use crate::attributes; use crate::builder::Builder; use crate::common::Funclet; use crate::context::CodegenCx; use crate::llvm; use crate::type_::Type; use crate::type_of::LayoutLlvmExt; use crate::value::Value; use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece}; use rustc_codegen_ssa::mir::operand::OperandValue; use rustc_codegen_ssa::traits::*; use rustc_data_structures::fx::FxHashMap; use rustc_middle::ty::layout::TyAndLayout; use rustc_middle::{bug, span_bug, ty::Instance}; use rustc_span::{Pos, Span}; use rustc_target::abi::*; use rustc_target::asm::*; use libc::{c_char, c_uint}; use smallvec::SmallVec; impl<'ll, 'tcx> AsmBuilderMethods<'tcx> for Builder<'_, 'll, 'tcx> { fn codegen_inline_asm( &mut self, template: &[InlineAsmTemplatePiece], operands: &[InlineAsmOperandRef<'tcx, Self>], options: InlineAsmOptions, line_spans: &[Span], instance: Instance<'_>, dest_catch_funclet: Option<(Self::BasicBlock, Self::BasicBlock, Option<&Self::Funclet>)>, ) { let asm_arch = self.tcx.sess.asm_arch.unwrap(); // Collect the types of output operands let mut constraints = vec![]; let mut clobbers = vec![]; let mut output_types = vec![]; let mut op_idx = FxHashMap::default(); let mut clobbered_x87 = false; for (idx, op) in operands.iter().enumerate() { match *op { InlineAsmOperandRef::Out { reg, late, place } => { let is_target_supported = |reg_class: InlineAsmRegClass| { for &(_, feature) in reg_class.supported_types(asm_arch) { if let Some(feature) = feature { if self .tcx .asm_target_features(instance.def_id()) .contains(&feature) { return true; } } else { // Register class is unconditionally supported return true; } } false }; let mut layout = None; let ty = if let Some(ref place) = place { layout = Some(&place.layout); llvm_fixup_output_type(self.cx, reg.reg_class(), &place.layout) } else if matches!( reg.reg_class(), InlineAsmRegClass::X86( X86InlineAsmRegClass::mmx_reg | X86InlineAsmRegClass::x87_reg ) ) { // Special handling for x87/mmx registers: we always // clobber the whole set if one register is marked as // clobbered. This is due to the way LLVM handles the // FP stack in inline assembly. if !clobbered_x87 { clobbered_x87 = true; clobbers.push("~{st}".to_string()); for i in 1..=7 { clobbers.push(format!("~{{st({})}}", i)); } } continue; } else if !is_target_supported(reg.reg_class()) || reg.reg_class().is_clobber_only(asm_arch) { // We turn discarded outputs into clobber constraints // if the target feature needed by the register class is // disabled. This is necessary otherwise LLVM will try // to actually allocate a register for the dummy output. assert!(matches!(reg, InlineAsmRegOrRegClass::Reg(_))); clobbers.push(format!("~{}", reg_to_llvm(reg, None))); continue; } else { // If the output is discarded, we don't really care what // type is used. We're just using this to tell LLVM to // reserve the register. dummy_output_type(self.cx, reg.reg_class()) }; output_types.push(ty); op_idx.insert(idx, constraints.len()); let prefix = if late { "=" } else { "=&" }; constraints.push(format!("{}{}", prefix, reg_to_llvm(reg, layout))); } InlineAsmOperandRef::InOut { reg, late, in_value, out_place } => { let layout = if let Some(ref out_place) = out_place { &out_place.layout } else { // LLVM required tied operands to have the same type, // so we just use the type of the input. &in_value.layout }; let ty = llvm_fixup_output_type(self.cx, reg.reg_class(), layout); output_types.push(ty); op_idx.insert(idx, constraints.len()); let prefix = if late { "=" } else { "=&" }; constraints.push(format!("{}{}", prefix, reg_to_llvm(reg, Some(layout)))); } _ => {} } } // Collect input operands let mut inputs = vec![]; for (idx, op) in operands.iter().enumerate() { match *op { InlineAsmOperandRef::In { reg, value } => { let llval = llvm_fixup_input(self, value.immediate(), reg.reg_class(), &value.layout); inputs.push(llval); op_idx.insert(idx, constraints.len()); constraints.push(reg_to_llvm(reg, Some(&value.layout))); } InlineAsmOperandRef::InOut { reg, late, in_value, out_place: _ } => { let value = llvm_fixup_input( self, in_value.immediate(), reg.reg_class(), &in_value.layout, ); inputs.push(value); // In the case of fixed registers, we have the choice of // either using a tied operand or duplicating the constraint. // We prefer the latter because it matches the behavior of // Clang. if late && matches!(reg, InlineAsmRegOrRegClass::Reg(_)) { constraints.push(reg_to_llvm(reg, Some(&in_value.layout)).to_string()); } else { constraints.push(format!("{}", op_idx[&idx])); } } InlineAsmOperandRef::SymFn { instance } => { inputs.push(self.cx.get_fn(instance)); op_idx.insert(idx, constraints.len()); constraints.push("s".to_string()); } InlineAsmOperandRef::SymStatic { def_id } => { inputs.push(self.cx.get_static(def_id)); op_idx.insert(idx, constraints.len()); constraints.push("s".to_string()); } _ => {} } } // Build the template string let mut template_str = String::new(); for piece in template { match *piece { InlineAsmTemplatePiece::String(ref s) => { if s.contains('$') { for c in s.chars() { if c == '$' { template_str.push_str("$$"); } else { template_str.push(c); } } } else { template_str.push_str(s) } } InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span: _ } => { match operands[operand_idx] { InlineAsmOperandRef::In { reg, .. } | InlineAsmOperandRef::Out { reg, .. } | InlineAsmOperandRef::InOut { reg, .. } => { let modifier = modifier_to_llvm(asm_arch, reg.reg_class(), modifier); if let Some(modifier) = modifier { template_str.push_str(&format!( "${{{}:{}}}", op_idx[&operand_idx], modifier )); } else { template_str.push_str(&format!("${{{}}}", op_idx[&operand_idx])); } } InlineAsmOperandRef::Const { ref string } => { // Const operands get injected directly into the template template_str.push_str(string); } InlineAsmOperandRef::SymFn { .. } | InlineAsmOperandRef::SymStatic { .. } => { // Only emit the raw symbol name template_str.push_str(&format!("${{{}:c}}", op_idx[&operand_idx])); } } } } } constraints.append(&mut clobbers); if !options.contains(InlineAsmOptions::PRESERVES_FLAGS) { match asm_arch { InlineAsmArch::AArch64 | InlineAsmArch::Arm => { constraints.push("~{cc}".to_string()); } InlineAsmArch::X86 | InlineAsmArch::X86_64 => { constraints.extend_from_slice(&[ "~{dirflag}".to_string(), "~{fpsr}".to_string(), "~{flags}".to_string(), ]); } InlineAsmArch::RiscV32 | InlineAsmArch::RiscV64 => { constraints.extend_from_slice(&[ "~{vtype}".to_string(), "~{vl}".to_string(), "~{vxsat}".to_string(), "~{vxrm}".to_string(), ]); } InlineAsmArch::Avr => { constraints.push("~{sreg}".to_string()); } InlineAsmArch::Nvptx64 => {} InlineAsmArch::PowerPC | InlineAsmArch::PowerPC64 => {} InlineAsmArch::Hexagon => {} InlineAsmArch::LoongArch64 => { constraints.extend_from_slice(&[ "~{$fcc0}".to_string(), "~{$fcc1}".to_string(), "~{$fcc2}".to_string(), "~{$fcc3}".to_string(), "~{$fcc4}".to_string(), "~{$fcc5}".to_string(), "~{$fcc6}".to_string(), "~{$fcc7}".to_string(), ]); } InlineAsmArch::Mips | InlineAsmArch::Mips64 => {} InlineAsmArch::S390x => { constraints.push("~{cc}".to_string()); } InlineAsmArch::SpirV => {} InlineAsmArch::Wasm32 | InlineAsmArch::Wasm64 => {} InlineAsmArch::Bpf => {} InlineAsmArch::Msp430 => { constraints.push("~{sr}".to_string()); } InlineAsmArch::M68k => { constraints.push("~{ccr}".to_string()); } InlineAsmArch::CSKY => {} } } if !options.contains(InlineAsmOptions::NOMEM) { // This is actually ignored by LLVM, but it's probably best to keep // it just in case. LLVM instead uses the ReadOnly/ReadNone // attributes on the call instruction to optimize. constraints.push("~{memory}".to_string()); } let volatile = !options.contains(InlineAsmOptions::PURE); let alignstack = !options.contains(InlineAsmOptions::NOSTACK); let output_type = match &output_types[..] { [] => self.type_void(), [ty] => ty, tys => self.type_struct(tys, false), }; let dialect = match asm_arch { InlineAsmArch::X86 | InlineAsmArch::X86_64 if !options.contains(InlineAsmOptions::ATT_SYNTAX) => { llvm::AsmDialect::Intel } _ => llvm::AsmDialect::Att, }; let result = inline_asm_call( self, &template_str, &constraints.join(","), &inputs, output_type, volatile, alignstack, dialect, line_spans, options.contains(InlineAsmOptions::MAY_UNWIND), dest_catch_funclet, ) .unwrap_or_else(|| span_bug!(line_spans[0], "LLVM asm constraint validation failed")); let mut attrs = SmallVec::<[_; 2]>::new(); if options.contains(InlineAsmOptions::PURE) { if options.contains(InlineAsmOptions::NOMEM) { attrs.push(llvm::MemoryEffects::None.create_attr(self.cx.llcx)); } else if options.contains(InlineAsmOptions::READONLY) { attrs.push(llvm::MemoryEffects::ReadOnly.create_attr(self.cx.llcx)); } attrs.push(llvm::AttributeKind::WillReturn.create_attr(self.cx.llcx)); } else if options.contains(InlineAsmOptions::NOMEM) { attrs.push(llvm::MemoryEffects::InaccessibleMemOnly.create_attr(self.cx.llcx)); } else { // LLVM doesn't have an attribute to represent ReadOnly + SideEffect } attributes::apply_to_callsite(result, llvm::AttributePlace::Function, &{ attrs }); // Switch to the 'normal' basic block if we did an `invoke` instead of a `call` if let Some((dest, _, _)) = dest_catch_funclet { self.switch_to_block(dest); } // Write results to outputs for (idx, op) in operands.iter().enumerate() { if let InlineAsmOperandRef::Out { reg, place: Some(place), .. } | InlineAsmOperandRef::InOut { reg, out_place: Some(place), .. } = *op { let value = if output_types.len() == 1 { result } else { self.extract_value(result, op_idx[&idx] as u64) }; let value = llvm_fixup_output(self, value, reg.reg_class(), &place.layout); OperandValue::Immediate(value).store(self, place); } } } } impl<'tcx> AsmMethods<'tcx> for CodegenCx<'_, 'tcx> { fn codegen_global_asm( &self, template: &[InlineAsmTemplatePiece], operands: &[GlobalAsmOperandRef<'tcx>], options: InlineAsmOptions, _line_spans: &[Span], ) { let asm_arch = self.tcx.sess.asm_arch.unwrap(); // Default to Intel syntax on x86 let intel_syntax = matches!(asm_arch, InlineAsmArch::X86 | InlineAsmArch::X86_64) && !options.contains(InlineAsmOptions::ATT_SYNTAX); // Build the template string let mut template_str = String::new(); if intel_syntax { template_str.push_str(".intel_syntax\n"); } for piece in template { match *piece { InlineAsmTemplatePiece::String(ref s) => template_str.push_str(s), InlineAsmTemplatePiece::Placeholder { operand_idx, modifier: _, span: _ } => { match operands[operand_idx] { GlobalAsmOperandRef::Const { ref string } => { // Const operands get injected directly into the // template. Note that we don't need to escape $ // here unlike normal inline assembly. template_str.push_str(string); } GlobalAsmOperandRef::SymFn { instance } => { let llval = self.get_fn(instance); self.add_compiler_used_global(llval); let symbol = llvm::build_string(|s| unsafe { llvm::LLVMRustGetMangledName(llval, s); }) .expect("symbol is not valid UTF-8"); template_str.push_str(&symbol); } GlobalAsmOperandRef::SymStatic { def_id } => { let llval = self .renamed_statics .borrow() .get(&def_id) .copied() .unwrap_or_else(|| self.get_static(def_id)); self.add_compiler_used_global(llval); let symbol = llvm::build_string(|s| unsafe { llvm::LLVMRustGetMangledName(llval, s); }) .expect("symbol is not valid UTF-8"); template_str.push_str(&symbol); } } } } } if intel_syntax { template_str.push_str("\n.att_syntax\n"); } unsafe { llvm::LLVMAppendModuleInlineAsm( self.llmod, template_str.as_ptr().cast(), template_str.len(), ); } } } pub(crate) fn inline_asm_call<'ll>( bx: &mut Builder<'_, 'll, '_>, asm: &str, cons: &str, inputs: &[&'ll Value], output: &'ll llvm::Type, volatile: bool, alignstack: bool, dia: llvm::AsmDialect, line_spans: &[Span], unwind: bool, dest_catch_funclet: Option<( &'ll llvm::BasicBlock, &'ll llvm::BasicBlock, Option<&Funclet<'ll>>, )>, ) -> Option<&'ll Value> { let volatile = if volatile { llvm::True } else { llvm::False }; let alignstack = if alignstack { llvm::True } else { llvm::False }; let can_throw = if unwind { llvm::True } else { llvm::False }; let argtys = inputs .iter() .map(|v| { debug!("Asm Input Type: {:?}", *v); bx.cx.val_ty(*v) }) .collect::>(); debug!("Asm Output Type: {:?}", output); let fty = bx.cx.type_func(&argtys, output); unsafe { // Ask LLVM to verify that the constraints are well-formed. let constraints_ok = llvm::LLVMRustInlineAsmVerify(fty, cons.as_ptr().cast(), cons.len()); debug!("constraint verification result: {:?}", constraints_ok); if constraints_ok { let v = llvm::LLVMRustInlineAsm( fty, asm.as_ptr().cast(), asm.len(), cons.as_ptr().cast(), cons.len(), volatile, alignstack, dia, can_throw, ); let call = if let Some((dest, catch, funclet)) = dest_catch_funclet { bx.invoke(fty, None, None, v, inputs, dest, catch, funclet) } else { bx.call(fty, None, None, v, inputs, None) }; // Store mark in a metadata node so we can map LLVM errors // back to source locations. See #17552. let key = "srcloc"; let kind = llvm::LLVMGetMDKindIDInContext( bx.llcx, key.as_ptr() as *const c_char, key.len() as c_uint, ); // srcloc contains one integer for each line of assembly code. // Unfortunately this isn't enough to encode a full span so instead // we just encode the start position of each line. // FIXME: Figure out a way to pass the entire line spans. let mut srcloc = vec![]; if dia == llvm::AsmDialect::Intel && line_spans.len() > 1 { // LLVM inserts an extra line to add the ".intel_syntax", so add // a dummy srcloc entry for it. // // Don't do this if we only have 1 line span since that may be // due to the asm template string coming from a macro. LLVM will // default to the first srcloc for lines that don't have an // associated srcloc. srcloc.push(bx.const_i32(0)); } srcloc.extend(line_spans.iter().map(|span| bx.const_i32(span.lo().to_u32() as i32))); let md = llvm::LLVMMDNodeInContext(bx.llcx, srcloc.as_ptr(), srcloc.len() as u32); llvm::LLVMSetMetadata(call, kind, md); Some(call) } else { // LLVM has detected an issue with our constraints, bail out None } } } /// If the register is an xmm/ymm/zmm register then return its index. fn xmm_reg_index(reg: InlineAsmReg) -> Option { match reg { InlineAsmReg::X86(reg) if reg as u32 >= X86InlineAsmReg::xmm0 as u32 && reg as u32 <= X86InlineAsmReg::xmm15 as u32 => { Some(reg as u32 - X86InlineAsmReg::xmm0 as u32) } InlineAsmReg::X86(reg) if reg as u32 >= X86InlineAsmReg::ymm0 as u32 && reg as u32 <= X86InlineAsmReg::ymm15 as u32 => { Some(reg as u32 - X86InlineAsmReg::ymm0 as u32) } InlineAsmReg::X86(reg) if reg as u32 >= X86InlineAsmReg::zmm0 as u32 && reg as u32 <= X86InlineAsmReg::zmm31 as u32 => { Some(reg as u32 - X86InlineAsmReg::zmm0 as u32) } _ => None, } } /// If the register is an AArch64 integer register then return its index. fn a64_reg_index(reg: InlineAsmReg) -> Option { match reg { InlineAsmReg::AArch64(AArch64InlineAsmReg::x0) => Some(0), InlineAsmReg::AArch64(AArch64InlineAsmReg::x1) => Some(1), InlineAsmReg::AArch64(AArch64InlineAsmReg::x2) => Some(2), InlineAsmReg::AArch64(AArch64InlineAsmReg::x3) => Some(3), InlineAsmReg::AArch64(AArch64InlineAsmReg::x4) => Some(4), InlineAsmReg::AArch64(AArch64InlineAsmReg::x5) => Some(5), InlineAsmReg::AArch64(AArch64InlineAsmReg::x6) => Some(6), InlineAsmReg::AArch64(AArch64InlineAsmReg::x7) => Some(7), InlineAsmReg::AArch64(AArch64InlineAsmReg::x8) => Some(8), InlineAsmReg::AArch64(AArch64InlineAsmReg::x9) => Some(9), InlineAsmReg::AArch64(AArch64InlineAsmReg::x10) => Some(10), InlineAsmReg::AArch64(AArch64InlineAsmReg::x11) => Some(11), InlineAsmReg::AArch64(AArch64InlineAsmReg::x12) => Some(12), InlineAsmReg::AArch64(AArch64InlineAsmReg::x13) => Some(13), InlineAsmReg::AArch64(AArch64InlineAsmReg::x14) => Some(14), InlineAsmReg::AArch64(AArch64InlineAsmReg::x15) => Some(15), InlineAsmReg::AArch64(AArch64InlineAsmReg::x16) => Some(16), InlineAsmReg::AArch64(AArch64InlineAsmReg::x17) => Some(17), InlineAsmReg::AArch64(AArch64InlineAsmReg::x18) => Some(18), // x19 is reserved InlineAsmReg::AArch64(AArch64InlineAsmReg::x20) => Some(20), InlineAsmReg::AArch64(AArch64InlineAsmReg::x21) => Some(21), InlineAsmReg::AArch64(AArch64InlineAsmReg::x22) => Some(22), InlineAsmReg::AArch64(AArch64InlineAsmReg::x23) => Some(23), InlineAsmReg::AArch64(AArch64InlineAsmReg::x24) => Some(24), InlineAsmReg::AArch64(AArch64InlineAsmReg::x25) => Some(25), InlineAsmReg::AArch64(AArch64InlineAsmReg::x26) => Some(26), InlineAsmReg::AArch64(AArch64InlineAsmReg::x27) => Some(27), InlineAsmReg::AArch64(AArch64InlineAsmReg::x28) => Some(28), // x29 is reserved InlineAsmReg::AArch64(AArch64InlineAsmReg::x30) => Some(30), _ => None, } } /// If the register is an AArch64 vector register then return its index. fn a64_vreg_index(reg: InlineAsmReg) -> Option { match reg { InlineAsmReg::AArch64(reg) if reg as u32 >= AArch64InlineAsmReg::v0 as u32 && reg as u32 <= AArch64InlineAsmReg::v31 as u32 => { Some(reg as u32 - AArch64InlineAsmReg::v0 as u32) } _ => None, } } /// Converts a register class to an LLVM constraint code. fn reg_to_llvm(reg: InlineAsmRegOrRegClass, layout: Option<&TyAndLayout<'_>>) -> String { match reg { // For vector registers LLVM wants the register name to match the type size. InlineAsmRegOrRegClass::Reg(reg) => { if let Some(idx) = xmm_reg_index(reg) { let class = if let Some(layout) = layout { match layout.size.bytes() { 64 => 'z', 32 => 'y', _ => 'x', } } else { // We use f32 as the type for discarded outputs 'x' }; format!("{{{}mm{}}}", class, idx) } else if let Some(idx) = a64_reg_index(reg) { let class = if let Some(layout) = layout { match layout.size.bytes() { 8 => 'x', _ => 'w', } } else { // We use i32 as the type for discarded outputs 'w' }; if class == 'x' && reg == InlineAsmReg::AArch64(AArch64InlineAsmReg::x30) { // LLVM doesn't recognize x30. use lr instead. "{lr}".to_string() } else { format!("{{{}{}}}", class, idx) } } else if let Some(idx) = a64_vreg_index(reg) { let class = if let Some(layout) = layout { match layout.size.bytes() { 16 => 'q', 8 => 'd', 4 => 's', 2 => 'h', 1 => 'd', // We fixup i8 to i8x8 _ => unreachable!(), } } else { // We use i64x2 as the type for discarded outputs 'q' }; format!("{{{}{}}}", class, idx) } else if reg == InlineAsmReg::Arm(ArmInlineAsmReg::r14) { // LLVM doesn't recognize r14 "{lr}".to_string() } else { format!("{{{}}}", reg.name()) } } // The constraints can be retrieved from // https://llvm.org/docs/LangRef.html#supported-constraint-code-list InlineAsmRegOrRegClass::RegClass(reg) => match reg { InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => "r", InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg) => "w", InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => "x", InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::preg) => { unreachable!("clobber-only") } InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg) => "r", InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8) => "t", InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => "x", InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg) => "w", InlineAsmRegClass::Hexagon(HexagonInlineAsmRegClass::reg) => "r", InlineAsmRegClass::LoongArch(LoongArchInlineAsmRegClass::reg) => "r", InlineAsmRegClass::LoongArch(LoongArchInlineAsmRegClass::freg) => "f", InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg) => "r", InlineAsmRegClass::Mips(MipsInlineAsmRegClass::freg) => "f", InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg16) => "h", InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg32) => "r", InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg64) => "l", InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::reg) => "r", InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::reg_nonzero) => "b", InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::freg) => "f", InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::cr) | InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::xer) => { unreachable!("clobber-only") } InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg) => "r", InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => "f", InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::vreg) => { unreachable!("clobber-only") } InlineAsmRegClass::X86(X86InlineAsmRegClass::reg) => "r", InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => "Q", InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => "q", InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg) | InlineAsmRegClass::X86(X86InlineAsmRegClass::ymm_reg) => "x", InlineAsmRegClass::X86(X86InlineAsmRegClass::zmm_reg) => "v", InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => "^Yk", InlineAsmRegClass::X86( X86InlineAsmRegClass::x87_reg | X86InlineAsmRegClass::mmx_reg | X86InlineAsmRegClass::kreg0 | X86InlineAsmRegClass::tmm_reg, ) => unreachable!("clobber-only"), InlineAsmRegClass::Wasm(WasmInlineAsmRegClass::local) => "r", InlineAsmRegClass::Bpf(BpfInlineAsmRegClass::reg) => "r", InlineAsmRegClass::Bpf(BpfInlineAsmRegClass::wreg) => "w", InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg) => "r", InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg_upper) => "d", InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg_pair) => "r", InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg_iw) => "w", InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg_ptr) => "e", InlineAsmRegClass::S390x(S390xInlineAsmRegClass::reg) => "r", InlineAsmRegClass::S390x(S390xInlineAsmRegClass::freg) => "f", InlineAsmRegClass::Msp430(Msp430InlineAsmRegClass::reg) => "r", InlineAsmRegClass::M68k(M68kInlineAsmRegClass::reg) => "r", InlineAsmRegClass::M68k(M68kInlineAsmRegClass::reg_addr) => "a", InlineAsmRegClass::M68k(M68kInlineAsmRegClass::reg_data) => "d", InlineAsmRegClass::CSKY(CSKYInlineAsmRegClass::reg) => "r", InlineAsmRegClass::CSKY(CSKYInlineAsmRegClass::freg) => "f", InlineAsmRegClass::SpirV(SpirVInlineAsmRegClass::reg) => { bug!("LLVM backend does not support SPIR-V") } InlineAsmRegClass::Err => unreachable!(), } .to_string(), } } /// Converts a modifier into LLVM's equivalent modifier. fn modifier_to_llvm( arch: InlineAsmArch, reg: InlineAsmRegClass, modifier: Option, ) -> Option { // The modifiers can be retrieved from // https://llvm.org/docs/LangRef.html#asm-template-argument-modifiers match reg { InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => modifier, InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg) | InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => { if modifier == Some('v') { None } else { modifier } } InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::preg) => { unreachable!("clobber-only") } InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg) => None, InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16) => None, InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8) => Some('P'), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => { if modifier.is_none() { Some('q') } else { modifier } } InlineAsmRegClass::Hexagon(_) => None, InlineAsmRegClass::LoongArch(_) => None, InlineAsmRegClass::Mips(_) => None, InlineAsmRegClass::Nvptx(_) => None, InlineAsmRegClass::PowerPC(_) => None, InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg) | InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => None, InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::vreg) => { unreachable!("clobber-only") } InlineAsmRegClass::X86(X86InlineAsmRegClass::reg) | InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => match modifier { None if arch == InlineAsmArch::X86_64 => Some('q'), None => Some('k'), Some('l') => Some('b'), Some('h') => Some('h'), Some('x') => Some('w'), Some('e') => Some('k'), Some('r') => Some('q'), _ => unreachable!(), }, InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => None, InlineAsmRegClass::X86(reg @ X86InlineAsmRegClass::xmm_reg) | InlineAsmRegClass::X86(reg @ X86InlineAsmRegClass::ymm_reg) | InlineAsmRegClass::X86(reg @ X86InlineAsmRegClass::zmm_reg) => match (reg, modifier) { (X86InlineAsmRegClass::xmm_reg, None) => Some('x'), (X86InlineAsmRegClass::ymm_reg, None) => Some('t'), (X86InlineAsmRegClass::zmm_reg, None) => Some('g'), (_, Some('x')) => Some('x'), (_, Some('y')) => Some('t'), (_, Some('z')) => Some('g'), _ => unreachable!(), }, InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => None, InlineAsmRegClass::X86( X86InlineAsmRegClass::x87_reg | X86InlineAsmRegClass::mmx_reg | X86InlineAsmRegClass::kreg0 | X86InlineAsmRegClass::tmm_reg, ) => { unreachable!("clobber-only") } InlineAsmRegClass::Wasm(WasmInlineAsmRegClass::local) => None, InlineAsmRegClass::Bpf(_) => None, InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg_pair) | InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg_iw) | InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg_ptr) => match modifier { Some('h') => Some('B'), Some('l') => Some('A'), _ => None, }, InlineAsmRegClass::Avr(_) => None, InlineAsmRegClass::S390x(_) => None, InlineAsmRegClass::Msp430(_) => None, InlineAsmRegClass::SpirV(SpirVInlineAsmRegClass::reg) => { bug!("LLVM backend does not support SPIR-V") } InlineAsmRegClass::M68k(_) => None, InlineAsmRegClass::CSKY(_) => None, InlineAsmRegClass::Err => unreachable!(), } } /// Type to use for outputs that are discarded. It doesn't really matter what /// the type is, as long as it is valid for the constraint code. fn dummy_output_type<'ll>(cx: &CodegenCx<'ll, '_>, reg: InlineAsmRegClass) -> &'ll Type { match reg { InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg) | InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => { cx.type_vector(cx.type_i64(), 2) } InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::preg) => { unreachable!("clobber-only") } InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16) => cx.type_f32(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8) => cx.type_f64(), InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8) | InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => { cx.type_vector(cx.type_i64(), 2) } InlineAsmRegClass::Hexagon(HexagonInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::LoongArch(LoongArchInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::LoongArch(LoongArchInlineAsmRegClass::freg) => cx.type_f32(), InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::Mips(MipsInlineAsmRegClass::freg) => cx.type_f32(), InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg16) => cx.type_i16(), InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg32) => cx.type_i32(), InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg64) => cx.type_i64(), InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::reg_nonzero) => cx.type_i32(), InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::freg) => cx.type_f64(), InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::cr) | InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::xer) => { unreachable!("clobber-only") } InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => cx.type_f32(), InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::vreg) => { unreachable!("clobber-only") } InlineAsmRegClass::X86(X86InlineAsmRegClass::reg) | InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => cx.type_i32(), InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => cx.type_i8(), InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg) | InlineAsmRegClass::X86(X86InlineAsmRegClass::ymm_reg) | InlineAsmRegClass::X86(X86InlineAsmRegClass::zmm_reg) => cx.type_f32(), InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => cx.type_i16(), InlineAsmRegClass::X86( X86InlineAsmRegClass::x87_reg | X86InlineAsmRegClass::mmx_reg | X86InlineAsmRegClass::kreg0 | X86InlineAsmRegClass::tmm_reg, ) => { unreachable!("clobber-only") } InlineAsmRegClass::Wasm(WasmInlineAsmRegClass::local) => cx.type_i32(), InlineAsmRegClass::Bpf(BpfInlineAsmRegClass::reg) => cx.type_i64(), InlineAsmRegClass::Bpf(BpfInlineAsmRegClass::wreg) => cx.type_i32(), InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg) => cx.type_i8(), InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg_upper) => cx.type_i8(), InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg_pair) => cx.type_i16(), InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg_iw) => cx.type_i16(), InlineAsmRegClass::Avr(AvrInlineAsmRegClass::reg_ptr) => cx.type_i16(), InlineAsmRegClass::S390x(S390xInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::S390x(S390xInlineAsmRegClass::freg) => cx.type_f64(), InlineAsmRegClass::Msp430(Msp430InlineAsmRegClass::reg) => cx.type_i16(), InlineAsmRegClass::M68k(M68kInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::M68k(M68kInlineAsmRegClass::reg_addr) => cx.type_i32(), InlineAsmRegClass::M68k(M68kInlineAsmRegClass::reg_data) => cx.type_i32(), InlineAsmRegClass::CSKY(CSKYInlineAsmRegClass::reg) => cx.type_i32(), InlineAsmRegClass::CSKY(CSKYInlineAsmRegClass::freg) => cx.type_f32(), InlineAsmRegClass::SpirV(SpirVInlineAsmRegClass::reg) => { bug!("LLVM backend does not support SPIR-V") } InlineAsmRegClass::Err => unreachable!(), } } /// Helper function to get the LLVM type for a Scalar. Pointers are returned as /// the equivalent integer type. fn llvm_asm_scalar_type<'ll>(cx: &CodegenCx<'ll, '_>, scalar: Scalar) -> &'ll Type { let dl = &cx.tcx.data_layout; match scalar.primitive() { Primitive::Int(Integer::I8, _) => cx.type_i8(), Primitive::Int(Integer::I16, _) => cx.type_i16(), Primitive::Int(Integer::I32, _) => cx.type_i32(), Primitive::Int(Integer::I64, _) => cx.type_i64(), Primitive::F32 => cx.type_f32(), Primitive::F64 => cx.type_f64(), // FIXME(erikdesjardins): handle non-default addrspace ptr sizes Primitive::Pointer(_) => cx.type_from_integer(dl.ptr_sized_integer()), _ => unreachable!(), } } /// Fix up an input value to work around LLVM bugs. fn llvm_fixup_input<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, mut value: &'ll Value, reg: InlineAsmRegClass, layout: &TyAndLayout<'tcx>, ) -> &'ll Value { let dl = &bx.tcx.data_layout; match (reg, layout.abi) { (InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg), Abi::Scalar(s)) => { if let Primitive::Int(Integer::I8, _) = s.primitive() { let vec_ty = bx.cx.type_vector(bx.cx.type_i8(), 8); bx.insert_element(bx.const_undef(vec_ty), value, bx.const_i32(0)) } else { value } } (InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16), Abi::Scalar(s)) => { let elem_ty = llvm_asm_scalar_type(bx.cx, s); let count = 16 / layout.size.bytes(); let vec_ty = bx.cx.type_vector(elem_ty, count); // FIXME(erikdesjardins): handle non-default addrspace ptr sizes if let Primitive::Pointer(_) = s.primitive() { let t = bx.type_from_integer(dl.ptr_sized_integer()); value = bx.ptrtoint(value, t); } bx.insert_element(bx.const_undef(vec_ty), value, bx.const_i32(0)) } ( InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16), Abi::Vector { element, count }, ) if layout.size.bytes() == 8 => { let elem_ty = llvm_asm_scalar_type(bx.cx, element); let vec_ty = bx.cx.type_vector(elem_ty, count); let indices: Vec<_> = (0..count * 2).map(|x| bx.const_i32(x as i32)).collect(); bx.shuffle_vector(value, bx.const_undef(vec_ty), bx.const_vector(&indices)) } (InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd), Abi::Scalar(s)) if s.primitive() == Primitive::F64 => { bx.bitcast(value, bx.cx.type_i64()) } ( InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg | X86InlineAsmRegClass::zmm_reg), Abi::Vector { .. }, ) if layout.size.bytes() == 64 => bx.bitcast(value, bx.cx.type_vector(bx.cx.type_f64(), 8)), ( InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg | ArmInlineAsmRegClass::sreg_low16), Abi::Scalar(s), ) => { if let Primitive::Int(Integer::I32, _) = s.primitive() { bx.bitcast(value, bx.cx.type_f32()) } else { value } } ( InlineAsmRegClass::Arm( ArmInlineAsmRegClass::dreg | ArmInlineAsmRegClass::dreg_low8 | ArmInlineAsmRegClass::dreg_low16, ), Abi::Scalar(s), ) => { if let Primitive::Int(Integer::I64, _) = s.primitive() { bx.bitcast(value, bx.cx.type_f64()) } else { value } } (InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg), Abi::Scalar(s)) => { match s.primitive() { // MIPS only supports register-length arithmetics. Primitive::Int(Integer::I8 | Integer::I16, _) => bx.zext(value, bx.cx.type_i32()), Primitive::F32 => bx.bitcast(value, bx.cx.type_i32()), Primitive::F64 => bx.bitcast(value, bx.cx.type_i64()), _ => value, } } _ => value, } } /// Fix up an output value to work around LLVM bugs. fn llvm_fixup_output<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, mut value: &'ll Value, reg: InlineAsmRegClass, layout: &TyAndLayout<'tcx>, ) -> &'ll Value { match (reg, layout.abi) { (InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg), Abi::Scalar(s)) => { if let Primitive::Int(Integer::I8, _) = s.primitive() { bx.extract_element(value, bx.const_i32(0)) } else { value } } (InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16), Abi::Scalar(s)) => { value = bx.extract_element(value, bx.const_i32(0)); if let Primitive::Pointer(_) = s.primitive() { value = bx.inttoptr(value, layout.llvm_type(bx.cx)); } value } ( InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16), Abi::Vector { element, count }, ) if layout.size.bytes() == 8 => { let elem_ty = llvm_asm_scalar_type(bx.cx, element); let vec_ty = bx.cx.type_vector(elem_ty, count * 2); let indices: Vec<_> = (0..count).map(|x| bx.const_i32(x as i32)).collect(); bx.shuffle_vector(value, bx.const_undef(vec_ty), bx.const_vector(&indices)) } (InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd), Abi::Scalar(s)) if s.primitive() == Primitive::F64 => { bx.bitcast(value, bx.cx.type_f64()) } ( InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg | X86InlineAsmRegClass::zmm_reg), Abi::Vector { .. }, ) if layout.size.bytes() == 64 => bx.bitcast(value, layout.llvm_type(bx.cx)), ( InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg | ArmInlineAsmRegClass::sreg_low16), Abi::Scalar(s), ) => { if let Primitive::Int(Integer::I32, _) = s.primitive() { bx.bitcast(value, bx.cx.type_i32()) } else { value } } ( InlineAsmRegClass::Arm( ArmInlineAsmRegClass::dreg | ArmInlineAsmRegClass::dreg_low8 | ArmInlineAsmRegClass::dreg_low16, ), Abi::Scalar(s), ) => { if let Primitive::Int(Integer::I64, _) = s.primitive() { bx.bitcast(value, bx.cx.type_i64()) } else { value } } (InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg), Abi::Scalar(s)) => { match s.primitive() { // MIPS only supports register-length arithmetics. Primitive::Int(Integer::I8, _) => bx.trunc(value, bx.cx.type_i8()), Primitive::Int(Integer::I16, _) => bx.trunc(value, bx.cx.type_i16()), Primitive::F32 => bx.bitcast(value, bx.cx.type_f32()), Primitive::F64 => bx.bitcast(value, bx.cx.type_f64()), _ => value, } } _ => value, } } /// Output type to use for llvm_fixup_output. fn llvm_fixup_output_type<'ll, 'tcx>( cx: &CodegenCx<'ll, 'tcx>, reg: InlineAsmRegClass, layout: &TyAndLayout<'tcx>, ) -> &'ll Type { match (reg, layout.abi) { (InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg), Abi::Scalar(s)) => { if let Primitive::Int(Integer::I8, _) = s.primitive() { cx.type_vector(cx.type_i8(), 8) } else { layout.llvm_type(cx) } } (InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16), Abi::Scalar(s)) => { let elem_ty = llvm_asm_scalar_type(cx, s); let count = 16 / layout.size.bytes(); cx.type_vector(elem_ty, count) } ( InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16), Abi::Vector { element, count }, ) if layout.size.bytes() == 8 => { let elem_ty = llvm_asm_scalar_type(cx, element); cx.type_vector(elem_ty, count * 2) } (InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd), Abi::Scalar(s)) if s.primitive() == Primitive::F64 => { cx.type_i64() } ( InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg | X86InlineAsmRegClass::zmm_reg), Abi::Vector { .. }, ) if layout.size.bytes() == 64 => cx.type_vector(cx.type_f64(), 8), ( InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg | ArmInlineAsmRegClass::sreg_low16), Abi::Scalar(s), ) => { if let Primitive::Int(Integer::I32, _) = s.primitive() { cx.type_f32() } else { layout.llvm_type(cx) } } ( InlineAsmRegClass::Arm( ArmInlineAsmRegClass::dreg | ArmInlineAsmRegClass::dreg_low8 | ArmInlineAsmRegClass::dreg_low16, ), Abi::Scalar(s), ) => { if let Primitive::Int(Integer::I64, _) = s.primitive() { cx.type_f64() } else { layout.llvm_type(cx) } } (InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg), Abi::Scalar(s)) => { match s.primitive() { // MIPS only supports register-length arithmetics. Primitive::Int(Integer::I8 | Integer::I16, _) => cx.type_i32(), Primitive::F32 => cx.type_i32(), Primitive::F64 => cx.type_i64(), _ => layout.llvm_type(cx), } } _ => layout.llvm_type(cx), } }