_type, layout.align.abi.bytes() as i64) }; ret.write_cvalue(fx, CValue::by_val(align, usize_layout)); } sym::vtable_size => { intrinsic_args!(fx, args => (vtable); intrinsic); let vtable = vtable.load_scalar(fx); let size = crate::vtable::size_of_obj(fx, vtable); ret.write_cvalue(fx, CValue::by_val(size, usize_layout)); } sym::vtable_align => { intrinsic_args!(fx, args => (vtable); intrinsic); let vtable = vtable.load_scalar(fx); let align = crate::vtable::min_align_of_obj(fx, vtable); ret.write_cvalue(fx, CValue::by_val(align, usize_layout)); } sym::unchecked_add | sym::unchecked_sub | sym::unchecked_mul | sym::unchecked_div | sym::exact_div | sym::unchecked_rem | sym::unchecked_shl | sym::unchecked_shr => { intrinsic_args!(fx, args => (x, y); intrinsic); // FIXME trap on overflow let bin_op = match intrinsic { sym::unchecked_add => BinOp::Add, sym::unchecked_sub => BinOp::Sub, sym::unchecked_mul => BinOp::Mul, sym::unchecked_div | sym::exact_div => BinOp::Div, sym::unchecked_rem => BinOp::Rem, sym::unchecked_shl => BinOp::Shl, sym::unchecked_shr => BinOp::Shr, _ => unreachable!(), }; let res = crate::num::codegen_int_binop(fx, bin_op, x, y); ret.write_cvalue(fx, res); } sym::saturating_add | sym::saturating_sub => { intrinsic_args!(fx, args => (lhs, rhs); intrinsic); assert_eq!(lhs.layout().ty, rhs.layout().ty); let bin_op = match intrinsic { sym::saturating_add => BinOp::Add, sym::saturating_sub => BinOp::Sub, _ => unreachable!(), }; let res = crate::num::codegen_saturating_int_binop(fx, bin_op, lhs, rhs); ret.write_cvalue(fx, res); } sym::rotate_left => { intrinsic_args!(fx, args => (x, y); intrinsic); let y = y.load_scalar(fx); let layout = x.layout(); let x = x.load_scalar(fx); let res = fx.bcx.ins().rotl(x, y); ret.write_cvalue(fx, CValue::by_val(res, layout)); } sym::rotate_right => { intrinsic_args!(fx, args => (x, y); intrinsic); let y = y.load_scalar(fx); let layout = x.layout(); let x = x.load_scalar(fx); let res = fx.bcx.ins().rotr(x, y); ret.write_cvalue(fx, CValue::by_val(res, layout)); } // The only difference between offset and arith_offset is regarding UB. Because Cranelift // doesn't have UB both are codegen'ed the same way sym::arith_offset => { intrinsic_args!(fx, args => (base, offset); intrinsic); let offset = offset.load_scalar(fx); let pointee_ty = base.layout().ty.builtin_deref(true).unwrap().ty; let pointee_size = fx.layout_of(pointee_ty).size.bytes(); let ptr_diff = if pointee_size != 1 { fx.bcx.ins().imul_imm(offset, pointee_size as i64) } else { offset }; let base_val = base.load_scalar(fx); let res = fx.bcx.ins().iadd(base_val, ptr_diff); ret.write_cvalue(fx, CValue::by_val(res, base.layout())); } sym::ptr_mask => { intrinsic_args!(fx, args => (ptr, mask); intrinsic); let ptr = ptr.load_scalar(fx); let mask = mask.load_scalar(fx); fx.bcx.ins().band(ptr, mask); } sym::write_bytes | sym::volatile_set_memory => { intrinsic_args!(fx, args => (dst, val, count); intrinsic); let val = val.load_scalar(fx); let count = count.load_scalar(fx); let pointee_ty = dst.layout().ty.builtin_deref(true).unwrap().ty; let pointee_size = fx.layout_of(pointee_ty).size.bytes(); let count = if pointee_size != 1 { fx.bcx.ins().imul_imm(count, pointee_size as i64) } else { count }; let dst_ptr = dst.load_scalar(fx); // FIXME make the memset actually volatile when switching to emit_small_memset // FIXME use emit_small_memset fx.bcx.call_memset(fx.target_config, dst_ptr, val, count); } sym::ctlz | sym::ctlz_nonzero => { intrinsic_args!(fx, args => (arg); intrinsic); let val = arg.load_scalar(fx); // FIXME trap on `ctlz_nonzero` with zero arg. let res = fx.bcx.ins().clz(val); let res = CValue::by_val(res, arg.layout()); ret.write_cvalue(fx, res); } sym::cttz | sym::cttz_nonzero => { intrinsic_args!(fx, args => (arg); intrinsic); let val = arg.load_scalar(fx); // FIXME trap on `cttz_nonzero` with zero arg. let res = fx.bcx.ins().ctz(val); let res = CValue::by_val(res, arg.layout()); ret.write_cvalue(fx, res); } sym::ctpop => { intrinsic_args!(fx, args => (arg); intrinsic); let val = arg.load_scalar(fx); let res = fx.bcx.ins().popcnt(val); let res = CValue::by_val(res, arg.layout()); ret.write_cvalue(fx, res); } sym::bitreverse => { intrinsic_args!(fx, args => (arg); intrinsic); let val = arg.load_scalar(fx); let res = fx.bcx.ins().bitrev(val); let res = CValue::by_val(res, arg.layout()); ret.write_cvalue(fx, res); } sym::bswap => { intrinsic_args!(fx, args => (arg); intrinsic); let val = arg.load_scalar(fx); let res = if fx.bcx.func.dfg.value_type(val) == types::I8 { val } else { fx.bcx.ins().bswap(val) }; let res = CValue::by_val(res, arg.layout()); ret.write_cvalue(fx, res); } sym::assert_inhabited | sym::assert_zero_valid | sym::assert_mem_uninitialized_valid => { intrinsic_args!(fx, args => (); intrinsic); let ty = substs.type_at(0); let requirement = ValidityRequirement::from_intrinsic(intrinsic); if let Some(requirement) = requirement { let do_panic = !fx .tcx .check_validity_requirement((requirement, fx.param_env().and(ty))) .expect("expect to have layout during codegen"); if do_panic { let layout = fx.layout_of(ty); let msg_str = with_no_visible_paths!({ with_no_trimmed_paths!({ if layout.abi.is_uninhabited() { // Use this error even for the other intrinsics as it is more precise. format!("attempted to instantiate uninhabited type `{}`", ty) } else if intrinsic == sym::assert_zero_valid { format!( "attempted to zero-initialize type `{}`, which is invalid", ty ) } else { format!( "attempted to leave type `{}` uninitialized, which is invalid", ty ) } }) }); crate::base::codegen_panic_nounwind(fx, &msg_str, source_info); return; } } } sym::volatile_load | sym::unaligned_volatile_load => { intrinsic_args!(fx, args => (ptr); intrinsic); // Cranelift treats loads as volatile by default // FIXME correctly handle unaligned_volatile_load let inner_layout = fx.layout_of(ptr.layout().ty.builtin_deref(true).unwrap().ty); let val = CValue::by_ref(Pointer::new(ptr.load_scalar(fx)), inner_layout); ret.write_cvalue(fx, val); } sym::volatile_store | sym::unaligned_volatile_store => { intrinsic_args!(fx, args => (ptr, val); intrinsic); let ptr = ptr.load_scalar(fx); // Cranelift treats stores as volatile by default // FIXME correctly handle unaligned_volatile_store let dest = CPlace::for_ptr(Pointer::new(ptr), val.layout()); dest.write_cvalue(fx, val); } sym::pref_align_of | sym::needs_drop | sym::type_id | sym::type_name | sym::variant_count => { intrinsic_args!(fx, args => (); intrinsic); let const_val = fx.tcx.const_eval_instance(ParamEnv::reveal_all(), instance, None).unwrap(); let val = crate::constant::codegen_const_value(fx, const_val, ret.layout().ty); ret.write_cvalue(fx, val); } sym::ptr_offset_from | sym::ptr_offset_from_unsigned => { intrinsic_args!(fx, args => (ptr, base); intrinsic); let ptr = ptr.load_scalar(fx); let base = base.load_scalar(fx); let ty = substs.type_at(0); let pointee_size: u64 = fx.layout_of(ty).size.bytes(); let diff_bytes = fx.bcx.ins().isub(ptr, base); // FIXME this can be an exact division. let val = if intrinsic == sym::ptr_offset_from_unsigned { let usize_layout = fx.layout_of(fx.tcx.types.usize); // Because diff_bytes ULE isize::MAX, this would be fine as signed, // but unsigned is slightly easier to codegen, so might as well. CValue::by_val(fx.bcx.ins().udiv_imm(diff_bytes, pointee_size as i64), usize_layout) } else { let isize_layout = fx.layout_of(fx.tcx.types.isize); CValue::by_val(fx.bcx.ins().sdiv_imm(diff_bytes, pointee_size as i64), isize_layout) }; ret.write_cvalue(fx, val); } sym::ptr_guaranteed_cmp => { intrinsic_args!(fx, args => (a, b); intrinsic); let val = crate::num::codegen_ptr_binop(fx, BinOp::Eq, a, b).load_scalar(fx); ret.write_cvalue(fx, CValue::by_val(val, fx.layout_of(fx.tcx.types.u8))); } sym::caller_location => { intrinsic_args!(fx, args => (); intrinsic); let caller_location = fx.get_caller_location(source_info); ret.write_cvalue(fx, caller_location); } _ if intrinsic.as_str().starts_with("atomic_fence") => { intrinsic_args!(fx, args => (); intrinsic); fx.bcx.ins().fence(); } _ if intrinsic.as_str().starts_with("atomic_singlethreadfence") => { intrinsic_args!(fx, args => (); intrinsic); // FIXME use a compiler fence once Cranelift supports it fx.bcx.ins().fence(); } _ if intrinsic.as_str().starts_with("atomic_load") => { intrinsic_args!(fx, args => (ptr); intrinsic); let ptr = ptr.load_scalar(fx); let ty = substs.type_at(0); match ty.kind() { ty::Uint(UintTy::U128) | ty::Int(IntTy::I128) => { // FIXME implement 128bit atomics if fx.tcx.is_compiler_builtins(LOCAL_CRATE) { // special case for compiler-builtins to avoid having to patch it crate::trap::trap_unimplemented(fx, "128bit atomics not yet supported"); return; } else { fx.tcx .sess .span_fatal(source_info.span, "128bit atomics not yet supported"); } } ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, ty); return; } } let clif_ty = fx.clif_type(ty).unwrap(); let val = fx.bcx.ins().atomic_load(clif_ty, MemFlags::trusted(), ptr); let val = CValue::by_val(val, fx.layout_of(ty)); ret.write_cvalue(fx, val); } _ if intrinsic.as_str().starts_with("atomic_store") => { intrinsic_args!(fx, args => (ptr, val); intrinsic); let ptr = ptr.load_scalar(fx); let ty = substs.type_at(0); match ty.kind() { ty::Uint(UintTy::U128) | ty::Int(IntTy::I128) => { // FIXME implement 128bit atomics if fx.tcx.is_compiler_builtins(LOCAL_CRATE) { // special case for compiler-builtins to avoid having to patch it crate::trap::trap_unimplemented(fx, "128bit atomics not yet supported"); return; } else { fx.tcx .sess .span_fatal(source_info.span, "128bit atomics not yet supported"); } } ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, ty); return; } } let val = val.load_scalar(fx); fx.bcx.ins().atomic_store(MemFlags::trusted(), val, ptr); } _ if intrinsic.as_str().starts_with("atomic_xchg") => { intrinsic_args!(fx, args => (ptr, new); intrinsic); let ptr = ptr.load_scalar(fx); let layout = new.layout(); match layout.ty.kind() { ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty); return; } } let ty = fx.clif_type(layout.ty).unwrap(); let new = new.load_scalar(fx); let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Xchg, ptr, new); let old = CValue::by_val(old, layout); ret.write_cvalue(fx, old); } _ if intrinsic.as_str().starts_with("atomic_cxchg") => { // both atomic_cxchg_* and atomic_cxchgweak_* intrinsic_args!(fx, args => (ptr, test_old, new); intrinsic); let ptr = ptr.load_scalar(fx); let layout = new.layout(); match layout.ty.kind() { ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty); return; } } let test_old = test_old.load_scalar(fx); let new = new.load_scalar(fx); let old = fx.bcx.ins().atomic_cas(MemFlags::trusted(), ptr, test_old, new); let is_eq = fx.bcx.ins().icmp(IntCC::Equal, old, test_old); let ret_val = CValue::by_val_pair(old, is_eq, ret.layout()); ret.write_cvalue(fx, ret_val) } _ if intrinsic.as_str().starts_with("atomic_xadd") => { intrinsic_args!(fx, args => (ptr, amount); intrinsic); let ptr = ptr.load_scalar(fx); let layout = amount.layout(); match layout.ty.kind() { ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty); return; } } let ty = fx.clif_type(layout.ty).unwrap(); let amount = amount.load_scalar(fx); let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Add, ptr, amount); let old = CValue::by_val(old, layout); ret.write_cvalue(fx, old); } _ if intrinsic.as_str().starts_with("atomic_xsub") => { intrinsic_args!(fx, args => (ptr, amount); intrinsic); let ptr = ptr.load_scalar(fx); let layout = amount.layout(); match layout.ty.kind() { ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty); return; } } let ty = fx.clif_type(layout.ty).unwrap(); let amount = amount.load_scalar(fx); let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Sub, ptr, amount); let old = CValue::by_val(old, layout); ret.write_cvalue(fx, old); } _ if intrinsic.as_str().starts_with("atomic_and") => { intrinsic_args!(fx, args => (ptr, src); intrinsic); let ptr = ptr.load_scalar(fx); let layout = src.layout(); match layout.ty.kind() { ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty); return; } } let ty = fx.clif_type(layout.ty).unwrap(); let src = src.load_scalar(fx); let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::And, ptr, src); let old = CValue::by_val(old, layout); ret.write_cvalue(fx, old); } _ if intrinsic.as_str().starts_with("atomic_or") => { intrinsic_args!(fx, args => (ptr, src); intrinsic); let ptr = ptr.load_scalar(fx); let layout = src.layout(); match layout.ty.kind() { ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty); return; } } let ty = fx.clif_type(layout.ty).unwrap(); let src = src.load_scalar(fx); let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Or, ptr, src); let old = CValue::by_val(old, layout); ret.write_cvalue(fx, old); } _ if intrinsic.as_str().starts_with("atomic_xor") => { intrinsic_args!(fx, args => (ptr, src); intrinsic); let ptr = ptr.load_scalar(fx); let layout = src.layout(); match layout.ty.kind() { ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty); return; } } let ty = fx.clif_type(layout.ty).unwrap(); let src = src.load_scalar(fx); let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Xor, ptr, src); let old = CValue::by_val(old, layout); ret.write_cvalue(fx, old); } _ if intrinsic.as_str().starts_with("atomic_nand") => { intrinsic_args!(fx, args => (ptr, src); intrinsic); let ptr = ptr.load_scalar(fx); let layout = src.layout(); match layout.ty.kind() { ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty); return; } } let ty = fx.clif_type(layout.ty).unwrap(); let src = src.load_scalar(fx); let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Nand, ptr, src); let old = CValue::by_val(old, layout); ret.write_cvalue(fx, old); } _ if intrinsic.as_str().starts_with("atomic_max") => { intrinsic_args!(fx, args => (ptr, src); intrinsic); let ptr = ptr.load_scalar(fx); let layout = src.layout(); match layout.ty.kind() { ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty); return; } } let ty = fx.clif_type(layout.ty).unwrap(); let src = src.load_scalar(fx); let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Smax, ptr, src); let old = CValue::by_val(old, layout); ret.write_cvalue(fx, old); } _ if intrinsic.as_str().starts_with("atomic_umax") => { intrinsic_args!(fx, args => (ptr, src); intrinsic); let ptr = ptr.load_scalar(fx); let layout = src.layout(); match layout.ty.kind() { ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty); return; } } let ty = fx.clif_type(layout.ty).unwrap(); let src = src.load_scalar(fx); let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Umax, ptr, src); let old = CValue::by_val(old, layout); ret.write_cvalue(fx, old); } _ if intrinsic.as_str().starts_with("atomic_min") => { intrinsic_args!(fx, args => (ptr, src); intrinsic); let ptr = ptr.load_scalar(fx); let layout = src.layout(); match layout.ty.kind() { ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty); return; } } let ty = fx.clif_type(layout.ty).unwrap(); let src = src.load_scalar(fx); let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Smin, ptr, src); let old = CValue::by_val(old, layout); ret.write_cvalue(fx, old); } _ if intrinsic.as_str().starts_with("atomic_umin") => { intrinsic_args!(fx, args => (ptr, src); intrinsic); let ptr = ptr.load_scalar(fx); let layout = src.layout(); match layout.ty.kind() { ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} _ => { report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty); return; } } let ty = fx.clif_type(layout.ty).unwrap(); let src = src.load_scalar(fx); let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Umin, ptr, src); let old = CValue::by_val(old, layout); ret.write_cvalue(fx, old); } sym::minnumf32 => { intrinsic_args!(fx, args => (a, b); intrinsic); let a = a.load_scalar(fx); let b = b.load_scalar(fx); let val = crate::num::codegen_float_min(fx, a, b); let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32)); ret.write_cvalue(fx, val); } sym::minnumf64 => { intrinsic_args!(fx, args => (a, b); intrinsic); let a = a.load_scalar(fx); let b = b.load_scalar(fx); let val = crate::num::codegen_float_min(fx, a, b); let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64)); ret.write_cvalue(fx, val); } sym::maxnumf32 => { intrinsic_args!(fx, args => (a, b); intrinsic); let a = a.load_scalar(fx); let b = b.load_scalar(fx); let val = crate::num::codegen_float_max(fx, a, b); let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32)); ret.write_cvalue(fx, val); } sym::maxnumf64 => { intrinsic_args!(fx, args => (a, b); intrinsic); let a = a.load_scalar(fx); let b = b.load_scalar(fx); let val = crate::num::codegen_float_max(fx, a, b); let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64)); ret.write_cvalue(fx, val); } kw::Try => { intrinsic_args!(fx, args => (f, data, catch_fn); intrinsic); let f = f.load_scalar(fx); let data = data.load_scalar(fx); let _catch_fn = catch_fn.load_scalar(fx); // FIXME once unwinding is supported, change this to actually catch panics let f_sig = fx.bcx.func.import_signature(Signature { call_conv: fx.target_config.default_call_conv, params: vec![AbiParam::new(pointer_ty(fx.tcx))], returns: vec![], }); fx.bcx.ins().call_indirect(f_sig, f, &[data]); let layout = fx.layout_of(fx.tcx.types.i32); let ret_val = CValue::by_val(fx.bcx.ins().iconst(types::I32, 0), layout); ret.write_cvalue(fx, ret_val); } sym::fadd_fast | sym::fsub_fast | sym::fmul_fast | sym::fdiv_fast | sym::frem_fast => { intrinsic_args!(fx, args => (x, y); intrinsic); let res = crate::num::codegen_float_binop( fx, match intrinsic { sym::fadd_fast => BinOp::Add, sym::fsub_fast => BinOp::Sub, sym::fmul_fast => BinOp::Mul, sym::fdiv_fast => BinOp::Div, sym::frem_fast => BinOp::Rem, _ => unreachable!(), }, x, y, ); ret.write_cvalue(fx, res); } sym::float_to_int_unchecked => { intrinsic_args!(fx, args => (f); intrinsic); let f = f.load_scalar(fx); let res = crate::cast::clif_int_or_float_cast( fx, f, false, fx.clif_type(ret.layout().ty).unwrap(), type_sign(ret.layout().ty), ); ret.write_cvalue(fx, CValue::by_val(res, ret.layout())); } sym::raw_eq => { intrinsic_args!(fx, args => (lhs_ref, rhs_ref); intrinsic); let lhs_ref = lhs_ref.load_scalar(fx); let rhs_ref = rhs_ref.load_scalar(fx); let size = fx.layout_of(substs.type_at(0)).layout.size(); // FIXME add and use emit_small_memcmp let is_eq_value = if size == Size::ZERO { // No bytes means they're trivially equal fx.bcx.ins().iconst(types::I8, 1) } else if let Some(clty) = size.bits().try_into().ok().and_then(Type::int) { // Can't use `trusted` for these loads; they could be unaligned. let mut flags = MemFlags::new(); flags.set_notrap(); let lhs_val = fx.bcx.ins().load(clty, flags, lhs_ref, 0); let rhs_val = fx.bcx.ins().load(clty, flags, rhs_ref, 0); fx.bcx.ins().icmp(IntCC::Equal, lhs_val, rhs_val) } else { // Just call `memcmp` (like slices do in core) when the // size is too large or it's not a power-of-two. let signed_bytes = i64::try_from(size.bytes()).unwrap(); let bytes_val = fx.bcx.ins().iconst(fx.pointer_type, signed_bytes); let params = vec![AbiParam::new(fx.pointer_type); 3]; let returns = vec![AbiParam::new(types::I32)]; let args = &[lhs_ref, rhs_ref, bytes_val]; let cmp = fx.lib_call("memcmp", params, returns, args)[0]; fx.bcx.ins().icmp_imm(IntCC::Equal, cmp, 0) }; ret.write_cvalue(fx, CValue::by_val(is_eq_value, ret.layout())); } sym::const_allocate => { intrinsic_args!(fx, args => (_size, _align); intrinsic); // returns a null pointer at runtime. let null = fx.bcx.ins().iconst(fx.pointer_type, 0); ret.write_cvalue(fx, CValue::by_val(null, ret.layout())); } sym::const_deallocate => { intrinsic_args!(fx, args => (_ptr, _size, _align); intrinsic); // nop at runtime. } sym::black_box => { intrinsic_args!(fx, args => (a); intrinsic); // FIXME implement black_box semantics ret.write_cvalue(fx, a); } // FIXME implement variadics in cranelift sym::va_copy | sym::va_arg | sym::va_end => { fx.tcx.sess.span_fatal( source_info.span, "Defining variadic functions is not yet supported by Cranelift", ); } _ => { fx.tcx .sess .span_fatal(source_info.span, format!("unsupported intrinsic {}", intrinsic)); } } let ret_block = fx.get_block(destination.unwrap()); fx.bcx.ins().jump(ret_block, &[]); }