use gccjit::LValue; use gccjit::{RValue, Type, ToRValue}; use rustc_codegen_ssa::mir::place::PlaceRef; use rustc_codegen_ssa::traits::{ BaseTypeMethods, ConstMethods, DerivedTypeMethods, MiscMethods, StaticMethods, }; use rustc_middle::mir::Mutability; use rustc_middle::ty::layout::{TyAndLayout, LayoutOf}; use rustc_middle::mir::interpret::{ConstAllocation, GlobalAlloc, Scalar}; use rustc_target::abi::{self, HasDataLayout, Pointer, Size}; use crate::consts::const_alloc_to_gcc; use crate::context::CodegenCx; use crate::type_of::LayoutGccExt; impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> { pub fn const_bytes(&self, bytes: &[u8]) -> RValue<'gcc> { bytes_in_context(self, bytes) } fn global_string(&self, string: &str) -> LValue<'gcc> { // TODO(antoyo): handle non-null-terminated strings. let string = self.context.new_string_literal(&*string); let sym = self.generate_local_symbol_name("str"); let global = self.declare_private_global(&sym, self.val_ty(string)); global.global_set_initializer_rvalue(string); global // TODO(antoyo): set linkage. } } pub fn bytes_in_context<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, bytes: &[u8]) -> RValue<'gcc> { let context = &cx.context; let byte_type = context.new_type::(); let typ = context.new_array_type(None, byte_type, bytes.len() as u64); let elements: Vec<_> = bytes.iter() .map(|&byte| context.new_rvalue_from_int(byte_type, byte as i32)) .collect(); context.new_array_constructor(None, typ, &elements) } pub fn type_is_pointer(typ: Type<'_>) -> bool { typ.get_pointee().is_some() } impl<'gcc, 'tcx> ConstMethods<'tcx> for CodegenCx<'gcc, 'tcx> { fn const_null(&self, typ: Type<'gcc>) -> RValue<'gcc> { if type_is_pointer(typ) { self.context.new_null(typ) } else { self.const_int(typ, 0) } } fn const_undef(&self, typ: Type<'gcc>) -> RValue<'gcc> { let local = self.current_func.borrow().expect("func") .new_local(None, typ, "undefined"); if typ.is_struct().is_some() { // NOTE: hack to workaround a limitation of the rustc API: see comment on // CodegenCx.structs_as_pointer let pointer = local.get_address(None); self.structs_as_pointer.borrow_mut().insert(pointer); pointer } else { local.to_rvalue() } } fn const_poison(&self, typ: Type<'gcc>) -> RValue<'gcc> { // No distinction between undef and poison. self.const_undef(typ) } fn const_int(&self, typ: Type<'gcc>, int: i64) -> RValue<'gcc> { self.gcc_int(typ, int) } fn const_uint(&self, typ: Type<'gcc>, int: u64) -> RValue<'gcc> { self.gcc_uint(typ, int) } fn const_uint_big(&self, typ: Type<'gcc>, num: u128) -> RValue<'gcc> { self.gcc_uint_big(typ, num) } fn const_bool(&self, val: bool) -> RValue<'gcc> { self.const_uint(self.type_i1(), val as u64) } fn const_i16(&self, i: i16) -> RValue<'gcc> { self.const_int(self.type_i16(), i as i64) } fn const_i32(&self, i: i32) -> RValue<'gcc> { self.const_int(self.type_i32(), i as i64) } fn const_u32(&self, i: u32) -> RValue<'gcc> { self.const_uint(self.type_u32(), i as u64) } fn const_u64(&self, i: u64) -> RValue<'gcc> { self.const_uint(self.type_u64(), i) } fn const_usize(&self, i: u64) -> RValue<'gcc> { let bit_size = self.data_layout().pointer_size.bits(); if bit_size < 64 { // make sure it doesn't overflow assert!(i < (1 << bit_size)); } self.const_uint(self.usize_type, i) } fn const_u8(&self, i: u8) -> RValue<'gcc> { self.const_uint(self.type_u8(), i as u64) } fn const_real(&self, typ: Type<'gcc>, val: f64) -> RValue<'gcc> { self.context.new_rvalue_from_double(typ, val) } fn const_str(&self, s: &str) -> (RValue<'gcc>, RValue<'gcc>) { let str_global = *self .const_str_cache .borrow_mut() .raw_entry_mut() .from_key(s) .or_insert_with(|| (s.to_owned(), self.global_string(s))) .1; let len = s.len(); let cs = self.const_ptrcast(str_global.get_address(None), self.type_ptr_to(self.layout_of(self.tcx.types.str_).gcc_type(self)), ); (cs, self.const_usize(len as u64)) } fn const_struct(&self, values: &[RValue<'gcc>], packed: bool) -> RValue<'gcc> { let fields: Vec<_> = values.iter() .map(|value| value.get_type()) .collect(); // TODO(antoyo): cache the type? It's anonymous, so probably not. let typ = self.type_struct(&fields, packed); let struct_type = typ.is_struct().expect("struct type"); self.context.new_struct_constructor(None, struct_type.as_type(), None, values) } fn const_to_opt_uint(&self, _v: RValue<'gcc>) -> Option { // TODO(antoyo) None } fn const_to_opt_u128(&self, _v: RValue<'gcc>, _sign_ext: bool) -> Option { // TODO(antoyo) None } fn scalar_to_backend(&self, cv: Scalar, layout: abi::Scalar, ty: Type<'gcc>) -> RValue<'gcc> { let bitsize = if layout.is_bool() { 1 } else { layout.size(self).bits() }; match cv { Scalar::Int(int) => { let data = int.assert_bits(layout.size(self)); // FIXME(antoyo): there's some issues with using the u128 code that follows, so hard-code // the paths for floating-point values. if ty == self.float_type { return self.context.new_rvalue_from_double(ty, f32::from_bits(data as u32) as f64); } else if ty == self.double_type { return self.context.new_rvalue_from_double(ty, f64::from_bits(data as u64)); } let value = self.const_uint_big(self.type_ix(bitsize), data); let bytesize = layout.size(self).bytes(); if bitsize > 1 && ty.is_integral() && bytesize as u32 == ty.get_size() { // NOTE: since the intrinsic _xabort is called with a bitcast, which // is non-const, but expects a constant, do a normal cast instead of a bitcast. // FIXME(antoyo): fix bitcast to work in constant contexts. // TODO(antoyo): perhaps only use bitcast for pointers? self.context.new_cast(None, value, ty) } else { // TODO(bjorn3): assert size is correct self.const_bitcast(value, ty) } } Scalar::Ptr(ptr, _size) => { let (alloc_id, offset) = ptr.into_parts(); let base_addr = match self.tcx.global_alloc(alloc_id) { GlobalAlloc::Memory(alloc) => { let init = const_alloc_to_gcc(self, alloc); let alloc = alloc.inner(); let value = match alloc.mutability { Mutability::Mut => self.static_addr_of_mut(init, alloc.align, None), _ => self.static_addr_of(init, alloc.align, None), }; if !self.sess().fewer_names() { // TODO(antoyo): set value name. } value }, GlobalAlloc::Function(fn_instance) => { self.get_fn_addr(fn_instance) }, GlobalAlloc::VTable(ty, trait_ref) => { let alloc = self.tcx.global_alloc(self.tcx.vtable_allocation((ty, trait_ref))).unwrap_memory(); let init = const_alloc_to_gcc(self, alloc); self.static_addr_of(init, alloc.inner().align, None) } GlobalAlloc::Static(def_id) => { assert!(self.tcx.is_static(def_id)); self.get_static(def_id).get_address(None) }, }; let ptr_type = base_addr.get_type(); let base_addr = self.const_bitcast(base_addr, self.usize_type); let offset = self.context.new_rvalue_from_long(self.usize_type, offset.bytes() as i64); let ptr = self.const_bitcast(base_addr + offset, ptr_type); if !matches!(layout.primitive(), Pointer(_)) { self.const_bitcast(ptr.dereference(None).to_rvalue(), ty) } else { self.const_bitcast(ptr, ty) } } } } fn const_data_from_alloc(&self, alloc: ConstAllocation<'tcx>) -> Self::Value { const_alloc_to_gcc(self, alloc) } fn from_const_alloc(&self, layout: TyAndLayout<'tcx>, alloc: ConstAllocation<'tcx>, offset: Size) -> PlaceRef<'tcx, RValue<'gcc>> { assert_eq!(alloc.inner().align, layout.align.abi); let ty = self.type_ptr_to(layout.gcc_type(self)); let value = if layout.size == Size::ZERO { let value = self.const_usize(alloc.inner().align.bytes()); self.const_bitcast(value, ty) } else { let init = const_alloc_to_gcc(self, alloc); let base_addr = self.static_addr_of(init, alloc.inner().align, None); let array = self.const_bitcast(base_addr, self.type_i8p()); let value = self.context.new_array_access(None, array, self.const_usize(offset.bytes())).get_address(None); self.const_bitcast(value, ty) }; PlaceRef::new_sized(value, layout) } fn const_ptrcast(&self, val: RValue<'gcc>, ty: Type<'gcc>) -> RValue<'gcc> { self.context.new_cast(None, val, ty) } } pub trait SignType<'gcc, 'tcx> { fn is_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn to_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>; fn to_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>; } impl<'gcc, 'tcx> SignType<'gcc, 'tcx> for Type<'gcc> { fn is_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.is_i8(cx) || self.is_i16(cx) || self.is_i32(cx) || self.is_i64(cx) || self.is_i128(cx) } fn is_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.is_u8(cx) || self.is_u16(cx) || self.is_u32(cx) || self.is_u64(cx) || self.is_u128(cx) } fn to_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> { if self.is_u8(cx) { cx.i8_type } else if self.is_u16(cx) { cx.i16_type } else if self.is_u32(cx) { cx.i32_type } else if self.is_u64(cx) { cx.i64_type } else if self.is_u128(cx) { cx.i128_type } else if self.is_uchar(cx) { cx.char_type } else if self.is_ushort(cx) { cx.short_type } else if self.is_uint(cx) { cx.int_type } else if self.is_ulong(cx) { cx.long_type } else if self.is_ulonglong(cx) { cx.longlong_type } else { self.clone() } } fn to_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> { if self.is_i8(cx) { cx.u8_type } else if self.is_i16(cx) { cx.u16_type } else if self.is_i32(cx) { cx.u32_type } else if self.is_i64(cx) { cx.u64_type } else if self.is_i128(cx) { cx.u128_type } else if self.is_char(cx) { cx.uchar_type } else if self.is_short(cx) { cx.ushort_type } else if self.is_int(cx) { cx.uint_type } else if self.is_long(cx) { cx.ulong_type } else if self.is_longlong(cx) { cx.ulonglong_type } else { self.clone() } } } pub trait TypeReflection<'gcc, 'tcx> { fn is_uchar(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_ushort(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_uint(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_ulong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_ulonglong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_char(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_short(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_int(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_long(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_longlong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_i8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_u8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_i16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_u16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_i32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_u32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_i64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_u64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_i128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_u128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_f32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_f64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; fn is_vector(&self) -> bool; } impl<'gcc, 'tcx> TypeReflection<'gcc, 'tcx> for Type<'gcc> { fn is_uchar(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.uchar_type } fn is_ushort(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.ushort_type } fn is_uint(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.uint_type } fn is_ulong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.ulong_type } fn is_ulonglong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.ulonglong_type } fn is_char(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.char_type } fn is_short(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.short_type } fn is_int(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.int_type } fn is_long(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.long_type } fn is_longlong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.longlong_type } fn is_i8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.i8_type } fn is_u8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.u8_type } fn is_i16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.i16_type } fn is_u16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.u16_type } fn is_i32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.i32_type } fn is_u32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.u32_type } fn is_i64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.i64_type } fn is_u64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.u64_type } fn is_i128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.i128_type.unqualified() } fn is_u128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.u128_type.unqualified() } fn is_f32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.context.new_type::() } fn is_f64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { self.unqualified() == cx.context.new_type::() } fn is_vector(&self) -> bool { let mut typ = self.clone(); loop { if typ.dyncast_vector().is_some() { return true; } let old_type = typ; typ = typ.unqualified(); if old_type == typ { break; } } false } }