use std::borrow::Cow; use std::cell::Cell; use std::convert::TryFrom; use std::ops::Deref; use gccjit::{ BinaryOp, Block, ComparisonOp, Context, Function, LValue, RValue, ToRValue, Type, UnaryOp, }; use rustc_apfloat::{ieee, Float, Round, Status}; use rustc_codegen_ssa::MemFlags; use rustc_codegen_ssa::common::{ AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind, }; use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue}; use rustc_codegen_ssa::mir::place::PlaceRef; use rustc_codegen_ssa::traits::{ BackendTypes, BaseTypeMethods, BuilderMethods, ConstMethods, DerivedTypeMethods, LayoutTypeMethods, HasCodegen, OverflowOp, StaticBuilderMethods, }; use rustc_data_structures::fx::FxHashSet; use rustc_middle::bug; use rustc_middle::ty::{ParamEnv, Ty, TyCtxt}; use rustc_middle::ty::layout::{FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasParamEnv, HasTyCtxt, LayoutError, LayoutOfHelpers, TyAndLayout}; use rustc_span::Span; use rustc_span::def_id::DefId; use rustc_target::abi::{ self, call::FnAbi, Align, HasDataLayout, Size, TargetDataLayout, WrappingRange, }; use rustc_target::spec::{HasTargetSpec, Target}; use crate::common::{SignType, TypeReflection, type_is_pointer}; use crate::context::CodegenCx; use crate::intrinsic::llvm; use crate::type_of::LayoutGccExt; // TODO(antoyo) type Funclet = (); // TODO(antoyo): remove this variable. static mut RETURN_VALUE_COUNT: usize = 0; enum ExtremumOperation { Max, Min, } pub struct Builder<'a: 'gcc, 'gcc, 'tcx> { pub cx: &'a CodegenCx<'gcc, 'tcx>, pub block: Block<'gcc>, stack_var_count: Cell, } impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> { fn with_cx(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Self { Builder { cx, block, stack_var_count: Cell::new(0), } } fn atomic_extremum(&mut self, operation: ExtremumOperation, dst: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering) -> RValue<'gcc> { let size = src.get_type().get_size(); let func = self.current_func(); let load_ordering = match order { // TODO(antoyo): does this make sense? AtomicOrdering::AcquireRelease | AtomicOrdering::Release => AtomicOrdering::Acquire, _ => order, }; let previous_value = self.atomic_load(dst.get_type(), dst, load_ordering, Size::from_bytes(size)); let previous_var = func.new_local(None, previous_value.get_type(), "previous_value"); let return_value = func.new_local(None, previous_value.get_type(), "return_value"); self.llbb().add_assignment(None, previous_var, previous_value); self.llbb().add_assignment(None, return_value, previous_var.to_rvalue()); let while_block = func.new_block("while"); let after_block = func.new_block("after_while"); self.llbb().end_with_jump(None, while_block); // NOTE: since jumps were added and compare_exchange doesn't expect this, the current block in the // state need to be updated. self.switch_to_block(while_block); let comparison_operator = match operation { ExtremumOperation::Max => ComparisonOp::LessThan, ExtremumOperation::Min => ComparisonOp::GreaterThan, }; let cond1 = self.context.new_comparison(None, comparison_operator, previous_var.to_rvalue(), self.context.new_cast(None, src, previous_value.get_type())); let compare_exchange = self.compare_exchange(dst, previous_var, src, order, load_ordering, false); let cond2 = self.cx.context.new_unary_op(None, UnaryOp::LogicalNegate, compare_exchange.get_type(), compare_exchange); let cond = self.cx.context.new_binary_op(None, BinaryOp::LogicalAnd, self.cx.bool_type, cond1, cond2); while_block.end_with_conditional(None, cond, while_block, after_block); // NOTE: since jumps were added in a place rustc does not expect, the current block in the // state need to be updated. self.switch_to_block(after_block); return_value.to_rvalue() } fn compare_exchange(&self, dst: RValue<'gcc>, cmp: LValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering, failure_order: AtomicOrdering, weak: bool) -> RValue<'gcc> { let size = src.get_type().get_size(); let compare_exchange = self.context.get_builtin_function(&format!("__atomic_compare_exchange_{}", size)); let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); let failure_order = self.context.new_rvalue_from_int(self.i32_type, failure_order.to_gcc()); let weak = self.context.new_rvalue_from_int(self.bool_type, weak as i32); let void_ptr_type = self.context.new_type::<*mut ()>(); let volatile_void_ptr_type = void_ptr_type.make_volatile(); let dst = self.context.new_cast(None, dst, volatile_void_ptr_type); let expected = self.context.new_cast(None, cmp.get_address(None), void_ptr_type); // NOTE: not sure why, but we have the wrong type here. let int_type = compare_exchange.get_param(2).to_rvalue().get_type(); let src = self.context.new_cast(None, src, int_type); self.context.new_call(None, compare_exchange, &[dst, expected, src, weak, order, failure_order]) } pub fn assign(&self, lvalue: LValue<'gcc>, value: RValue<'gcc>) { self.llbb().add_assignment(None, lvalue, value); } fn check_call<'b>(&mut self, _typ: &str, func: Function<'gcc>, args: &'b [RValue<'gcc>]) -> Cow<'b, [RValue<'gcc>]> { let mut all_args_match = true; let mut param_types = vec![]; let param_count = func.get_param_count(); for (index, arg) in args.iter().enumerate().take(param_count) { let param = func.get_param(index as i32); let param = param.to_rvalue().get_type(); if param != arg.get_type() { all_args_match = false; } param_types.push(param); } if all_args_match { return Cow::Borrowed(args); } let casted_args: Vec<_> = param_types .into_iter() .zip(args.iter()) .enumerate() .map(|(_i, (expected_ty, &actual_val))| { let actual_ty = actual_val.get_type(); if expected_ty != actual_ty { self.bitcast(actual_val, expected_ty) } else { actual_val } }) .collect(); Cow::Owned(casted_args) } fn check_ptr_call<'b>(&mut self, _typ: &str, func_ptr: RValue<'gcc>, args: &'b [RValue<'gcc>]) -> Cow<'b, [RValue<'gcc>]> { let mut all_args_match = true; let mut param_types = vec![]; let gcc_func = func_ptr.get_type().dyncast_function_ptr_type().expect("function ptr"); for (index, arg) in args.iter().enumerate().take(gcc_func.get_param_count()) { let param = gcc_func.get_param_type(index); if param != arg.get_type() { all_args_match = false; } param_types.push(param); } let mut on_stack_param_indices = FxHashSet::default(); if let Some(indices) = self.on_stack_params.borrow().get(&gcc_func) { on_stack_param_indices = indices.clone(); } if all_args_match { return Cow::Borrowed(args); } let func_name = format!("{:?}", func_ptr); let casted_args: Vec<_> = param_types .into_iter() .zip(args.iter()) .enumerate() .map(|(index, (expected_ty, &actual_val))| { if llvm::ignore_arg_cast(&func_name, index, args.len()) { return actual_val; } let actual_ty = actual_val.get_type(); if expected_ty != actual_ty { if !actual_ty.is_vector() && !expected_ty.is_vector() && actual_ty.is_integral() && expected_ty.is_integral() && actual_ty.get_size() != expected_ty.get_size() { self.context.new_cast(None, actual_val, expected_ty) } else if on_stack_param_indices.contains(&index) { actual_val.dereference(None).to_rvalue() } else { assert!(!((actual_ty.is_vector() && !expected_ty.is_vector()) || (!actual_ty.is_vector() && expected_ty.is_vector())), "{:?} ({}) -> {:?} ({}), index: {:?}[{}]", actual_ty, actual_ty.is_vector(), expected_ty, expected_ty.is_vector(), func_ptr, index); // TODO(antoyo): perhaps use __builtin_convertvector for vector casting. self.bitcast(actual_val, expected_ty) } } else { actual_val } }) .collect(); Cow::Owned(casted_args) } fn check_store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> { let dest_ptr_ty = self.cx.val_ty(ptr).make_pointer(); // TODO(antoyo): make sure make_pointer() is okay here. let stored_ty = self.cx.val_ty(val); let stored_ptr_ty = self.cx.type_ptr_to(stored_ty); if dest_ptr_ty == stored_ptr_ty { ptr } else { self.bitcast(ptr, stored_ptr_ty) } } pub fn current_func(&self) -> Function<'gcc> { self.block.get_function() } fn function_call(&mut self, func: RValue<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> { // TODO(antoyo): remove when the API supports a different type for functions. let func: Function<'gcc> = self.cx.rvalue_as_function(func); let args = self.check_call("call", func, args); // gccjit requires to use the result of functions, even when it's not used. // That's why we assign the result to a local or call add_eval(). let return_type = func.get_return_type(); let void_type = self.context.new_type::<()>(); let current_func = self.block.get_function(); if return_type != void_type { unsafe { RETURN_VALUE_COUNT += 1 }; let result = current_func.new_local(None, return_type, &format!("returnValue{}", unsafe { RETURN_VALUE_COUNT })); self.block.add_assignment(None, result, self.cx.context.new_call(None, func, &args)); result.to_rvalue() } else { self.block.add_eval(None, self.cx.context.new_call(None, func, &args)); // Return dummy value when not having return value. self.context.new_rvalue_from_long(self.isize_type, 0) } } fn function_ptr_call(&mut self, func_ptr: RValue<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> { let args = self.check_ptr_call("call", func_ptr, args); // gccjit requires to use the result of functions, even when it's not used. // That's why we assign the result to a local or call add_eval(). let gcc_func = func_ptr.get_type().dyncast_function_ptr_type().expect("function ptr"); let return_type = gcc_func.get_return_type(); let void_type = self.context.new_type::<()>(); let current_func = self.block.get_function(); if return_type != void_type { unsafe { RETURN_VALUE_COUNT += 1 }; let result = current_func.new_local(None, return_type, &format!("ptrReturnValue{}", unsafe { RETURN_VALUE_COUNT })); let func_name = format!("{:?}", func_ptr); let args = llvm::adjust_intrinsic_arguments(&self, gcc_func, args, &func_name); self.block.add_assignment(None, result, self.cx.context.new_call_through_ptr(None, func_ptr, &args)); result.to_rvalue() } else { #[cfg(not(feature="master"))] if gcc_func.get_param_count() == 0 { // FIXME(antoyo): As a temporary workaround for unsupported LLVM intrinsics. self.block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &[])); } else { self.block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &args)); } #[cfg(feature="master")] self.block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &args)); // Return dummy value when not having return value. let result = current_func.new_local(None, self.isize_type, "dummyValueThatShouldNeverBeUsed"); self.block.add_assignment(None, result, self.context.new_rvalue_from_long(self.isize_type, 0)); result.to_rvalue() } } pub fn overflow_call(&self, func: Function<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> { // gccjit requires to use the result of functions, even when it's not used. // That's why we assign the result to a local. let return_type = self.context.new_type::(); let current_func = self.block.get_function(); // TODO(antoyo): return the new_call() directly? Since the overflow function has no side-effects. unsafe { RETURN_VALUE_COUNT += 1 }; let result = current_func.new_local(None, return_type, &format!("overflowReturnValue{}", unsafe { RETURN_VALUE_COUNT })); self.block.add_assignment(None, result, self.cx.context.new_call(None, func, &args)); result.to_rvalue() } } impl<'gcc, 'tcx> HasCodegen<'tcx> for Builder<'_, 'gcc, 'tcx> { type CodegenCx = CodegenCx<'gcc, 'tcx>; } impl<'tcx> HasTyCtxt<'tcx> for Builder<'_, '_, 'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.cx.tcx() } } impl HasDataLayout for Builder<'_, '_, '_> { fn data_layout(&self) -> &TargetDataLayout { self.cx.data_layout() } } impl<'tcx> LayoutOfHelpers<'tcx> for Builder<'_, '_, 'tcx> { type LayoutOfResult = TyAndLayout<'tcx>; #[inline] fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! { self.cx.handle_layout_err(err, span, ty) } } impl<'tcx> FnAbiOfHelpers<'tcx> for Builder<'_, '_, 'tcx> { type FnAbiOfResult = &'tcx FnAbi<'tcx, Ty<'tcx>>; #[inline] fn handle_fn_abi_err( &self, err: FnAbiError<'tcx>, span: Span, fn_abi_request: FnAbiRequest<'tcx>, ) -> ! { self.cx.handle_fn_abi_err(err, span, fn_abi_request) } } impl<'gcc, 'tcx> Deref for Builder<'_, 'gcc, 'tcx> { type Target = CodegenCx<'gcc, 'tcx>; fn deref(&self) -> &Self::Target { self.cx } } impl<'gcc, 'tcx> BackendTypes for Builder<'_, 'gcc, 'tcx> { type Value = as BackendTypes>::Value; type Function = as BackendTypes>::Function; type BasicBlock = as BackendTypes>::BasicBlock; type Type = as BackendTypes>::Type; type Funclet = as BackendTypes>::Funclet; type DIScope = as BackendTypes>::DIScope; type DILocation = as BackendTypes>::DILocation; type DIVariable = as BackendTypes>::DIVariable; } impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> { fn build(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Self { Builder::with_cx(cx, block) } fn llbb(&self) -> Block<'gcc> { self.block } fn append_block(cx: &'a CodegenCx<'gcc, 'tcx>, func: RValue<'gcc>, name: &str) -> Block<'gcc> { let func = cx.rvalue_as_function(func); func.new_block(name) } fn append_sibling_block(&mut self, name: &str) -> Block<'gcc> { let func = self.current_func(); func.new_block(name) } fn switch_to_block(&mut self, block: Self::BasicBlock) { self.block = block; } fn ret_void(&mut self) { self.llbb().end_with_void_return(None) } fn ret(&mut self, value: RValue<'gcc>) { let value = if self.structs_as_pointer.borrow().contains(&value) { // NOTE: hack to workaround a limitation of the rustc API: see comment on // CodegenCx.structs_as_pointer value.dereference(None).to_rvalue() } else { value }; self.llbb().end_with_return(None, value); } fn br(&mut self, dest: Block<'gcc>) { self.llbb().end_with_jump(None, dest) } fn cond_br(&mut self, cond: RValue<'gcc>, then_block: Block<'gcc>, else_block: Block<'gcc>) { self.llbb().end_with_conditional(None, cond, then_block, else_block) } fn switch(&mut self, value: RValue<'gcc>, default_block: Block<'gcc>, cases: impl ExactSizeIterator)>) { let mut gcc_cases = vec![]; let typ = self.val_ty(value); for (on_val, dest) in cases { let on_val = self.const_uint_big(typ, on_val); gcc_cases.push(self.context.new_case(on_val, on_val, dest)); } self.block.end_with_switch(None, value, default_block, &gcc_cases); } fn invoke( &mut self, typ: Type<'gcc>, fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, func: RValue<'gcc>, args: &[RValue<'gcc>], then: Block<'gcc>, catch: Block<'gcc>, _funclet: Option<&Funclet>, ) -> RValue<'gcc> { // TODO(bjorn3): Properly implement unwinding. let call_site = self.call(typ, None, func, args, None); let condition = self.context.new_rvalue_from_int(self.bool_type, 1); self.llbb().end_with_conditional(None, condition, then, catch); if let Some(_fn_abi) = fn_abi { // TODO(bjorn3): Apply function attributes } call_site } fn unreachable(&mut self) { let func = self.context.get_builtin_function("__builtin_unreachable"); self.block.add_eval(None, self.context.new_call(None, func, &[])); let return_type = self.block.get_function().get_return_type(); let void_type = self.context.new_type::<()>(); if return_type == void_type { self.block.end_with_void_return(None) } else { let return_value = self.current_func() .new_local(None, return_type, "unreachableReturn"); self.block.end_with_return(None, return_value) } } fn add(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.gcc_add(a, b) } fn fadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { a + b } fn sub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.gcc_sub(a, b) } fn fsub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { a - b } fn mul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.gcc_mul(a, b) } fn fmul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { a * b } fn udiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.gcc_udiv(a, b) } fn exactudiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { // TODO(antoyo): poison if not exact. let a_type = a.get_type().to_unsigned(self); let a = self.gcc_int_cast(a, a_type); let b_type = b.get_type().to_unsigned(self); let b = self.gcc_int_cast(b, b_type); a / b } fn sdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.gcc_sdiv(a, b) } fn exactsdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { // TODO(antoyo): poison if not exact. // FIXME(antoyo): rustc_codegen_ssa::mir::intrinsic uses different types for a and b but they // should be the same. let typ = a.get_type().to_signed(self); let b = self.context.new_cast(None, b, typ); a / b } fn fdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { a / b } fn urem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.gcc_urem(a, b) } fn srem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.gcc_srem(a, b) } fn frem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { if a.get_type().is_compatible_with(self.cx.float_type) { let fmodf = self.context.get_builtin_function("fmodf"); // FIXME(antoyo): this seems to produce the wrong result. return self.context.new_call(None, fmodf, &[a, b]); } assert_eq!(a.get_type().unqualified(), self.cx.double_type); let fmod = self.context.get_builtin_function("fmod"); return self.context.new_call(None, fmod, &[a, b]); } fn shl(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.gcc_shl(a, b) } fn lshr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.gcc_lshr(a, b) } fn ashr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { // TODO(antoyo): check whether behavior is an arithmetic shift for >> . // It seems to be if the value is signed. self.gcc_lshr(a, b) } fn and(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.gcc_and(a, b) } fn or(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.cx.gcc_or(a, b) } fn xor(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.gcc_xor(a, b) } fn neg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { self.gcc_neg(a) } fn fneg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { self.cx.context.new_unary_op(None, UnaryOp::Minus, a.get_type(), a) } fn not(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { self.gcc_not(a) } fn unchecked_sadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { a + b } fn unchecked_uadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { self.gcc_add(a, b) } fn unchecked_ssub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { a - b } fn unchecked_usub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { // TODO(antoyo): should generate poison value? self.gcc_sub(a, b) } fn unchecked_smul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { a * b } fn unchecked_umul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { a * b } fn fadd_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { unimplemented!(); } fn fsub_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { unimplemented!(); } fn fmul_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { unimplemented!(); } fn fdiv_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { unimplemented!(); } fn frem_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { unimplemented!(); } fn checked_binop(&mut self, oop: OverflowOp, typ: Ty<'_>, lhs: Self::Value, rhs: Self::Value) -> (Self::Value, Self::Value) { self.gcc_checked_binop(oop, typ, lhs, rhs) } fn alloca(&mut self, ty: Type<'gcc>, align: Align) -> RValue<'gcc> { // FIXME(antoyo): this check that we don't call get_aligned() a second time on a type. // Ideally, we shouldn't need to do this check. let aligned_type = if ty == self.cx.u128_type || ty == self.cx.i128_type { ty } else { ty.get_aligned(align.bytes()) }; // TODO(antoyo): It might be better to return a LValue, but fixing the rustc API is non-trivial. self.stack_var_count.set(self.stack_var_count.get() + 1); self.current_func().new_local(None, aligned_type, &format!("stack_var_{}", self.stack_var_count.get())).get_address(None) } fn byte_array_alloca(&mut self, _len: RValue<'gcc>, _align: Align) -> RValue<'gcc> { unimplemented!(); } fn load(&mut self, pointee_ty: Type<'gcc>, ptr: RValue<'gcc>, _align: Align) -> RValue<'gcc> { let block = self.llbb(); let function = block.get_function(); // NOTE: instead of returning the dereference here, we have to assign it to a variable in // the current basic block. Otherwise, it could be used in another basic block, causing a // dereference after a drop, for instance. // TODO(antoyo): handle align of the load instruction. let ptr = self.context.new_cast(None, ptr, pointee_ty.make_pointer()); let deref = ptr.dereference(None).to_rvalue(); unsafe { RETURN_VALUE_COUNT += 1 }; let loaded_value = function.new_local(None, pointee_ty, &format!("loadedValue{}", unsafe { RETURN_VALUE_COUNT })); block.add_assignment(None, loaded_value, deref); loaded_value.to_rvalue() } fn volatile_load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> { // TODO(antoyo): use ty. let ptr = self.context.new_cast(None, ptr, ptr.get_type().make_volatile()); ptr.dereference(None).to_rvalue() } fn atomic_load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>, order: AtomicOrdering, size: Size) -> RValue<'gcc> { // TODO(antoyo): use ty. // TODO(antoyo): handle alignment. let atomic_load = self.context.get_builtin_function(&format!("__atomic_load_{}", size.bytes())); let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); let volatile_const_void_ptr_type = self.context.new_type::<()>() .make_const() .make_volatile() .make_pointer(); let ptr = self.context.new_cast(None, ptr, volatile_const_void_ptr_type); self.context.new_call(None, atomic_load, &[ptr, ordering]) } fn load_operand(&mut self, place: PlaceRef<'tcx, RValue<'gcc>>) -> OperandRef<'tcx, RValue<'gcc>> { assert_eq!(place.llextra.is_some(), place.layout.is_unsized()); if place.layout.is_zst() { return OperandRef::new_zst(self, place.layout); } fn scalar_load_metadata<'a, 'gcc, 'tcx>(bx: &mut Builder<'a, 'gcc, 'tcx>, load: RValue<'gcc>, scalar: &abi::Scalar) { let vr = scalar.valid_range(bx); match scalar.primitive() { abi::Int(..) => { if !scalar.is_always_valid(bx) { bx.range_metadata(load, vr); } } abi::Pointer(_) if vr.start < vr.end && !vr.contains(0) => { bx.nonnull_metadata(load); } _ => {} } } let val = if let Some(llextra) = place.llextra { OperandValue::Ref(place.llval, Some(llextra), place.align) } else if place.layout.is_gcc_immediate() { let load = self.load( place.layout.gcc_type(self, false), place.llval, place.align, ); if let abi::Abi::Scalar(ref scalar) = place.layout.abi { scalar_load_metadata(self, load, scalar); } OperandValue::Immediate(self.to_immediate(load, place.layout)) } else if let abi::Abi::ScalarPair(ref a, ref b) = place.layout.abi { let b_offset = a.size(self).align_to(b.align(self).abi); let pair_type = place.layout.gcc_type(self, false); let mut load = |i, scalar: &abi::Scalar, align| { let llptr = self.struct_gep(pair_type, place.llval, i as u64); let llty = place.layout.scalar_pair_element_gcc_type(self, i, false); let load = self.load(llty, llptr, align); scalar_load_metadata(self, load, scalar); if scalar.is_bool() { self.trunc(load, self.type_i1()) } else { load } }; OperandValue::Pair( load(0, a, place.align), load(1, b, place.align.restrict_for_offset(b_offset)), ) } else { OperandValue::Ref(place.llval, None, place.align) }; OperandRef { val, layout: place.layout } } fn write_operand_repeatedly(&mut self, cg_elem: OperandRef<'tcx, RValue<'gcc>>, count: u64, dest: PlaceRef<'tcx, RValue<'gcc>>) { let zero = self.const_usize(0); let count = self.const_usize(count); let start = dest.project_index(self, zero).llval; let end = dest.project_index(self, count).llval; let header_bb = self.append_sibling_block("repeat_loop_header"); let body_bb = self.append_sibling_block("repeat_loop_body"); let next_bb = self.append_sibling_block("repeat_loop_next"); let ptr_type = start.get_type(); let current = self.llbb().get_function().new_local(None, ptr_type, "loop_var"); let current_val = current.to_rvalue(); self.assign(current, start); self.br(header_bb); self.switch_to_block(header_bb); let keep_going = self.icmp(IntPredicate::IntNE, current_val, end); self.cond_br(keep_going, body_bb, next_bb); self.switch_to_block(body_bb); let align = dest.align.restrict_for_offset(dest.layout.field(self.cx(), 0).size); cg_elem.val.store(self, PlaceRef::new_sized_aligned(current_val, cg_elem.layout, align)); let next = self.inbounds_gep(self.backend_type(cg_elem.layout), current.to_rvalue(), &[self.const_usize(1)]); self.llbb().add_assignment(None, current, next); self.br(header_bb); self.switch_to_block(next_bb); } fn range_metadata(&mut self, _load: RValue<'gcc>, _range: WrappingRange) { // TODO(antoyo) } fn nonnull_metadata(&mut self, _load: RValue<'gcc>) { // TODO(antoyo) } fn store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align) -> RValue<'gcc> { self.store_with_flags(val, ptr, align, MemFlags::empty()) } fn store_with_flags(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align, _flags: MemFlags) -> RValue<'gcc> { let ptr = self.check_store(val, ptr); let destination = ptr.dereference(None); // NOTE: libgccjit does not support specifying the alignment on the assignment, so we cast // to type so it gets the proper alignment. let destination_type = destination.to_rvalue().get_type().unqualified(); let aligned_type = destination_type.get_aligned(align.bytes()).make_pointer(); let aligned_destination = self.cx.context.new_bitcast(None, ptr, aligned_type); let aligned_destination = aligned_destination.dereference(None); self.llbb().add_assignment(None, aligned_destination, val); // TODO(antoyo): handle align and flags. // NOTE: dummy value here since it's never used. FIXME(antoyo): API should not return a value here? self.cx.context.new_rvalue_zero(self.type_i32()) } fn atomic_store(&mut self, value: RValue<'gcc>, ptr: RValue<'gcc>, order: AtomicOrdering, size: Size) { // TODO(antoyo): handle alignment. let atomic_store = self.context.get_builtin_function(&format!("__atomic_store_{}", size.bytes())); let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); let volatile_const_void_ptr_type = self.context.new_type::<()>() .make_volatile() .make_pointer(); let ptr = self.context.new_cast(None, ptr, volatile_const_void_ptr_type); // FIXME(antoyo): fix libgccjit to allow comparing an integer type with an aligned integer type because // the following cast is required to avoid this error: // gcc_jit_context_new_call: mismatching types for argument 2 of function "__atomic_store_4": assignment to param arg1 (type: int) from loadedValue3577 (type: unsigned int __attribute__((aligned(4)))) let int_type = atomic_store.get_param(1).to_rvalue().get_type(); let value = self.context.new_cast(None, value, int_type); self.llbb() .add_eval(None, self.context.new_call(None, atomic_store, &[ptr, value, ordering])); } fn gep(&mut self, _typ: Type<'gcc>, ptr: RValue<'gcc>, indices: &[RValue<'gcc>]) -> RValue<'gcc> { let mut result = ptr; for index in indices { result = self.context.new_array_access(None, result, *index).get_address(None).to_rvalue(); } result } fn inbounds_gep(&mut self, _typ: Type<'gcc>, ptr: RValue<'gcc>, indices: &[RValue<'gcc>]) -> RValue<'gcc> { // FIXME(antoyo): would be safer if doing the same thing (loop) as gep. // TODO(antoyo): specify inbounds somehow. match indices.len() { 1 => { self.context.new_array_access(None, ptr, indices[0]).get_address(None) }, 2 => { let array = ptr.dereference(None); // TODO(antoyo): assert that first index is 0? self.context.new_array_access(None, array, indices[1]).get_address(None) }, _ => unimplemented!(), } } fn struct_gep(&mut self, value_type: Type<'gcc>, ptr: RValue<'gcc>, idx: u64) -> RValue<'gcc> { // FIXME(antoyo): it would be better if the API only called this on struct, not on arrays. assert_eq!(idx as usize as u64, idx); let value = ptr.dereference(None).to_rvalue(); if value_type.dyncast_array().is_some() { let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); let element = self.context.new_array_access(None, value, index); element.get_address(None) } else if let Some(vector_type) = value_type.dyncast_vector() { let array_type = vector_type.get_element_type().make_pointer(); let array = self.bitcast(ptr, array_type); let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); let element = self.context.new_array_access(None, array, index); element.get_address(None) } else if let Some(struct_type) = value_type.is_struct() { ptr.dereference_field(None, struct_type.get_field(idx as i32)).get_address(None) } else { panic!("Unexpected type {:?}", value_type); } } /* Casts */ fn trunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { // TODO(antoyo): check that it indeed truncate the value. self.gcc_int_cast(value, dest_ty) } fn sext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { // TODO(antoyo): check that it indeed sign extend the value. if dest_ty.dyncast_vector().is_some() { // TODO(antoyo): nothing to do as it is only for LLVM? return value; } self.context.new_cast(None, value, dest_ty) } fn fptoui(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { self.gcc_float_to_uint_cast(value, dest_ty) } fn fptosi(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { self.gcc_float_to_int_cast(value, dest_ty) } fn uitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { self.gcc_uint_to_float_cast(value, dest_ty) } fn sitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { self.gcc_int_to_float_cast(value, dest_ty) } fn fptrunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { // TODO(antoyo): make sure it truncates. self.context.new_cast(None, value, dest_ty) } fn fpext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { self.context.new_cast(None, value, dest_ty) } fn ptrtoint(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { let usize_value = self.cx.const_bitcast(value, self.cx.type_isize()); self.intcast(usize_value, dest_ty, false) } fn inttoptr(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { let usize_value = self.intcast(value, self.cx.type_isize(), false); self.cx.const_bitcast(usize_value, dest_ty) } fn bitcast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { self.cx.const_bitcast(value, dest_ty) } fn intcast(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>, _is_signed: bool) -> RValue<'gcc> { // NOTE: is_signed is for value, not dest_typ. self.gcc_int_cast(value, dest_typ) } fn pointercast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { let val_type = value.get_type(); match (type_is_pointer(val_type), type_is_pointer(dest_ty)) { (false, true) => { // NOTE: Projecting a field of a pointer type will attempt a cast from a signed char to // a pointer, which is not supported by gccjit. return self.cx.context.new_cast(None, self.inttoptr(value, val_type.make_pointer()), dest_ty); }, (false, false) => { // When they are not pointers, we want a transmute (or reinterpret_cast). self.bitcast(value, dest_ty) }, (true, true) => self.cx.context.new_cast(None, value, dest_ty), (true, false) => unimplemented!(), } } /* Comparisons */ fn icmp(&mut self, op: IntPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { self.gcc_icmp(op, lhs, rhs) } fn fcmp(&mut self, op: RealPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { self.context.new_comparison(None, op.to_gcc_comparison(), lhs, rhs) } /* Miscellaneous instructions */ fn memcpy(&mut self, dst: RValue<'gcc>, _dst_align: Align, src: RValue<'gcc>, _src_align: Align, size: RValue<'gcc>, flags: MemFlags) { assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memcpy not supported"); let size = self.intcast(size, self.type_size_t(), false); let _is_volatile = flags.contains(MemFlags::VOLATILE); let dst = self.pointercast(dst, self.type_i8p()); let src = self.pointercast(src, self.type_ptr_to(self.type_void())); let memcpy = self.context.get_builtin_function("memcpy"); // TODO(antoyo): handle aligns and is_volatile. self.block.add_eval(None, self.context.new_call(None, memcpy, &[dst, src, size])); } fn memmove(&mut self, dst: RValue<'gcc>, dst_align: Align, src: RValue<'gcc>, src_align: Align, size: RValue<'gcc>, flags: MemFlags) { if flags.contains(MemFlags::NONTEMPORAL) { // HACK(nox): This is inefficient but there is no nontemporal memmove. let val = self.load(src.get_type().get_pointee().expect("get_pointee"), src, src_align); let ptr = self.pointercast(dst, self.type_ptr_to(self.val_ty(val))); self.store_with_flags(val, ptr, dst_align, flags); return; } let size = self.intcast(size, self.type_size_t(), false); let _is_volatile = flags.contains(MemFlags::VOLATILE); let dst = self.pointercast(dst, self.type_i8p()); let src = self.pointercast(src, self.type_ptr_to(self.type_void())); let memmove = self.context.get_builtin_function("memmove"); // TODO(antoyo): handle is_volatile. self.block.add_eval(None, self.context.new_call(None, memmove, &[dst, src, size])); } fn memset(&mut self, ptr: RValue<'gcc>, fill_byte: RValue<'gcc>, size: RValue<'gcc>, _align: Align, flags: MemFlags) { let _is_volatile = flags.contains(MemFlags::VOLATILE); let ptr = self.pointercast(ptr, self.type_i8p()); let memset = self.context.get_builtin_function("memset"); // TODO(antoyo): handle align and is_volatile. let fill_byte = self.context.new_cast(None, fill_byte, self.i32_type); let size = self.intcast(size, self.type_size_t(), false); self.block.add_eval(None, self.context.new_call(None, memset, &[ptr, fill_byte, size])); } fn select(&mut self, cond: RValue<'gcc>, then_val: RValue<'gcc>, mut else_val: RValue<'gcc>) -> RValue<'gcc> { let func = self.current_func(); let variable = func.new_local(None, then_val.get_type(), "selectVar"); let then_block = func.new_block("then"); let else_block = func.new_block("else"); let after_block = func.new_block("after"); self.llbb().end_with_conditional(None, cond, then_block, else_block); then_block.add_assignment(None, variable, then_val); then_block.end_with_jump(None, after_block); if !then_val.get_type().is_compatible_with(else_val.get_type()) { else_val = self.context.new_cast(None, else_val, then_val.get_type()); } else_block.add_assignment(None, variable, else_val); else_block.end_with_jump(None, after_block); // NOTE: since jumps were added in a place rustc does not expect, the current block in the // state need to be updated. self.switch_to_block(after_block); variable.to_rvalue() } #[allow(dead_code)] fn va_arg(&mut self, _list: RValue<'gcc>, _ty: Type<'gcc>) -> RValue<'gcc> { unimplemented!(); } fn extract_element(&mut self, _vec: RValue<'gcc>, _idx: RValue<'gcc>) -> RValue<'gcc> { unimplemented!(); } fn vector_splat(&mut self, _num_elts: usize, _elt: RValue<'gcc>) -> RValue<'gcc> { unimplemented!(); } fn extract_value(&mut self, aggregate_value: RValue<'gcc>, idx: u64) -> RValue<'gcc> { // FIXME(antoyo): it would be better if the API only called this on struct, not on arrays. assert_eq!(idx as usize as u64, idx); let value_type = aggregate_value.get_type(); if value_type.dyncast_array().is_some() { let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); let element = self.context.new_array_access(None, aggregate_value, index); element.get_address(None) } else if value_type.dyncast_vector().is_some() { panic!(); } else if let Some(pointer_type) = value_type.get_pointee() { if let Some(struct_type) = pointer_type.is_struct() { // NOTE: hack to workaround a limitation of the rustc API: see comment on // CodegenCx.structs_as_pointer aggregate_value.dereference_field(None, struct_type.get_field(idx as i32)).to_rvalue() } else { panic!("Unexpected type {:?}", value_type); } } else if let Some(struct_type) = value_type.is_struct() { aggregate_value.access_field(None, struct_type.get_field(idx as i32)).to_rvalue() } else { panic!("Unexpected type {:?}", value_type); } } fn insert_value(&mut self, aggregate_value: RValue<'gcc>, value: RValue<'gcc>, idx: u64) -> RValue<'gcc> { // FIXME(antoyo): it would be better if the API only called this on struct, not on arrays. assert_eq!(idx as usize as u64, idx); let value_type = aggregate_value.get_type(); let lvalue = if value_type.dyncast_array().is_some() { let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); self.context.new_array_access(None, aggregate_value, index) } else if value_type.dyncast_vector().is_some() { panic!(); } else if let Some(pointer_type) = value_type.get_pointee() { if let Some(struct_type) = pointer_type.is_struct() { // NOTE: hack to workaround a limitation of the rustc API: see comment on // CodegenCx.structs_as_pointer aggregate_value.dereference_field(None, struct_type.get_field(idx as i32)) } else { panic!("Unexpected type {:?}", value_type); } } else { panic!("Unexpected type {:?}", value_type); }; let lvalue_type = lvalue.to_rvalue().get_type(); let value = // NOTE: sometimes, rustc will create a value with the wrong type. if lvalue_type != value.get_type() { self.context.new_cast(None, value, lvalue_type) } else { value }; self.llbb().add_assignment(None, lvalue, value); aggregate_value } fn set_personality_fn(&mut self, _personality: RValue<'gcc>) { // TODO(antoyo) } fn cleanup_landing_pad(&mut self, _pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) { ( self.current_func().new_local(None, self.u8_type.make_pointer(), "landing_pad0") .to_rvalue(), self.current_func().new_local(None, self.i32_type, "landing_pad1").to_rvalue(), ) // TODO(antoyo): Properly implement unwinding. // the above is just to make the compilation work as it seems // rustc_codegen_ssa now calls the unwinding builder methods even on panic=abort. } fn resume(&mut self, _exn0: RValue<'gcc>, _exn1: RValue<'gcc>) { // TODO(bjorn3): Properly implement unwinding. self.unreachable(); } fn cleanup_pad(&mut self, _parent: Option>, _args: &[RValue<'gcc>]) -> Funclet { unimplemented!(); } fn cleanup_ret(&mut self, _funclet: &Funclet, _unwind: Option>) { unimplemented!(); } fn catch_pad(&mut self, _parent: RValue<'gcc>, _args: &[RValue<'gcc>]) -> Funclet { unimplemented!(); } fn catch_switch( &mut self, _parent: Option>, _unwind: Option>, _handlers: &[Block<'gcc>], ) -> RValue<'gcc> { unimplemented!(); } // Atomic Operations fn atomic_cmpxchg(&mut self, dst: RValue<'gcc>, cmp: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering, failure_order: AtomicOrdering, weak: bool) -> RValue<'gcc> { let expected = self.current_func().new_local(None, cmp.get_type(), "expected"); self.llbb().add_assignment(None, expected, cmp); let success = self.compare_exchange(dst, expected, src, order, failure_order, weak); let pair_type = self.cx.type_struct(&[src.get_type(), self.bool_type], false); let result = self.current_func().new_local(None, pair_type, "atomic_cmpxchg_result"); let align = Align::from_bits(64).expect("align"); // TODO(antoyo): use good align. let value_type = result.to_rvalue().get_type(); if let Some(struct_type) = value_type.is_struct() { self.store(success, result.access_field(None, struct_type.get_field(1)).get_address(None), align); // NOTE: since success contains the call to the intrinsic, it must be stored before // expected so that we store expected after the call. self.store(expected.to_rvalue(), result.access_field(None, struct_type.get_field(0)).get_address(None), align); } // TODO(antoyo): handle when value is not a struct. result.to_rvalue() } fn atomic_rmw(&mut self, op: AtomicRmwBinOp, dst: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering) -> RValue<'gcc> { let size = src.get_type().get_size(); let name = match op { AtomicRmwBinOp::AtomicXchg => format!("__atomic_exchange_{}", size), AtomicRmwBinOp::AtomicAdd => format!("__atomic_fetch_add_{}", size), AtomicRmwBinOp::AtomicSub => format!("__atomic_fetch_sub_{}", size), AtomicRmwBinOp::AtomicAnd => format!("__atomic_fetch_and_{}", size), AtomicRmwBinOp::AtomicNand => format!("__atomic_fetch_nand_{}", size), AtomicRmwBinOp::AtomicOr => format!("__atomic_fetch_or_{}", size), AtomicRmwBinOp::AtomicXor => format!("__atomic_fetch_xor_{}", size), AtomicRmwBinOp::AtomicMax => return self.atomic_extremum(ExtremumOperation::Max, dst, src, order), AtomicRmwBinOp::AtomicMin => return self.atomic_extremum(ExtremumOperation::Min, dst, src, order), AtomicRmwBinOp::AtomicUMax => return self.atomic_extremum(ExtremumOperation::Max, dst, src, order), AtomicRmwBinOp::AtomicUMin => return self.atomic_extremum(ExtremumOperation::Min, dst, src, order), }; let atomic_function = self.context.get_builtin_function(name); let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); let void_ptr_type = self.context.new_type::<*mut ()>(); let volatile_void_ptr_type = void_ptr_type.make_volatile(); let dst = self.context.new_cast(None, dst, volatile_void_ptr_type); // FIXME(antoyo): not sure why, but we have the wrong type here. let new_src_type = atomic_function.get_param(1).to_rvalue().get_type(); let src = self.context.new_cast(None, src, new_src_type); let res = self.context.new_call(None, atomic_function, &[dst, src, order]); self.context.new_cast(None, res, src.get_type()) } fn atomic_fence(&mut self, order: AtomicOrdering, scope: SynchronizationScope) { let name = match scope { SynchronizationScope::SingleThread => "__atomic_signal_fence", SynchronizationScope::CrossThread => "__atomic_thread_fence", }; let thread_fence = self.context.get_builtin_function(name); let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); self.llbb().add_eval(None, self.context.new_call(None, thread_fence, &[order])); } fn set_invariant_load(&mut self, load: RValue<'gcc>) { // NOTE: Hack to consider vtable function pointer as non-global-variable function pointer. self.normal_function_addresses.borrow_mut().insert(load); // TODO(antoyo) } fn lifetime_start(&mut self, _ptr: RValue<'gcc>, _size: Size) { // TODO(antoyo) } fn lifetime_end(&mut self, _ptr: RValue<'gcc>, _size: Size) { // TODO(antoyo) } fn call( &mut self, _typ: Type<'gcc>, fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, func: RValue<'gcc>, args: &[RValue<'gcc>], funclet: Option<&Funclet>, ) -> RValue<'gcc> { // FIXME(antoyo): remove when having a proper API. let gcc_func = unsafe { std::mem::transmute(func) }; let call = if self.functions.borrow().values().any(|value| *value == gcc_func) { self.function_call(func, args, funclet) } else { // If it's a not function that was defined, it's a function pointer. self.function_ptr_call(func, args, funclet) }; if let Some(_fn_abi) = fn_abi { // TODO(bjorn3): Apply function attributes } call } fn zext(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>) -> RValue<'gcc> { // FIXME(antoyo): this does not zero-extend. if value.get_type().is_bool() && dest_typ.is_i8(&self.cx) { // FIXME(antoyo): hack because base::from_immediate converts i1 to i8. // Fix the code in codegen_ssa::base::from_immediate. return value; } self.gcc_int_cast(value, dest_typ) } fn cx(&self) -> &CodegenCx<'gcc, 'tcx> { self.cx } fn do_not_inline(&mut self, _llret: RValue<'gcc>) { // FIXME(bjorn3): implement } fn set_span(&mut self, _span: Span) {} fn from_immediate(&mut self, val: Self::Value) -> Self::Value { if self.cx().val_ty(val) == self.cx().type_i1() { self.zext(val, self.cx().type_i8()) } else { val } } fn to_immediate_scalar(&mut self, val: Self::Value, scalar: abi::Scalar) -> Self::Value { if scalar.is_bool() { return self.trunc(val, self.cx().type_i1()); } val } fn fptoui_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { self.fptoint_sat(false, val, dest_ty) } fn fptosi_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { self.fptoint_sat(true, val, dest_ty) } fn instrprof_increment(&mut self, _fn_name: RValue<'gcc>, _hash: RValue<'gcc>, _num_counters: RValue<'gcc>, _index: RValue<'gcc>) { unimplemented!(); } } impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> { fn fptoint_sat(&mut self, signed: bool, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { let src_ty = self.cx.val_ty(val); let (float_ty, int_ty) = if self.cx.type_kind(src_ty) == TypeKind::Vector { assert_eq!(self.cx.vector_length(src_ty), self.cx.vector_length(dest_ty)); (self.cx.element_type(src_ty), self.cx.element_type(dest_ty)) } else { (src_ty, dest_ty) }; // FIXME(jistone): the following was originally the fallback SSA implementation, before LLVM 13 // added native `fptosi.sat` and `fptoui.sat` conversions, but it was used by GCC as well. // Now that LLVM always relies on its own, the code has been moved to GCC, but the comments are // still LLVM-specific. This should be updated, and use better GCC specifics if possible. let int_width = self.cx.int_width(int_ty); let float_width = self.cx.float_width(float_ty); // LLVM's fpto[su]i returns undef when the input val is infinite, NaN, or does not fit into the // destination integer type after rounding towards zero. This `undef` value can cause UB in // safe code (see issue #10184), so we implement a saturating conversion on top of it: // Semantically, the mathematical value of the input is rounded towards zero to the next // mathematical integer, and then the result is clamped into the range of the destination // integer type. Positive and negative infinity are mapped to the maximum and minimum value of // the destination integer type. NaN is mapped to 0. // // Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to // a value representable in int_ty. // They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits. // Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two. // int_ty::MIN, however, is either zero or a negative power of two and is thus exactly // representable. Note that this only works if float_ty's exponent range is sufficiently large. // f16 or 256 bit integers would break this property. Right now the smallest float type is f32 // with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127. // On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because // we're rounding towards zero, we just get float_ty::MAX (which is always an integer). // This already happens today with u128::MAX = 2^128 - 1 > f32::MAX. let int_max = |signed: bool, int_width: u64| -> u128 { let shift_amount = 128 - int_width; if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount } }; let int_min = |signed: bool, int_width: u64| -> i128 { if signed { i128::MIN >> (128 - int_width) } else { 0 } }; let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) { let rounded_min = ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero); assert_eq!(rounded_min.status, Status::OK); let rounded_max = ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero); assert!(rounded_max.value.is_finite()); (rounded_min.value.to_bits(), rounded_max.value.to_bits()) }; let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) { let rounded_min = ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero); assert_eq!(rounded_min.status, Status::OK); let rounded_max = ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero); assert!(rounded_max.value.is_finite()); (rounded_min.value.to_bits(), rounded_max.value.to_bits()) }; // To implement saturation, we perform the following steps: // // 1. Cast val to an integer with fpto[su]i. This may result in undef. // 2. Compare val to f_min and f_max, and use the comparison results to select: // a) int_ty::MIN if val < f_min or val is NaN // b) int_ty::MAX if val > f_max // c) the result of fpto[su]i otherwise // 3. If val is NaN, return 0.0, otherwise return the result of step 2. // // This avoids resulting undef because values in range [f_min, f_max] by definition fit into the // destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of // undef does not introduce any non-determinism either. // More importantly, the above procedure correctly implements saturating conversion. // Proof (sketch): // If val is NaN, 0 is returned by definition. // Otherwise, val is finite or infinite and thus can be compared with f_min and f_max. // This yields three cases to consider: // (1) if val in [f_min, f_max], the result of fpto[su]i is returned, which agrees with // saturating conversion for inputs in that range. // (2) if val > f_max, then val is larger than int_ty::MAX. This holds even if f_max is rounded // (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger // than int_ty::MAX. Because val is larger than int_ty::MAX, the return value of int_ty::MAX // is correct. // (3) if val < f_min, then val is smaller than int_ty::MIN. As shown earlier, f_min exactly equals // int_ty::MIN and therefore the return value of int_ty::MIN is correct. // QED. let float_bits_to_llval = |bx: &mut Self, bits| { let bits_llval = match float_width { 32 => bx.cx().const_u32(bits as u32), 64 => bx.cx().const_u64(bits as u64), n => bug!("unsupported float width {}", n), }; bx.bitcast(bits_llval, float_ty) }; let (f_min, f_max) = match float_width { 32 => compute_clamp_bounds_single(signed, int_width), 64 => compute_clamp_bounds_double(signed, int_width), n => bug!("unsupported float width {}", n), }; let f_min = float_bits_to_llval(self, f_min); let f_max = float_bits_to_llval(self, f_max); let int_max = self.cx.const_uint_big(int_ty, int_max(signed, int_width)); let int_min = self.cx.const_uint_big(int_ty, int_min(signed, int_width) as u128); let zero = self.cx.const_uint(int_ty, 0); // If we're working with vectors, constants must be "splatted": the constant is duplicated // into each lane of the vector. The algorithm stays the same, we are just using the // same constant across all lanes. let maybe_splat = |bx: &mut Self, val| { if bx.cx().type_kind(dest_ty) == TypeKind::Vector { bx.vector_splat(bx.vector_length(dest_ty), val) } else { val } }; let f_min = maybe_splat(self, f_min); let f_max = maybe_splat(self, f_max); let int_max = maybe_splat(self, int_max); let int_min = maybe_splat(self, int_min); let zero = maybe_splat(self, zero); // Step 1 ... let fptosui_result = if signed { self.fptosi(val, dest_ty) } else { self.fptoui(val, dest_ty) }; let less_or_nan = self.fcmp(RealPredicate::RealULT, val, f_min); let greater = self.fcmp(RealPredicate::RealOGT, val, f_max); // Step 2: We use two comparisons and two selects, with %s1 being the // result: // %less_or_nan = fcmp ult %val, %f_min // %greater = fcmp olt %val, %f_max // %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result // %s1 = select %greater, int_ty::MAX, %s0 // Note that %less_or_nan uses an *unordered* comparison. This // comparison is true if the operands are not comparable (i.e., if val is // NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if // val is NaN. // // Performance note: Unordered comparison can be lowered to a "flipped" // comparison and a negation, and the negation can be merged into the // select. Therefore, it not necessarily any more expensive than an // ordered ("normal") comparison. Whether these optimizations will be // performed is ultimately up to the backend, but at least x86 does // perform them. let s0 = self.select(less_or_nan, int_min, fptosui_result); let s1 = self.select(greater, int_max, s0); // Step 3: NaN replacement. // For unsigned types, the above step already yielded int_ty::MIN == 0 if val is NaN. // Therefore we only need to execute this step for signed integer types. if signed { // LLVM has no isNaN predicate, so we use (val == val) instead let cmp = self.fcmp(RealPredicate::RealOEQ, val, val); self.select(cmp, s1, zero) } else { s1 } } #[cfg(feature="master")] pub fn shuffle_vector(&mut self, v1: RValue<'gcc>, v2: RValue<'gcc>, mask: RValue<'gcc>) -> RValue<'gcc> { let struct_type = mask.get_type().is_struct().expect("mask of struct type"); // TODO(antoyo): use a recursive unqualified() here. let vector_type = v1.get_type().unqualified().dyncast_vector().expect("vector type"); let element_type = vector_type.get_element_type(); let vec_num_units = vector_type.get_num_units(); let mask_num_units = struct_type.get_field_count(); let mut vector_elements = vec![]; let mask_element_type = if element_type.is_integral() { element_type } else { #[cfg(feature="master")] { self.cx.type_ix(element_type.get_size() as u64 * 8) } #[cfg(not(feature="master"))] self.int_type }; for i in 0..mask_num_units { let field = struct_type.get_field(i as i32); vector_elements.push(self.context.new_cast(None, mask.access_field(None, field).to_rvalue(), mask_element_type)); } // NOTE: the mask needs to be the same length as the input vectors, so add the missing // elements in the mask if needed. for _ in mask_num_units..vec_num_units { vector_elements.push(self.context.new_rvalue_zero(mask_element_type)); } let array_type = self.context.new_array_type(None, element_type, vec_num_units as i32); let result_type = self.context.new_vector_type(element_type, mask_num_units as u64); let (v1, v2) = if vec_num_units < mask_num_units { // NOTE: the mask needs to be the same length as the input vectors, so join the 2 // vectors and create a dummy second vector. // TODO(antoyo): switch to using new_vector_access. let array = self.context.new_bitcast(None, v1, array_type); let mut elements = vec![]; for i in 0..vec_num_units { elements.push(self.context.new_array_access(None, array, self.context.new_rvalue_from_int(self.int_type, i as i32)).to_rvalue()); } // TODO(antoyo): switch to using new_vector_access. let array = self.context.new_bitcast(None, v2, array_type); for i in 0..(mask_num_units - vec_num_units) { elements.push(self.context.new_array_access(None, array, self.context.new_rvalue_from_int(self.int_type, i as i32)).to_rvalue()); } let v1 = self.context.new_rvalue_from_vector(None, result_type, &elements); let zero = self.context.new_rvalue_zero(element_type); let v2 = self.context.new_rvalue_from_vector(None, result_type, &vec![zero; mask_num_units]); (v1, v2) } else { (v1, v2) }; let new_mask_num_units = std::cmp::max(mask_num_units, vec_num_units); let mask_type = self.context.new_vector_type(mask_element_type, new_mask_num_units as u64); let mask = self.context.new_rvalue_from_vector(None, mask_type, &vector_elements); let result = self.context.new_rvalue_vector_perm(None, v1, v2, mask); if vec_num_units != mask_num_units { // NOTE: if padding was added, only select the number of elements of the masks to // remove that padding in the result. let mut elements = vec![]; // TODO(antoyo): switch to using new_vector_access. let array = self.context.new_bitcast(None, result, array_type); for i in 0..mask_num_units { elements.push(self.context.new_array_access(None, array, self.context.new_rvalue_from_int(self.int_type, i as i32)).to_rvalue()); } self.context.new_rvalue_from_vector(None, result_type, &elements) } else { result } } #[cfg(not(feature="master"))] pub fn shuffle_vector(&mut self, _v1: RValue<'gcc>, _v2: RValue<'gcc>, _mask: RValue<'gcc>) -> RValue<'gcc> { unimplemented!(); } #[cfg(feature="master")] pub fn vector_reduce(&mut self, src: RValue<'gcc>, op: F) -> RValue<'gcc> where F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc> { let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type"); let element_count = vector_type.get_num_units(); let mut vector_elements = vec![]; for i in 0..element_count { vector_elements.push(i); } let mask_type = self.context.new_vector_type(self.int_type, element_count as u64); let mut shift = 1; let mut res = src; while shift < element_count { let vector_elements: Vec<_> = vector_elements.iter() .map(|i| self.context.new_rvalue_from_int(self.int_type, ((i + shift) % element_count) as i32)) .collect(); let mask = self.context.new_rvalue_from_vector(None, mask_type, &vector_elements); let shifted = self.context.new_rvalue_vector_perm(None, res, res, mask); shift *= 2; res = op(res, shifted, &self.context); } self.context.new_vector_access(None, res, self.context.new_rvalue_zero(self.int_type)) .to_rvalue() } #[cfg(not(feature="master"))] pub fn vector_reduce(&mut self, src: RValue<'gcc>, op: F) -> RValue<'gcc> where F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc> { unimplemented!(); } pub fn vector_reduce_op(&mut self, src: RValue<'gcc>, op: BinaryOp) -> RValue<'gcc> { self.vector_reduce(src, |a, b, context| context.new_binary_op(None, op, a.get_type(), a, b)) } pub fn vector_reduce_fadd_fast(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> { unimplemented!(); } pub fn vector_reduce_fmul_fast(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> { unimplemented!(); } // Inspired by Hacker's Delight min implementation. pub fn vector_reduce_min(&mut self, src: RValue<'gcc>) -> RValue<'gcc> { self.vector_reduce(src, |a, b, context| { let differences_or_zeros = difference_or_zero(a, b, context); context.new_binary_op(None, BinaryOp::Minus, a.get_type(), a, differences_or_zeros) }) } // Inspired by Hacker's Delight max implementation. pub fn vector_reduce_max(&mut self, src: RValue<'gcc>) -> RValue<'gcc> { self.vector_reduce(src, |a, b, context| { let differences_or_zeros = difference_or_zero(a, b, context); context.new_binary_op(None, BinaryOp::Plus, b.get_type(), b, differences_or_zeros) }) } pub fn vector_select(&mut self, cond: RValue<'gcc>, then_val: RValue<'gcc>, else_val: RValue<'gcc>) -> RValue<'gcc> { // cond is a vector of integers, not of bools. let cond_type = cond.get_type(); let vector_type = cond_type.unqualified().dyncast_vector().expect("vector type"); let num_units = vector_type.get_num_units(); let element_type = vector_type.get_element_type(); let zeros = vec![self.context.new_rvalue_zero(element_type); num_units]; let zeros = self.context.new_rvalue_from_vector(None, cond_type, &zeros); let masks = self.context.new_comparison(None, ComparisonOp::NotEquals, cond, zeros); let then_vals = masks & then_val; let ones = vec![self.context.new_rvalue_one(element_type); num_units]; let ones = self.context.new_rvalue_from_vector(None, cond_type, &ones); let inverted_masks = masks + ones; // NOTE: sometimes, the type of else_val can be different than the type of then_val in // libgccjit (vector of int vs vector of int32_t), but they should be the same for the AND // operation to work. let else_val = self.context.new_bitcast(None, else_val, then_val.get_type()); let else_vals = inverted_masks & else_val; then_vals | else_vals } } fn difference_or_zero<'gcc>(a: RValue<'gcc>, b: RValue<'gcc>, context: &'gcc Context<'gcc>) -> RValue<'gcc> { let difference = a - b; let masks = context.new_comparison(None, ComparisonOp::GreaterThanEquals, b, a); difference & masks } impl<'a, 'gcc, 'tcx> StaticBuilderMethods for Builder<'a, 'gcc, 'tcx> { fn get_static(&mut self, def_id: DefId) -> RValue<'gcc> { // Forward to the `get_static` method of `CodegenCx` self.cx().get_static(def_id).get_address(None) } } impl<'tcx> HasParamEnv<'tcx> for Builder<'_, '_, 'tcx> { fn param_env(&self) -> ParamEnv<'tcx> { self.cx.param_env() } } impl<'tcx> HasTargetSpec for Builder<'_, '_, 'tcx> { fn target_spec(&self) -> &Target { &self.cx.target_spec() } } pub trait ToGccComp { fn to_gcc_comparison(&self) -> ComparisonOp; } impl ToGccComp for IntPredicate { fn to_gcc_comparison(&self) -> ComparisonOp { match *self { IntPredicate::IntEQ => ComparisonOp::Equals, IntPredicate::IntNE => ComparisonOp::NotEquals, IntPredicate::IntUGT => ComparisonOp::GreaterThan, IntPredicate::IntUGE => ComparisonOp::GreaterThanEquals, IntPredicate::IntULT => ComparisonOp::LessThan, IntPredicate::IntULE => ComparisonOp::LessThanEquals, IntPredicate::IntSGT => ComparisonOp::GreaterThan, IntPredicate::IntSGE => ComparisonOp::GreaterThanEquals, IntPredicate::IntSLT => ComparisonOp::LessThan, IntPredicate::IntSLE => ComparisonOp::LessThanEquals, } } } impl ToGccComp for RealPredicate { fn to_gcc_comparison(&self) -> ComparisonOp { // TODO(antoyo): check that ordered vs non-ordered is respected. match *self { RealPredicate::RealPredicateFalse => unreachable!(), RealPredicate::RealOEQ => ComparisonOp::Equals, RealPredicate::RealOGT => ComparisonOp::GreaterThan, RealPredicate::RealOGE => ComparisonOp::GreaterThanEquals, RealPredicate::RealOLT => ComparisonOp::LessThan, RealPredicate::RealOLE => ComparisonOp::LessThanEquals, RealPredicate::RealONE => ComparisonOp::NotEquals, RealPredicate::RealORD => unreachable!(), RealPredicate::RealUNO => unreachable!(), RealPredicate::RealUEQ => ComparisonOp::Equals, RealPredicate::RealUGT => ComparisonOp::GreaterThan, RealPredicate::RealUGE => ComparisonOp::GreaterThan, RealPredicate::RealULT => ComparisonOp::LessThan, RealPredicate::RealULE => ComparisonOp::LessThan, RealPredicate::RealUNE => ComparisonOp::NotEquals, RealPredicate::RealPredicateTrue => unreachable!(), } } } #[repr(C)] #[allow(non_camel_case_types)] enum MemOrdering { __ATOMIC_RELAXED, __ATOMIC_CONSUME, __ATOMIC_ACQUIRE, __ATOMIC_RELEASE, __ATOMIC_ACQ_REL, __ATOMIC_SEQ_CST, } trait ToGccOrdering { fn to_gcc(self) -> i32; } impl ToGccOrdering for AtomicOrdering { fn to_gcc(self) -> i32 { use MemOrdering::*; let ordering = match self { AtomicOrdering::Unordered => __ATOMIC_RELAXED, AtomicOrdering::Relaxed => __ATOMIC_RELAXED, // TODO(antoyo): check if that's the same. AtomicOrdering::Acquire => __ATOMIC_ACQUIRE, AtomicOrdering::Release => __ATOMIC_RELEASE, AtomicOrdering::AcquireRelease => __ATOMIC_ACQ_REL, AtomicOrdering::SequentiallyConsistent => __ATOMIC_SEQ_CST, }; ordering as i32 } }