/// GCC requires to use the same toolchain for the whole compilation when doing LTO. /// So, we need the same version/commit of the linker (gcc) and lto front-end binaries (lto1, /// lto-wrapper, liblto_plugin.so). // FIXME(antoyo): the executables compiled with LTO are bigger than those compiled without LTO. // Since it is the opposite for cg_llvm, check if this is normal. // // Maybe we embed the bitcode in the final binary? // It doesn't look like we try to generate fat objects for the final binary. // Check if the way we combine the object files make it keep the LTO sections on the final link. // Maybe that's because the combined object files contain the IR (true) and the final link // does not remove it? // // TODO(antoyo): for performance, check which optimizations the C++ frontend enables. // // Fix these warnings: // /usr/bin/ld: warning: type of symbol `_RNvNvNvNtCs5JWOrf9uCus_5rayon11thread_pool19WORKER_THREAD_STATE7___getit5___KEY' changed from 1 to 6 in /tmp/ccKeUSiR.ltrans0.ltrans.o // /usr/bin/ld: warning: type of symbol `_RNvNvNvNvNtNtNtCsAj5i4SGTR7_3std4sync4mpmc5waker17current_thread_id5DUMMY7___getit5___KEY' changed from 1 to 6 in /tmp/ccKeUSiR.ltrans0.ltrans.o // /usr/bin/ld: warning: incremental linking of LTO and non-LTO objects; using -flinker-output=nolto-rel which will bypass whole program optimization use std::ffi::CString; use std::fs::{self, File}; use std::path::{Path, PathBuf}; use gccjit::OutputKind; use object::read::archive::ArchiveFile; use rustc_codegen_ssa::back::lto::{LtoModuleCodegen, SerializedModule}; use rustc_codegen_ssa::back::symbol_export; use rustc_codegen_ssa::back::write::{CodegenContext, FatLtoInput}; use rustc_codegen_ssa::traits::*; use rustc_codegen_ssa::{looks_like_rust_object_file, ModuleCodegen, ModuleKind}; use rustc_data_structures::memmap::Mmap; use rustc_errors::{FatalError, DiagCtxt}; use rustc_hir::def_id::LOCAL_CRATE; use rustc_middle::dep_graph::WorkProduct; use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel}; use rustc_session::config::{CrateType, Lto}; use tempfile::{TempDir, tempdir}; use crate::back::write::save_temp_bitcode; use crate::errors::{ DynamicLinkingWithLTO, LtoBitcodeFromRlib, LtoDisallowed, LtoDylib, }; use crate::{GccCodegenBackend, GccContext, to_gcc_opt_level}; /// We keep track of the computed LTO cache keys from the previous /// session to determine which CGUs we can reuse. //pub const THIN_LTO_KEYS_INCR_COMP_FILE_NAME: &str = "thin-lto-past-keys.bin"; pub fn crate_type_allows_lto(crate_type: CrateType) -> bool { match crate_type { CrateType::Executable | CrateType::Dylib | CrateType::Staticlib | CrateType::Cdylib => true, CrateType::Rlib | CrateType::ProcMacro => false, } } struct LtoData { // TODO(antoyo): use symbols_below_threshold. //symbols_below_threshold: Vec, upstream_modules: Vec<(SerializedModule, CString)>, tmp_path: TempDir, } fn prepare_lto(cgcx: &CodegenContext, dcx: &DiagCtxt) -> Result { let export_threshold = match cgcx.lto { // We're just doing LTO for our one crate Lto::ThinLocal => SymbolExportLevel::Rust, // We're doing LTO for the entire crate graph Lto::Fat | Lto::Thin => symbol_export::crates_export_threshold(&cgcx.crate_types), Lto::No => panic!("didn't request LTO but we're doing LTO"), }; let tmp_path = match tempdir() { Ok(tmp_path) => tmp_path, Err(error) => { eprintln!("Cannot create temporary directory: {}", error); return Err(FatalError); }, }; let symbol_filter = &|&(ref name, info): &(String, SymbolExportInfo)| { if info.level.is_below_threshold(export_threshold) || info.used { Some(CString::new(name.as_str()).unwrap()) } else { None } }; let exported_symbols = cgcx.exported_symbols.as_ref().expect("needs exported symbols for LTO"); let mut symbols_below_threshold = { let _timer = cgcx.prof.generic_activity("GCC_lto_generate_symbols_below_threshold"); exported_symbols[&LOCAL_CRATE].iter().filter_map(symbol_filter).collect::>() }; info!("{} symbols to preserve in this crate", symbols_below_threshold.len()); // If we're performing LTO for the entire crate graph, then for each of our // upstream dependencies, find the corresponding rlib and load the bitcode // from the archive. // // We save off all the bytecode and GCC module file path for later processing // with either fat or thin LTO let mut upstream_modules = Vec::new(); if cgcx.lto != Lto::ThinLocal { // Make sure we actually can run LTO for crate_type in cgcx.crate_types.iter() { if !crate_type_allows_lto(*crate_type) { dcx.emit_err(LtoDisallowed); return Err(FatalError); } else if *crate_type == CrateType::Dylib { if !cgcx.opts.unstable_opts.dylib_lto { dcx.emit_err(LtoDylib); return Err(FatalError); } } } if cgcx.opts.cg.prefer_dynamic && !cgcx.opts.unstable_opts.dylib_lto { dcx.emit_err(DynamicLinkingWithLTO); return Err(FatalError); } for &(cnum, ref path) in cgcx.each_linked_rlib_for_lto.iter() { let exported_symbols = cgcx.exported_symbols.as_ref().expect("needs exported symbols for LTO"); { let _timer = cgcx.prof.generic_activity("GCC_lto_generate_symbols_below_threshold"); symbols_below_threshold .extend(exported_symbols[&cnum].iter().filter_map(symbol_filter)); } let archive_data = unsafe { Mmap::map(File::open(&path).expect("couldn't open rlib")) .expect("couldn't map rlib") }; let archive = ArchiveFile::parse(&*archive_data).expect("wanted an rlib"); let obj_files = archive .members() .filter_map(|child| { child.ok().and_then(|c| { std::str::from_utf8(c.name()).ok().map(|name| (name.trim(), c)) }) }) .filter(|&(name, _)| looks_like_rust_object_file(name)); for (name, child) in obj_files { info!("adding bitcode from {}", name); let path = tmp_path.path().join(name); match save_as_file(child.data(&*archive_data).expect("corrupt rlib"), &path) { Ok(()) => { let buffer = ModuleBuffer::new(path); let module = SerializedModule::Local(buffer); upstream_modules.push((module, CString::new(name).unwrap())); } Err(e) => { dcx.emit_err(e); return Err(FatalError); } } } } } Ok(LtoData { //symbols_below_threshold, upstream_modules, tmp_path, }) } fn save_as_file(obj: &[u8], path: &Path) -> Result<(), LtoBitcodeFromRlib> { fs::write(path, obj) .map_err(|error| LtoBitcodeFromRlib { gcc_err: format!("write object file to temp dir: {}", error) }) } /// Performs fat LTO by merging all modules into a single one and returning it /// for further optimization. pub(crate) fn run_fat( cgcx: &CodegenContext, modules: Vec>, cached_modules: Vec<(SerializedModule, WorkProduct)>, ) -> Result, FatalError> { let dcx = cgcx.create_dcx(); let lto_data = prepare_lto(cgcx, &dcx)?; /*let symbols_below_threshold = lto_data.symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::>();*/ fat_lto(cgcx, &dcx, modules, cached_modules, lto_data.upstream_modules, lto_data.tmp_path, //&symbols_below_threshold, ) } fn fat_lto(cgcx: &CodegenContext, _dcx: &DiagCtxt, modules: Vec>, cached_modules: Vec<(SerializedModule, WorkProduct)>, mut serialized_modules: Vec<(SerializedModule, CString)>, tmp_path: TempDir, //symbols_below_threshold: &[*const libc::c_char], ) -> Result, FatalError> { let _timer = cgcx.prof.generic_activity("GCC_fat_lto_build_monolithic_module"); info!("going for a fat lto"); // Sort out all our lists of incoming modules into two lists. // // * `serialized_modules` (also and argument to this function) contains all // modules that are serialized in-memory. // * `in_memory` contains modules which are already parsed and in-memory, // such as from multi-CGU builds. // // All of `cached_modules` (cached from previous incremental builds) can // immediately go onto the `serialized_modules` modules list and then we can // split the `modules` array into these two lists. let mut in_memory = Vec::new(); serialized_modules.extend(cached_modules.into_iter().map(|(buffer, wp)| { info!("pushing cached module {:?}", wp.cgu_name); (buffer, CString::new(wp.cgu_name).unwrap()) })); for module in modules { match module { FatLtoInput::InMemory(m) => in_memory.push(m), FatLtoInput::Serialized { name, buffer } => { info!("pushing serialized module {:?}", name); let buffer = SerializedModule::Local(buffer); serialized_modules.push((buffer, CString::new(name).unwrap())); } } } // Find the "costliest" module and merge everything into that codegen unit. // All the other modules will be serialized and reparsed into the new // context, so this hopefully avoids serializing and parsing the largest // codegen unit. // // Additionally use a regular module as the base here to ensure that various // file copy operations in the backend work correctly. The only other kind // of module here should be an allocator one, and if your crate is smaller // than the allocator module then the size doesn't really matter anyway. let costliest_module = in_memory .iter() .enumerate() .filter(|&(_, module)| module.kind == ModuleKind::Regular) .map(|(i, _module)| { //let cost = unsafe { llvm::LLVMRustModuleCost(module.module_llvm.llmod()) }; // TODO(antoyo): compute the cost of a module if GCC allows this. (0, i) }) .max(); // If we found a costliest module, we're good to go. Otherwise all our // inputs were serialized which could happen in the case, for example, that // all our inputs were incrementally reread from the cache and we're just // re-executing the LTO passes. If that's the case deserialize the first // module and create a linker with it. let mut module: ModuleCodegen = match costliest_module { Some((_cost, i)) => in_memory.remove(i), None => { unimplemented!("Incremental"); /*assert!(!serialized_modules.is_empty(), "must have at least one serialized module"); let (buffer, name) = serialized_modules.remove(0); info!("no in-memory regular modules to choose from, parsing {:?}", name); ModuleCodegen { module_llvm: GccContext::parse(cgcx, &name, buffer.data(), dcx)?, name: name.into_string().unwrap(), kind: ModuleKind::Regular, }*/ } }; let mut serialized_bitcode = Vec::new(); { info!("using {:?} as a base module", module.name); // We cannot load and merge GCC contexts in memory like cg_llvm is doing. // Instead, we combine the object files into a single object file. for module in in_memory { let path = tmp_path.path().to_path_buf().join(&module.name); let path = path.to_str().expect("path"); let context = &module.module_llvm.context; let config = cgcx.config(module.kind); // NOTE: we need to set the optimization level here in order for LTO to do its job. context.set_optimization_level(to_gcc_opt_level(config.opt_level)); context.add_command_line_option("-flto=auto"); context.add_command_line_option("-flto-partition=one"); context.compile_to_file(OutputKind::ObjectFile, path); let buffer = ModuleBuffer::new(PathBuf::from(path)); let llmod_id = CString::new(&module.name[..]).unwrap(); serialized_modules.push((SerializedModule::Local(buffer), llmod_id)); } // Sort the modules to ensure we produce deterministic results. serialized_modules.sort_by(|module1, module2| module1.1.cmp(&module2.1)); // We add the object files and save in should_combine_object_files that we should combine // them into a single object file when compiling later. for (bc_decoded, name) in serialized_modules { let _timer = cgcx .prof .generic_activity_with_arg_recorder("GCC_fat_lto_link_module", |recorder| { recorder.record_arg(format!("{:?}", name)) }); info!("linking {:?}", name); match bc_decoded { SerializedModule::Local(ref module_buffer) => { module.module_llvm.should_combine_object_files = true; module.module_llvm.context.add_driver_option(module_buffer.0.to_str().expect("path")); }, SerializedModule::FromRlib(_) => unimplemented!("from rlib"), SerializedModule::FromUncompressedFile(_) => unimplemented!("from uncompressed file"), } serialized_bitcode.push(bc_decoded); } save_temp_bitcode(cgcx, &module, "lto.input"); // Internalize everything below threshold to help strip out more modules and such. /*unsafe { let ptr = symbols_below_threshold.as_ptr(); llvm::LLVMRustRunRestrictionPass( llmod, ptr as *const *const libc::c_char, symbols_below_threshold.len() as libc::size_t, );*/ save_temp_bitcode(cgcx, &module, "lto.after-restriction"); //} } // NOTE: save the temporary directory used by LTO so that it gets deleted after linking instead // of now. module.module_llvm.temp_dir = Some(tmp_path); Ok(LtoModuleCodegen::Fat { module, _serialized_bitcode: serialized_bitcode }) } pub struct ModuleBuffer(PathBuf); impl ModuleBuffer { pub fn new(path: PathBuf) -> ModuleBuffer { ModuleBuffer(path) } } impl ModuleBufferMethods for ModuleBuffer { fn data(&self) -> &[u8] { unimplemented!("data not needed for GCC codegen"); } }