#[cfg(feature="master")] use gccjit::Context; use smallvec::{smallvec, SmallVec}; use rustc_codegen_ssa::target_features::{ supported_target_features, tied_target_features, RUSTC_SPECIFIC_FEATURES, }; use rustc_data_structures::fx::FxHashMap; use rustc_middle::bug; use rustc_session::Session; use crate::errors::{PossibleFeature, TargetFeatureDisableOrEnable, UnknownCTargetFeature, UnknownCTargetFeaturePrefix}; /// The list of GCC features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`, /// `--target` and similar). pub(crate) fn global_gcc_features(sess: &Session, diagnostics: bool) -> Vec { // Features that come earlier are overridden by conflicting features later in the string. // Typically we'll want more explicit settings to override the implicit ones, so: // // * Features from -Ctarget-cpu=*; are overridden by [^1] // * Features implied by --target; are overridden by // * Features from -Ctarget-feature; are overridden by // * function specific features. // // [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly // through GCC march implementation. // // FIXME(nagisa): it isn't clear what's the best interaction between features implied by // `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always // override anything that's implicit, so e.g. when there's no `--target` flag, features implied // the host target are overridden by `-Ctarget-cpu=*`. On the other hand, what about when both // `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both // flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence // should be taken in cases like these. let mut features = vec![]; // Features implied by an implicit or explicit `--target`. features.extend( sess.target .features .split(',') .filter(|v| !v.is_empty() && backend_feature_name(v).is_some()) .map(String::from), ); // -Ctarget-features let supported_features = supported_target_features(sess); let mut featsmap = FxHashMap::default(); let feats = sess.opts.cg.target_feature .split(',') .filter_map(|s| { let enable_disable = match s.chars().next() { None => return None, Some(c @ ('+' | '-')) => c, Some(_) => { if diagnostics { sess.emit_warning(UnknownCTargetFeaturePrefix { feature: s }); } return None; } }; let feature = backend_feature_name(s)?; // Warn against use of GCC specific feature names on the CLI. if diagnostics && !supported_features.iter().any(|&(v, _)| v == feature) { let rust_feature = supported_features.iter().find_map(|&(rust_feature, _)| { let gcc_features = to_gcc_features(sess, rust_feature); if gcc_features.contains(&feature) && !gcc_features.contains(&rust_feature) { Some(rust_feature) } else { None } }); let unknown_feature = if let Some(rust_feature) = rust_feature { UnknownCTargetFeature { feature, rust_feature: PossibleFeature::Some { rust_feature }, } } else { UnknownCTargetFeature { feature, rust_feature: PossibleFeature::None } }; sess.emit_warning(unknown_feature); } if diagnostics { // FIXME(nagisa): figure out how to not allocate a full hashset here. featsmap.insert(feature, enable_disable == '+'); } // rustc-specific features do not get passed down to GCC… if RUSTC_SPECIFIC_FEATURES.contains(&feature) { return None; } // ... otherwise though we run through `to_gcc_features` when // passing requests down to GCC. This means that all in-language // features also work on the command line instead of having two // different names when the GCC name and the Rust name differ. Some(to_gcc_features(sess, feature) .iter() .flat_map(|feat| to_gcc_features(sess, feat).into_iter()) .map(|feature| { if enable_disable == '-' { format!("-{}", feature) } else { feature.to_string() } }) .collect::>(), ) }) .flatten(); features.extend(feats); if diagnostics { if let Some(f) = check_tied_features(sess, &featsmap) { sess.emit_err(TargetFeatureDisableOrEnable { features: f, span: None, missing_features: None, }); } } features } /// Returns a feature name for the given `+feature` or `-feature` string. /// /// Only allows features that are backend specific (i.e. not [`RUSTC_SPECIFIC_FEATURES`].) fn backend_feature_name(s: &str) -> Option<&str> { // features must start with a `+` or `-`. let feature = s.strip_prefix(&['+', '-'][..]).unwrap_or_else(|| { bug!("target feature `{}` must begin with a `+` or `-`", s); }); // Rustc-specific feature requests like `+crt-static` or `-crt-static` // are not passed down to GCC. if RUSTC_SPECIFIC_FEATURES.contains(&feature) { return None; } Some(feature) } // To find a list of GCC's names, check https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html pub fn to_gcc_features<'a>(sess: &Session, s: &'a str) -> SmallVec<[&'a str; 2]> { let arch = if sess.target.arch == "x86_64" { "x86" } else { &*sess.target.arch }; match (arch, s) { ("x86", "sse4.2") => smallvec!["sse4.2", "crc32"], ("x86", "pclmulqdq") => smallvec!["pclmul"], ("x86", "rdrand") => smallvec!["rdrnd"], ("x86", "bmi1") => smallvec!["bmi"], ("x86", "cmpxchg16b") => smallvec!["cx16"], ("x86", "avx512vaes") => smallvec!["vaes"], ("x86", "avx512gfni") => smallvec!["gfni"], ("x86", "avx512vpclmulqdq") => smallvec!["vpclmulqdq"], // NOTE: seems like GCC requires 'avx512bw' for 'avx512vbmi2'. ("x86", "avx512vbmi2") => smallvec!["avx512vbmi2", "avx512bw"], // NOTE: seems like GCC requires 'avx512bw' for 'avx512bitalg'. ("x86", "avx512bitalg") => smallvec!["avx512bitalg", "avx512bw"], ("aarch64", "rcpc2") => smallvec!["rcpc-immo"], ("aarch64", "dpb") => smallvec!["ccpp"], ("aarch64", "dpb2") => smallvec!["ccdp"], ("aarch64", "frintts") => smallvec!["fptoint"], ("aarch64", "fcma") => smallvec!["complxnum"], ("aarch64", "pmuv3") => smallvec!["perfmon"], ("aarch64", "paca") => smallvec!["pauth"], ("aarch64", "pacg") => smallvec!["pauth"], // Rust ties fp and neon together. In GCC neon implicitly enables fp, // but we manually enable neon when a feature only implicitly enables fp ("aarch64", "f32mm") => smallvec!["f32mm", "neon"], ("aarch64", "f64mm") => smallvec!["f64mm", "neon"], ("aarch64", "fhm") => smallvec!["fp16fml", "neon"], ("aarch64", "fp16") => smallvec!["fullfp16", "neon"], ("aarch64", "jsconv") => smallvec!["jsconv", "neon"], ("aarch64", "sve") => smallvec!["sve", "neon"], ("aarch64", "sve2") => smallvec!["sve2", "neon"], ("aarch64", "sve2-aes") => smallvec!["sve2-aes", "neon"], ("aarch64", "sve2-sm4") => smallvec!["sve2-sm4", "neon"], ("aarch64", "sve2-sha3") => smallvec!["sve2-sha3", "neon"], ("aarch64", "sve2-bitperm") => smallvec!["sve2-bitperm", "neon"], (_, s) => smallvec![s], } } // Given a map from target_features to whether they are enabled or disabled, // ensure only valid combinations are allowed. pub fn check_tied_features(sess: &Session, features: &FxHashMap<&str, bool>) -> Option<&'static [&'static str]> { for tied in tied_target_features(sess) { // Tied features must be set to the same value, or not set at all let mut tied_iter = tied.iter(); let enabled = features.get(tied_iter.next().unwrap()); if tied_iter.any(|feature| enabled != features.get(feature)) { return Some(tied); } } None } fn arch_to_gcc(name: &str) -> &str { match name { "M68020" => "68020", _ => name, } } fn handle_native(name: &str) -> &str { if name != "native" { return arch_to_gcc(name); } #[cfg(feature="master")] { // Get the native arch. let context = Context::default(); context.get_target_info().arch().unwrap() .to_str() .unwrap() } #[cfg(not(feature="master"))] unimplemented!(); } pub fn target_cpu(sess: &Session) -> &str { match sess.opts.cg.target_cpu { Some(ref name) => handle_native(name), None => handle_native(sess.target.cpu.as_ref()), } }