use crate::abi::FnAbiLlvmExt; use crate::attributes; use crate::common::Funclet; use crate::context::CodegenCx; use crate::llvm::{self, AtomicOrdering, AtomicRmwBinOp, BasicBlock}; use crate::type_::Type; use crate::type_of::LayoutLlvmExt; use crate::value::Value; use cstr::cstr; use libc::{c_char, c_uint}; use rustc_codegen_ssa::common::{IntPredicate, RealPredicate, SynchronizationScope, TypeKind}; use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue}; use rustc_codegen_ssa::mir::place::PlaceRef; use rustc_codegen_ssa::traits::*; use rustc_codegen_ssa::MemFlags; use rustc_data_structures::small_c_str::SmallCStr; use rustc_hir::def_id::DefId; use rustc_middle::ty::layout::{ FnAbiError, FnAbiOfHelpers, FnAbiRequest, LayoutError, LayoutOfHelpers, TyAndLayout, }; use rustc_middle::ty::{self, Ty, TyCtxt}; use rustc_span::Span; use rustc_symbol_mangling::typeid::kcfi_typeid_for_fnabi; use rustc_target::abi::{self, call::FnAbi, Align, Size, WrappingRange}; use rustc_target::spec::{HasTargetSpec, Target}; use std::borrow::Cow; use std::ffi::CStr; use std::iter; use std::ops::Deref; use std::ptr; // All Builders must have an llfn associated with them #[must_use] pub struct Builder<'a, 'll, 'tcx> { pub llbuilder: &'ll mut llvm::Builder<'ll>, pub cx: &'a CodegenCx<'ll, 'tcx>, } impl Drop for Builder<'_, '_, '_> { fn drop(&mut self) { unsafe { llvm::LLVMDisposeBuilder(&mut *(self.llbuilder as *mut _)); } } } // FIXME(eddyb) use a checked constructor when they become `const fn`. const EMPTY_C_STR: &CStr = unsafe { CStr::from_bytes_with_nul_unchecked(b"\0") }; /// Empty string, to be used where LLVM expects an instruction name, indicating /// that the instruction is to be left unnamed (i.e. numbered, in textual IR). // FIXME(eddyb) pass `&CStr` directly to FFI once it's a thin pointer. const UNNAMED: *const c_char = EMPTY_C_STR.as_ptr(); impl<'ll, 'tcx> BackendTypes for Builder<'_, 'll, 'tcx> { type Value = as BackendTypes>::Value; type Function = as BackendTypes>::Function; type BasicBlock = as BackendTypes>::BasicBlock; type Type = as BackendTypes>::Type; type Funclet = as BackendTypes>::Funclet; type DIScope = as BackendTypes>::DIScope; type DILocation = as BackendTypes>::DILocation; type DIVariable = as BackendTypes>::DIVariable; } impl abi::HasDataLayout for Builder<'_, '_, '_> { fn data_layout(&self) -> &abi::TargetDataLayout { self.cx.data_layout() } } impl<'tcx> ty::layout::HasTyCtxt<'tcx> for Builder<'_, '_, 'tcx> { #[inline] fn tcx(&self) -> TyCtxt<'tcx> { self.cx.tcx } } impl<'tcx> ty::layout::HasParamEnv<'tcx> for Builder<'_, '_, 'tcx> { fn param_env(&self) -> ty::ParamEnv<'tcx> { self.cx.param_env() } } impl HasTargetSpec for Builder<'_, '_, '_> { #[inline] fn target_spec(&self) -> &Target { self.cx.target_spec() } } impl<'tcx> LayoutOfHelpers<'tcx> for Builder<'_, '_, 'tcx> { type LayoutOfResult = TyAndLayout<'tcx>; #[inline] fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! { self.cx.handle_layout_err(err, span, ty) } } impl<'tcx> FnAbiOfHelpers<'tcx> for Builder<'_, '_, 'tcx> { type FnAbiOfResult = &'tcx FnAbi<'tcx, Ty<'tcx>>; #[inline] fn handle_fn_abi_err( &self, err: FnAbiError<'tcx>, span: Span, fn_abi_request: FnAbiRequest<'tcx>, ) -> ! { self.cx.handle_fn_abi_err(err, span, fn_abi_request) } } impl<'ll, 'tcx> Deref for Builder<'_, 'll, 'tcx> { type Target = CodegenCx<'ll, 'tcx>; #[inline] fn deref(&self) -> &Self::Target { self.cx } } impl<'ll, 'tcx> HasCodegen<'tcx> for Builder<'_, 'll, 'tcx> { type CodegenCx = CodegenCx<'ll, 'tcx>; } macro_rules! builder_methods_for_value_instructions { ($($name:ident($($arg:ident),*) => $llvm_capi:ident),+ $(,)?) => { $(fn $name(&mut self, $($arg: &'ll Value),*) -> &'ll Value { unsafe { llvm::$llvm_capi(self.llbuilder, $($arg,)* UNNAMED) } })+ } } impl<'a, 'll, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'll, 'tcx> { fn build(cx: &'a CodegenCx<'ll, 'tcx>, llbb: &'ll BasicBlock) -> Self { let bx = Builder::with_cx(cx); unsafe { llvm::LLVMPositionBuilderAtEnd(bx.llbuilder, llbb); } bx } fn cx(&self) -> &CodegenCx<'ll, 'tcx> { self.cx } fn llbb(&self) -> &'ll BasicBlock { unsafe { llvm::LLVMGetInsertBlock(self.llbuilder) } } fn set_span(&mut self, _span: Span) {} fn append_block(cx: &'a CodegenCx<'ll, 'tcx>, llfn: &'ll Value, name: &str) -> &'ll BasicBlock { unsafe { let name = SmallCStr::new(name); llvm::LLVMAppendBasicBlockInContext(cx.llcx, llfn, name.as_ptr()) } } fn append_sibling_block(&mut self, name: &str) -> &'ll BasicBlock { Self::append_block(self.cx, self.llfn(), name) } fn switch_to_block(&mut self, llbb: Self::BasicBlock) { *self = Self::build(self.cx, llbb) } fn ret_void(&mut self) { unsafe { llvm::LLVMBuildRetVoid(self.llbuilder); } } fn ret(&mut self, v: &'ll Value) { unsafe { llvm::LLVMBuildRet(self.llbuilder, v); } } fn br(&mut self, dest: &'ll BasicBlock) { unsafe { llvm::LLVMBuildBr(self.llbuilder, dest); } } fn cond_br( &mut self, cond: &'ll Value, then_llbb: &'ll BasicBlock, else_llbb: &'ll BasicBlock, ) { unsafe { llvm::LLVMBuildCondBr(self.llbuilder, cond, then_llbb, else_llbb); } } fn switch( &mut self, v: &'ll Value, else_llbb: &'ll BasicBlock, cases: impl ExactSizeIterator, ) { let switch = unsafe { llvm::LLVMBuildSwitch(self.llbuilder, v, else_llbb, cases.len() as c_uint) }; for (on_val, dest) in cases { let on_val = self.const_uint_big(self.val_ty(v), on_val); unsafe { llvm::LLVMAddCase(switch, on_val, dest) } } } fn invoke( &mut self, llty: &'ll Type, fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, llfn: &'ll Value, args: &[&'ll Value], then: &'ll BasicBlock, catch: &'ll BasicBlock, funclet: Option<&Funclet<'ll>>, ) -> &'ll Value { debug!("invoke {:?} with args ({:?})", llfn, args); let args = self.check_call("invoke", llty, llfn, args); let funclet_bundle = funclet.map(|funclet| funclet.bundle()); let funclet_bundle = funclet_bundle.as_ref().map(|b| &*b.raw); let mut bundles = vec![funclet_bundle]; // Set KCFI operand bundle let is_indirect_call = unsafe { llvm::LLVMIsAFunction(llfn).is_none() }; let kcfi_bundle = if self.tcx.sess.is_sanitizer_kcfi_enabled() && let Some(fn_abi) = fn_abi && is_indirect_call { let kcfi_typeid = kcfi_typeid_for_fnabi(self.tcx, fn_abi); Some(llvm::OperandBundleDef::new("kcfi", &[self.const_u32(kcfi_typeid)])) } else { None }; if kcfi_bundle.is_some() { let kcfi_bundle = kcfi_bundle.as_ref().map(|b| &*b.raw); bundles.push(kcfi_bundle); } bundles.retain(|bundle| bundle.is_some()); let invoke = unsafe { llvm::LLVMRustBuildInvoke( self.llbuilder, llty, llfn, args.as_ptr(), args.len() as c_uint, then, catch, bundles.as_ptr(), bundles.len() as c_uint, UNNAMED, ) }; if let Some(fn_abi) = fn_abi { fn_abi.apply_attrs_callsite(self, invoke); } invoke } fn unreachable(&mut self) { unsafe { llvm::LLVMBuildUnreachable(self.llbuilder); } } builder_methods_for_value_instructions! { add(a, b) => LLVMBuildAdd, fadd(a, b) => LLVMBuildFAdd, sub(a, b) => LLVMBuildSub, fsub(a, b) => LLVMBuildFSub, mul(a, b) => LLVMBuildMul, fmul(a, b) => LLVMBuildFMul, udiv(a, b) => LLVMBuildUDiv, exactudiv(a, b) => LLVMBuildExactUDiv, sdiv(a, b) => LLVMBuildSDiv, exactsdiv(a, b) => LLVMBuildExactSDiv, fdiv(a, b) => LLVMBuildFDiv, urem(a, b) => LLVMBuildURem, srem(a, b) => LLVMBuildSRem, frem(a, b) => LLVMBuildFRem, shl(a, b) => LLVMBuildShl, lshr(a, b) => LLVMBuildLShr, ashr(a, b) => LLVMBuildAShr, and(a, b) => LLVMBuildAnd, or(a, b) => LLVMBuildOr, xor(a, b) => LLVMBuildXor, neg(x) => LLVMBuildNeg, fneg(x) => LLVMBuildFNeg, not(x) => LLVMBuildNot, unchecked_sadd(x, y) => LLVMBuildNSWAdd, unchecked_uadd(x, y) => LLVMBuildNUWAdd, unchecked_ssub(x, y) => LLVMBuildNSWSub, unchecked_usub(x, y) => LLVMBuildNUWSub, unchecked_smul(x, y) => LLVMBuildNSWMul, unchecked_umul(x, y) => LLVMBuildNUWMul, } fn fadd_fast(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value { unsafe { let instr = llvm::LLVMBuildFAdd(self.llbuilder, lhs, rhs, UNNAMED); llvm::LLVMRustSetFastMath(instr); instr } } fn fsub_fast(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value { unsafe { let instr = llvm::LLVMBuildFSub(self.llbuilder, lhs, rhs, UNNAMED); llvm::LLVMRustSetFastMath(instr); instr } } fn fmul_fast(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value { unsafe { let instr = llvm::LLVMBuildFMul(self.llbuilder, lhs, rhs, UNNAMED); llvm::LLVMRustSetFastMath(instr); instr } } fn fdiv_fast(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value { unsafe { let instr = llvm::LLVMBuildFDiv(self.llbuilder, lhs, rhs, UNNAMED); llvm::LLVMRustSetFastMath(instr); instr } } fn frem_fast(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value { unsafe { let instr = llvm::LLVMBuildFRem(self.llbuilder, lhs, rhs, UNNAMED); llvm::LLVMRustSetFastMath(instr); instr } } fn checked_binop( &mut self, oop: OverflowOp, ty: Ty<'_>, lhs: Self::Value, rhs: Self::Value, ) -> (Self::Value, Self::Value) { use rustc_middle::ty::{Int, Uint}; use rustc_middle::ty::{IntTy::*, UintTy::*}; let new_kind = match ty.kind() { Int(t @ Isize) => Int(t.normalize(self.tcx.sess.target.pointer_width)), Uint(t @ Usize) => Uint(t.normalize(self.tcx.sess.target.pointer_width)), t @ (Uint(_) | Int(_)) => t.clone(), _ => panic!("tried to get overflow intrinsic for op applied to non-int type"), }; let name = match oop { OverflowOp::Add => match new_kind { Int(I8) => "llvm.sadd.with.overflow.i8", Int(I16) => "llvm.sadd.with.overflow.i16", Int(I32) => "llvm.sadd.with.overflow.i32", Int(I64) => "llvm.sadd.with.overflow.i64", Int(I128) => "llvm.sadd.with.overflow.i128", Uint(U8) => "llvm.uadd.with.overflow.i8", Uint(U16) => "llvm.uadd.with.overflow.i16", Uint(U32) => "llvm.uadd.with.overflow.i32", Uint(U64) => "llvm.uadd.with.overflow.i64", Uint(U128) => "llvm.uadd.with.overflow.i128", _ => unreachable!(), }, OverflowOp::Sub => match new_kind { Int(I8) => "llvm.ssub.with.overflow.i8", Int(I16) => "llvm.ssub.with.overflow.i16", Int(I32) => "llvm.ssub.with.overflow.i32", Int(I64) => "llvm.ssub.with.overflow.i64", Int(I128) => "llvm.ssub.with.overflow.i128", Uint(_) => { // Emit sub and icmp instead of llvm.usub.with.overflow. LLVM considers these // to be the canonical form. It will attempt to reform llvm.usub.with.overflow // in the backend if profitable. let sub = self.sub(lhs, rhs); let cmp = self.icmp(IntPredicate::IntULT, lhs, rhs); return (sub, cmp); } _ => unreachable!(), }, OverflowOp::Mul => match new_kind { Int(I8) => "llvm.smul.with.overflow.i8", Int(I16) => "llvm.smul.with.overflow.i16", Int(I32) => "llvm.smul.with.overflow.i32", Int(I64) => "llvm.smul.with.overflow.i64", Int(I128) => "llvm.smul.with.overflow.i128", Uint(U8) => "llvm.umul.with.overflow.i8", Uint(U16) => "llvm.umul.with.overflow.i16", Uint(U32) => "llvm.umul.with.overflow.i32", Uint(U64) => "llvm.umul.with.overflow.i64", Uint(U128) => "llvm.umul.with.overflow.i128", _ => unreachable!(), }, }; let res = self.call_intrinsic(name, &[lhs, rhs]); (self.extract_value(res, 0), self.extract_value(res, 1)) } fn from_immediate(&mut self, val: Self::Value) -> Self::Value { if self.cx().val_ty(val) == self.cx().type_i1() { self.zext(val, self.cx().type_i8()) } else { val } } fn to_immediate_scalar(&mut self, val: Self::Value, scalar: abi::Scalar) -> Self::Value { if scalar.is_bool() { return self.trunc(val, self.cx().type_i1()); } val } fn alloca(&mut self, ty: &'ll Type, align: Align) -> &'ll Value { let mut bx = Builder::with_cx(self.cx); bx.position_at_start(unsafe { llvm::LLVMGetFirstBasicBlock(self.llfn()) }); unsafe { let alloca = llvm::LLVMBuildAlloca(bx.llbuilder, ty, UNNAMED); llvm::LLVMSetAlignment(alloca, align.bytes() as c_uint); alloca } } fn byte_array_alloca(&mut self, len: &'ll Value, align: Align) -> &'ll Value { unsafe { let alloca = llvm::LLVMBuildArrayAlloca(self.llbuilder, self.cx().type_i8(), len, UNNAMED); llvm::LLVMSetAlignment(alloca, align.bytes() as c_uint); alloca } } fn load(&mut self, ty: &'ll Type, ptr: &'ll Value, align: Align) -> &'ll Value { unsafe { let load = llvm::LLVMBuildLoad2(self.llbuilder, ty, ptr, UNNAMED); llvm::LLVMSetAlignment(load, align.bytes() as c_uint); load } } fn volatile_load(&mut self, ty: &'ll Type, ptr: &'ll Value) -> &'ll Value { unsafe { let load = llvm::LLVMBuildLoad2(self.llbuilder, ty, ptr, UNNAMED); llvm::LLVMSetVolatile(load, llvm::True); load } } fn atomic_load( &mut self, ty: &'ll Type, ptr: &'ll Value, order: rustc_codegen_ssa::common::AtomicOrdering, size: Size, ) -> &'ll Value { unsafe { let load = llvm::LLVMRustBuildAtomicLoad( self.llbuilder, ty, ptr, UNNAMED, AtomicOrdering::from_generic(order), ); // LLVM requires the alignment of atomic loads to be at least the size of the type. llvm::LLVMSetAlignment(load, size.bytes() as c_uint); load } } #[instrument(level = "trace", skip(self))] fn load_operand(&mut self, place: PlaceRef<'tcx, &'ll Value>) -> OperandRef<'tcx, &'ll Value> { assert_eq!(place.llextra.is_some(), place.layout.is_unsized()); if place.layout.is_zst() { return OperandRef::new_zst(self, place.layout); } #[instrument(level = "trace", skip(bx))] fn scalar_load_metadata<'a, 'll, 'tcx>( bx: &mut Builder<'a, 'll, 'tcx>, load: &'ll Value, scalar: abi::Scalar, layout: TyAndLayout<'tcx>, offset: Size, ) { if !scalar.is_uninit_valid() { bx.noundef_metadata(load); } match scalar.primitive() { abi::Int(..) => { if !scalar.is_always_valid(bx) { bx.range_metadata(load, scalar.valid_range(bx)); } } abi::Pointer => { if !scalar.valid_range(bx).contains(0) { bx.nonnull_metadata(load); } if let Some(pointee) = layout.pointee_info_at(bx, offset) { if let Some(_) = pointee.safe { bx.align_metadata(load, pointee.align); } } } abi::F32 | abi::F64 => {} } } let val = if let Some(llextra) = place.llextra { OperandValue::Ref(place.llval, Some(llextra), place.align) } else if place.layout.is_llvm_immediate() { let mut const_llval = None; let llty = place.layout.llvm_type(self); unsafe { if let Some(global) = llvm::LLVMIsAGlobalVariable(place.llval) { if llvm::LLVMIsGlobalConstant(global) == llvm::True { if let Some(init) = llvm::LLVMGetInitializer(global) { if self.val_ty(init) == llty { const_llval = Some(init); } } } } } let llval = const_llval.unwrap_or_else(|| { let load = self.load(llty, place.llval, place.align); if let abi::Abi::Scalar(scalar) = place.layout.abi { scalar_load_metadata(self, load, scalar, place.layout, Size::ZERO); } load }); OperandValue::Immediate(self.to_immediate(llval, place.layout)) } else if let abi::Abi::ScalarPair(a, b) = place.layout.abi { let b_offset = a.size(self).align_to(b.align(self).abi); let pair_ty = place.layout.llvm_type(self); let mut load = |i, scalar: abi::Scalar, layout, align, offset| { let llptr = self.struct_gep(pair_ty, place.llval, i as u64); let llty = place.layout.scalar_pair_element_llvm_type(self, i, false); let load = self.load(llty, llptr, align); scalar_load_metadata(self, load, scalar, layout, offset); self.to_immediate_scalar(load, scalar) }; OperandValue::Pair( load(0, a, place.layout, place.align, Size::ZERO), load(1, b, place.layout, place.align.restrict_for_offset(b_offset), b_offset), ) } else { OperandValue::Ref(place.llval, None, place.align) }; OperandRef { val, layout: place.layout } } fn write_operand_repeatedly( &mut self, cg_elem: OperandRef<'tcx, &'ll Value>, count: u64, dest: PlaceRef<'tcx, &'ll Value>, ) { let zero = self.const_usize(0); let count = self.const_usize(count); let start = dest.project_index(self, zero).llval; let end = dest.project_index(self, count).llval; let header_bb = self.append_sibling_block("repeat_loop_header"); let body_bb = self.append_sibling_block("repeat_loop_body"); let next_bb = self.append_sibling_block("repeat_loop_next"); self.br(header_bb); let mut header_bx = Self::build(self.cx, header_bb); let current = header_bx.phi(self.val_ty(start), &[start], &[self.llbb()]); let keep_going = header_bx.icmp(IntPredicate::IntNE, current, end); header_bx.cond_br(keep_going, body_bb, next_bb); let mut body_bx = Self::build(self.cx, body_bb); let align = dest.align.restrict_for_offset(dest.layout.field(self.cx(), 0).size); cg_elem .val .store(&mut body_bx, PlaceRef::new_sized_aligned(current, cg_elem.layout, align)); let next = body_bx.inbounds_gep( self.backend_type(cg_elem.layout), current, &[self.const_usize(1)], ); body_bx.br(header_bb); header_bx.add_incoming_to_phi(current, next, body_bb); *self = Self::build(self.cx, next_bb); } fn range_metadata(&mut self, load: &'ll Value, range: WrappingRange) { if self.sess().target.arch == "amdgpu" { // amdgpu/LLVM does something weird and thinks an i64 value is // split into a v2i32, halving the bitwidth LLVM expects, // tripping an assertion. So, for now, just disable this // optimization. return; } unsafe { let llty = self.cx.val_ty(load); let v = [ self.cx.const_uint_big(llty, range.start), self.cx.const_uint_big(llty, range.end.wrapping_add(1)), ]; llvm::LLVMSetMetadata( load, llvm::MD_range as c_uint, llvm::LLVMMDNodeInContext(self.cx.llcx, v.as_ptr(), v.len() as c_uint), ); } } fn nonnull_metadata(&mut self, load: &'ll Value) { unsafe { llvm::LLVMSetMetadata( load, llvm::MD_nonnull as c_uint, llvm::LLVMMDNodeInContext(self.cx.llcx, ptr::null(), 0), ); } } fn store(&mut self, val: &'ll Value, ptr: &'ll Value, align: Align) -> &'ll Value { self.store_with_flags(val, ptr, align, MemFlags::empty()) } fn store_with_flags( &mut self, val: &'ll Value, ptr: &'ll Value, align: Align, flags: MemFlags, ) -> &'ll Value { debug!("Store {:?} -> {:?} ({:?})", val, ptr, flags); let ptr = self.check_store(val, ptr); unsafe { let store = llvm::LLVMBuildStore(self.llbuilder, val, ptr); let align = if flags.contains(MemFlags::UNALIGNED) { 1 } else { align.bytes() as c_uint }; llvm::LLVMSetAlignment(store, align); if flags.contains(MemFlags::VOLATILE) { llvm::LLVMSetVolatile(store, llvm::True); } if flags.contains(MemFlags::NONTEMPORAL) { // According to LLVM [1] building a nontemporal store must // *always* point to a metadata value of the integer 1. // // [1]: https://llvm.org/docs/LangRef.html#store-instruction let one = self.cx.const_i32(1); let node = llvm::LLVMMDNodeInContext(self.cx.llcx, &one, 1); llvm::LLVMSetMetadata(store, llvm::MD_nontemporal as c_uint, node); } store } } fn atomic_store( &mut self, val: &'ll Value, ptr: &'ll Value, order: rustc_codegen_ssa::common::AtomicOrdering, size: Size, ) { debug!("Store {:?} -> {:?}", val, ptr); let ptr = self.check_store(val, ptr); unsafe { let store = llvm::LLVMRustBuildAtomicStore( self.llbuilder, val, ptr, AtomicOrdering::from_generic(order), ); // LLVM requires the alignment of atomic stores to be at least the size of the type. llvm::LLVMSetAlignment(store, size.bytes() as c_uint); } } fn gep(&mut self, ty: &'ll Type, ptr: &'ll Value, indices: &[&'ll Value]) -> &'ll Value { unsafe { llvm::LLVMBuildGEP2( self.llbuilder, ty, ptr, indices.as_ptr(), indices.len() as c_uint, UNNAMED, ) } } fn inbounds_gep( &mut self, ty: &'ll Type, ptr: &'ll Value, indices: &[&'ll Value], ) -> &'ll Value { unsafe { llvm::LLVMBuildInBoundsGEP2( self.llbuilder, ty, ptr, indices.as_ptr(), indices.len() as c_uint, UNNAMED, ) } } fn struct_gep(&mut self, ty: &'ll Type, ptr: &'ll Value, idx: u64) -> &'ll Value { assert_eq!(idx as c_uint as u64, idx); unsafe { llvm::LLVMBuildStructGEP2(self.llbuilder, ty, ptr, idx as c_uint, UNNAMED) } } /* Casts */ fn trunc(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildTrunc(self.llbuilder, val, dest_ty, UNNAMED) } } fn sext(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildSExt(self.llbuilder, val, dest_ty, UNNAMED) } } fn fptoui_sat(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { self.fptoint_sat(false, val, dest_ty) } fn fptosi_sat(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { self.fptoint_sat(true, val, dest_ty) } fn fptoui(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { // On WebAssembly the `fptoui` and `fptosi` instructions currently have // poor codegen. The reason for this is that the corresponding wasm // instructions, `i32.trunc_f32_s` for example, will trap when the float // is out-of-bounds, infinity, or nan. This means that LLVM // automatically inserts control flow around `fptoui` and `fptosi` // because the LLVM instruction `fptoui` is defined as producing a // poison value, not having UB on out-of-bounds values. // // This method, however, is only used with non-saturating casts that // have UB on out-of-bounds values. This means that it's ok if we use // the raw wasm instruction since out-of-bounds values can do whatever // we like. To ensure that LLVM picks the right instruction we choose // the raw wasm intrinsic functions which avoid LLVM inserting all the // other control flow automatically. if self.sess().target.is_like_wasm { let src_ty = self.cx.val_ty(val); if self.cx.type_kind(src_ty) != TypeKind::Vector { let float_width = self.cx.float_width(src_ty); let int_width = self.cx.int_width(dest_ty); let name = match (int_width, float_width) { (32, 32) => Some("llvm.wasm.trunc.unsigned.i32.f32"), (32, 64) => Some("llvm.wasm.trunc.unsigned.i32.f64"), (64, 32) => Some("llvm.wasm.trunc.unsigned.i64.f32"), (64, 64) => Some("llvm.wasm.trunc.unsigned.i64.f64"), _ => None, }; if let Some(name) = name { return self.call_intrinsic(name, &[val]); } } } unsafe { llvm::LLVMBuildFPToUI(self.llbuilder, val, dest_ty, UNNAMED) } } fn fptosi(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { // see `fptoui` above for why wasm is different here if self.sess().target.is_like_wasm { let src_ty = self.cx.val_ty(val); if self.cx.type_kind(src_ty) != TypeKind::Vector { let float_width = self.cx.float_width(src_ty); let int_width = self.cx.int_width(dest_ty); let name = match (int_width, float_width) { (32, 32) => Some("llvm.wasm.trunc.signed.i32.f32"), (32, 64) => Some("llvm.wasm.trunc.signed.i32.f64"), (64, 32) => Some("llvm.wasm.trunc.signed.i64.f32"), (64, 64) => Some("llvm.wasm.trunc.signed.i64.f64"), _ => None, }; if let Some(name) = name { return self.call_intrinsic(name, &[val]); } } } unsafe { llvm::LLVMBuildFPToSI(self.llbuilder, val, dest_ty, UNNAMED) } } fn uitofp(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildUIToFP(self.llbuilder, val, dest_ty, UNNAMED) } } fn sitofp(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildSIToFP(self.llbuilder, val, dest_ty, UNNAMED) } } fn fptrunc(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildFPTrunc(self.llbuilder, val, dest_ty, UNNAMED) } } fn fpext(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildFPExt(self.llbuilder, val, dest_ty, UNNAMED) } } fn ptrtoint(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildPtrToInt(self.llbuilder, val, dest_ty, UNNAMED) } } fn inttoptr(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildIntToPtr(self.llbuilder, val, dest_ty, UNNAMED) } } fn bitcast(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildBitCast(self.llbuilder, val, dest_ty, UNNAMED) } } fn intcast(&mut self, val: &'ll Value, dest_ty: &'ll Type, is_signed: bool) -> &'ll Value { unsafe { llvm::LLVMRustBuildIntCast(self.llbuilder, val, dest_ty, is_signed) } } fn pointercast(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildPointerCast(self.llbuilder, val, dest_ty, UNNAMED) } } /* Comparisons */ fn icmp(&mut self, op: IntPredicate, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value { let op = llvm::IntPredicate::from_generic(op); unsafe { llvm::LLVMBuildICmp(self.llbuilder, op as c_uint, lhs, rhs, UNNAMED) } } fn fcmp(&mut self, op: RealPredicate, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value { let op = llvm::RealPredicate::from_generic(op); unsafe { llvm::LLVMBuildFCmp(self.llbuilder, op as c_uint, lhs, rhs, UNNAMED) } } /* Miscellaneous instructions */ fn memcpy( &mut self, dst: &'ll Value, dst_align: Align, src: &'ll Value, src_align: Align, size: &'ll Value, flags: MemFlags, ) { assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memcpy not supported"); let size = self.intcast(size, self.type_isize(), false); let is_volatile = flags.contains(MemFlags::VOLATILE); let dst = self.pointercast(dst, self.type_i8p()); let src = self.pointercast(src, self.type_i8p()); unsafe { llvm::LLVMRustBuildMemCpy( self.llbuilder, dst, dst_align.bytes() as c_uint, src, src_align.bytes() as c_uint, size, is_volatile, ); } } fn memmove( &mut self, dst: &'ll Value, dst_align: Align, src: &'ll Value, src_align: Align, size: &'ll Value, flags: MemFlags, ) { assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memmove not supported"); let size = self.intcast(size, self.type_isize(), false); let is_volatile = flags.contains(MemFlags::VOLATILE); let dst = self.pointercast(dst, self.type_i8p()); let src = self.pointercast(src, self.type_i8p()); unsafe { llvm::LLVMRustBuildMemMove( self.llbuilder, dst, dst_align.bytes() as c_uint, src, src_align.bytes() as c_uint, size, is_volatile, ); } } fn memset( &mut self, ptr: &'ll Value, fill_byte: &'ll Value, size: &'ll Value, align: Align, flags: MemFlags, ) { let is_volatile = flags.contains(MemFlags::VOLATILE); let ptr = self.pointercast(ptr, self.type_i8p()); unsafe { llvm::LLVMRustBuildMemSet( self.llbuilder, ptr, align.bytes() as c_uint, fill_byte, size, is_volatile, ); } } fn select( &mut self, cond: &'ll Value, then_val: &'ll Value, else_val: &'ll Value, ) -> &'ll Value { unsafe { llvm::LLVMBuildSelect(self.llbuilder, cond, then_val, else_val, UNNAMED) } } fn va_arg(&mut self, list: &'ll Value, ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildVAArg(self.llbuilder, list, ty, UNNAMED) } } fn extract_element(&mut self, vec: &'ll Value, idx: &'ll Value) -> &'ll Value { unsafe { llvm::LLVMBuildExtractElement(self.llbuilder, vec, idx, UNNAMED) } } fn vector_splat(&mut self, num_elts: usize, elt: &'ll Value) -> &'ll Value { unsafe { let elt_ty = self.cx.val_ty(elt); let undef = llvm::LLVMGetUndef(self.type_vector(elt_ty, num_elts as u64)); let vec = self.insert_element(undef, elt, self.cx.const_i32(0)); let vec_i32_ty = self.type_vector(self.type_i32(), num_elts as u64); self.shuffle_vector(vec, undef, self.const_null(vec_i32_ty)) } } fn extract_value(&mut self, agg_val: &'ll Value, idx: u64) -> &'ll Value { assert_eq!(idx as c_uint as u64, idx); unsafe { llvm::LLVMBuildExtractValue(self.llbuilder, agg_val, idx as c_uint, UNNAMED) } } fn insert_value(&mut self, agg_val: &'ll Value, elt: &'ll Value, idx: u64) -> &'ll Value { assert_eq!(idx as c_uint as u64, idx); unsafe { llvm::LLVMBuildInsertValue(self.llbuilder, agg_val, elt, idx as c_uint, UNNAMED) } } fn set_personality_fn(&mut self, personality: &'ll Value) { unsafe { llvm::LLVMSetPersonalityFn(self.llfn(), personality); } } fn cleanup_landing_pad(&mut self, pers_fn: &'ll Value) -> (&'ll Value, &'ll Value) { let ty = self.type_struct(&[self.type_i8p(), self.type_i32()], false); let landing_pad = self.landing_pad(ty, pers_fn, 1 /* FIXME should this be 0? */); unsafe { llvm::LLVMSetCleanup(landing_pad, llvm::True); } (self.extract_value(landing_pad, 0), self.extract_value(landing_pad, 1)) } fn resume(&mut self, exn0: &'ll Value, exn1: &'ll Value) { let ty = self.type_struct(&[self.type_i8p(), self.type_i32()], false); let mut exn = self.const_undef(ty); exn = self.insert_value(exn, exn0, 0); exn = self.insert_value(exn, exn1, 1); unsafe { llvm::LLVMBuildResume(self.llbuilder, exn); } } fn cleanup_pad(&mut self, parent: Option<&'ll Value>, args: &[&'ll Value]) -> Funclet<'ll> { let name = cstr!("cleanuppad"); let ret = unsafe { llvm::LLVMRustBuildCleanupPad( self.llbuilder, parent, args.len() as c_uint, args.as_ptr(), name.as_ptr(), ) }; Funclet::new(ret.expect("LLVM does not have support for cleanuppad")) } fn cleanup_ret(&mut self, funclet: &Funclet<'ll>, unwind: Option<&'ll BasicBlock>) { unsafe { llvm::LLVMRustBuildCleanupRet(self.llbuilder, funclet.cleanuppad(), unwind) .expect("LLVM does not have support for cleanupret"); } } fn catch_pad(&mut self, parent: &'ll Value, args: &[&'ll Value]) -> Funclet<'ll> { let name = cstr!("catchpad"); let ret = unsafe { llvm::LLVMRustBuildCatchPad( self.llbuilder, parent, args.len() as c_uint, args.as_ptr(), name.as_ptr(), ) }; Funclet::new(ret.expect("LLVM does not have support for catchpad")) } fn catch_switch( &mut self, parent: Option<&'ll Value>, unwind: Option<&'ll BasicBlock>, handlers: &[&'ll BasicBlock], ) -> &'ll Value { let name = cstr!("catchswitch"); let ret = unsafe { llvm::LLVMRustBuildCatchSwitch( self.llbuilder, parent, unwind, handlers.len() as c_uint, name.as_ptr(), ) }; let ret = ret.expect("LLVM does not have support for catchswitch"); for handler in handlers { unsafe { llvm::LLVMRustAddHandler(ret, handler); } } ret } // Atomic Operations fn atomic_cmpxchg( &mut self, dst: &'ll Value, cmp: &'ll Value, src: &'ll Value, order: rustc_codegen_ssa::common::AtomicOrdering, failure_order: rustc_codegen_ssa::common::AtomicOrdering, weak: bool, ) -> &'ll Value { let weak = if weak { llvm::True } else { llvm::False }; unsafe { let value = llvm::LLVMBuildAtomicCmpXchg( self.llbuilder, dst, cmp, src, AtomicOrdering::from_generic(order), AtomicOrdering::from_generic(failure_order), llvm::False, // SingleThreaded ); llvm::LLVMSetWeak(value, weak); value } } fn atomic_rmw( &mut self, op: rustc_codegen_ssa::common::AtomicRmwBinOp, dst: &'ll Value, src: &'ll Value, order: rustc_codegen_ssa::common::AtomicOrdering, ) -> &'ll Value { unsafe { llvm::LLVMBuildAtomicRMW( self.llbuilder, AtomicRmwBinOp::from_generic(op), dst, src, AtomicOrdering::from_generic(order), llvm::False, // SingleThreaded ) } } fn atomic_fence( &mut self, order: rustc_codegen_ssa::common::AtomicOrdering, scope: SynchronizationScope, ) { let single_threaded = match scope { SynchronizationScope::SingleThread => llvm::True, SynchronizationScope::CrossThread => llvm::False, }; unsafe { llvm::LLVMBuildFence( self.llbuilder, AtomicOrdering::from_generic(order), single_threaded, UNNAMED, ); } } fn set_invariant_load(&mut self, load: &'ll Value) { unsafe { llvm::LLVMSetMetadata( load, llvm::MD_invariant_load as c_uint, llvm::LLVMMDNodeInContext(self.cx.llcx, ptr::null(), 0), ); } } fn lifetime_start(&mut self, ptr: &'ll Value, size: Size) { self.call_lifetime_intrinsic("llvm.lifetime.start.p0i8", ptr, size); } fn lifetime_end(&mut self, ptr: &'ll Value, size: Size) { self.call_lifetime_intrinsic("llvm.lifetime.end.p0i8", ptr, size); } fn instrprof_increment( &mut self, fn_name: &'ll Value, hash: &'ll Value, num_counters: &'ll Value, index: &'ll Value, ) { debug!( "instrprof_increment() with args ({:?}, {:?}, {:?}, {:?})", fn_name, hash, num_counters, index ); let llfn = unsafe { llvm::LLVMRustGetInstrProfIncrementIntrinsic(self.cx().llmod) }; let llty = self.cx.type_func( &[self.cx.type_i8p(), self.cx.type_i64(), self.cx.type_i32(), self.cx.type_i32()], self.cx.type_void(), ); let args = &[fn_name, hash, num_counters, index]; let args = self.check_call("call", llty, llfn, args); unsafe { let _ = llvm::LLVMRustBuildCall( self.llbuilder, llty, llfn, args.as_ptr() as *const &llvm::Value, args.len() as c_uint, [].as_ptr(), 0 as c_uint, ); } } fn call( &mut self, llty: &'ll Type, fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, llfn: &'ll Value, args: &[&'ll Value], funclet: Option<&Funclet<'ll>>, ) -> &'ll Value { debug!("call {:?} with args ({:?})", llfn, args); let args = self.check_call("call", llty, llfn, args); let funclet_bundle = funclet.map(|funclet| funclet.bundle()); let funclet_bundle = funclet_bundle.as_ref().map(|b| &*b.raw); let mut bundles = vec![funclet_bundle]; // Set KCFI operand bundle let is_indirect_call = unsafe { llvm::LLVMIsAFunction(llfn).is_none() }; let kcfi_bundle = if self.tcx.sess.is_sanitizer_kcfi_enabled() && fn_abi.is_some() && is_indirect_call { let kcfi_typeid = kcfi_typeid_for_fnabi(self.tcx, fn_abi.unwrap()); Some(llvm::OperandBundleDef::new("kcfi", &[self.const_u32(kcfi_typeid)])) } else { None }; if kcfi_bundle.is_some() { let kcfi_bundle = kcfi_bundle.as_ref().map(|b| &*b.raw); bundles.push(kcfi_bundle); } bundles.retain(|bundle| bundle.is_some()); let call = unsafe { llvm::LLVMRustBuildCall( self.llbuilder, llty, llfn, args.as_ptr() as *const &llvm::Value, args.len() as c_uint, bundles.as_ptr(), bundles.len() as c_uint, ) }; if let Some(fn_abi) = fn_abi { fn_abi.apply_attrs_callsite(self, call); } call } fn zext(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildZExt(self.llbuilder, val, dest_ty, UNNAMED) } } fn do_not_inline(&mut self, llret: &'ll Value) { let noinline = llvm::AttributeKind::NoInline.create_attr(self.llcx); attributes::apply_to_callsite(llret, llvm::AttributePlace::Function, &[noinline]); } } impl<'ll> StaticBuilderMethods for Builder<'_, 'll, '_> { fn get_static(&mut self, def_id: DefId) -> &'ll Value { // Forward to the `get_static` method of `CodegenCx` self.cx().get_static(def_id) } } impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> { fn with_cx(cx: &'a CodegenCx<'ll, 'tcx>) -> Self { // Create a fresh builder from the crate context. let llbuilder = unsafe { llvm::LLVMCreateBuilderInContext(cx.llcx) }; Builder { llbuilder, cx } } pub fn llfn(&self) -> &'ll Value { unsafe { llvm::LLVMGetBasicBlockParent(self.llbb()) } } fn position_at_start(&mut self, llbb: &'ll BasicBlock) { unsafe { llvm::LLVMRustPositionBuilderAtStart(self.llbuilder, llbb); } } fn align_metadata(&mut self, load: &'ll Value, align: Align) { unsafe { let v = [self.cx.const_u64(align.bytes())]; llvm::LLVMSetMetadata( load, llvm::MD_align as c_uint, llvm::LLVMMDNodeInContext(self.cx.llcx, v.as_ptr(), v.len() as c_uint), ); } } fn noundef_metadata(&mut self, load: &'ll Value) { unsafe { llvm::LLVMSetMetadata( load, llvm::MD_noundef as c_uint, llvm::LLVMMDNodeInContext(self.cx.llcx, ptr::null(), 0), ); } } pub fn minnum(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value { unsafe { llvm::LLVMRustBuildMinNum(self.llbuilder, lhs, rhs) } } pub fn maxnum(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value { unsafe { llvm::LLVMRustBuildMaxNum(self.llbuilder, lhs, rhs) } } pub fn insert_element( &mut self, vec: &'ll Value, elt: &'ll Value, idx: &'ll Value, ) -> &'ll Value { unsafe { llvm::LLVMBuildInsertElement(self.llbuilder, vec, elt, idx, UNNAMED) } } pub fn shuffle_vector( &mut self, v1: &'ll Value, v2: &'ll Value, mask: &'ll Value, ) -> &'ll Value { unsafe { llvm::LLVMBuildShuffleVector(self.llbuilder, v1, v2, mask, UNNAMED) } } pub fn vector_reduce_fadd(&mut self, acc: &'ll Value, src: &'ll Value) -> &'ll Value { unsafe { llvm::LLVMRustBuildVectorReduceFAdd(self.llbuilder, acc, src) } } pub fn vector_reduce_fmul(&mut self, acc: &'ll Value, src: &'ll Value) -> &'ll Value { unsafe { llvm::LLVMRustBuildVectorReduceFMul(self.llbuilder, acc, src) } } pub fn vector_reduce_fadd_fast(&mut self, acc: &'ll Value, src: &'ll Value) -> &'ll Value { unsafe { let instr = llvm::LLVMRustBuildVectorReduceFAdd(self.llbuilder, acc, src); llvm::LLVMRustSetFastMath(instr); instr } } pub fn vector_reduce_fmul_fast(&mut self, acc: &'ll Value, src: &'ll Value) -> &'ll Value { unsafe { let instr = llvm::LLVMRustBuildVectorReduceFMul(self.llbuilder, acc, src); llvm::LLVMRustSetFastMath(instr); instr } } pub fn vector_reduce_add(&mut self, src: &'ll Value) -> &'ll Value { unsafe { llvm::LLVMRustBuildVectorReduceAdd(self.llbuilder, src) } } pub fn vector_reduce_mul(&mut self, src: &'ll Value) -> &'ll Value { unsafe { llvm::LLVMRustBuildVectorReduceMul(self.llbuilder, src) } } pub fn vector_reduce_and(&mut self, src: &'ll Value) -> &'ll Value { unsafe { llvm::LLVMRustBuildVectorReduceAnd(self.llbuilder, src) } } pub fn vector_reduce_or(&mut self, src: &'ll Value) -> &'ll Value { unsafe { llvm::LLVMRustBuildVectorReduceOr(self.llbuilder, src) } } pub fn vector_reduce_xor(&mut self, src: &'ll Value) -> &'ll Value { unsafe { llvm::LLVMRustBuildVectorReduceXor(self.llbuilder, src) } } pub fn vector_reduce_fmin(&mut self, src: &'ll Value) -> &'ll Value { unsafe { llvm::LLVMRustBuildVectorReduceFMin(self.llbuilder, src, /*NoNaNs:*/ false) } } pub fn vector_reduce_fmax(&mut self, src: &'ll Value) -> &'ll Value { unsafe { llvm::LLVMRustBuildVectorReduceFMax(self.llbuilder, src, /*NoNaNs:*/ false) } } pub fn vector_reduce_fmin_fast(&mut self, src: &'ll Value) -> &'ll Value { unsafe { let instr = llvm::LLVMRustBuildVectorReduceFMin(self.llbuilder, src, /*NoNaNs:*/ true); llvm::LLVMRustSetFastMath(instr); instr } } pub fn vector_reduce_fmax_fast(&mut self, src: &'ll Value) -> &'ll Value { unsafe { let instr = llvm::LLVMRustBuildVectorReduceFMax(self.llbuilder, src, /*NoNaNs:*/ true); llvm::LLVMRustSetFastMath(instr); instr } } pub fn vector_reduce_min(&mut self, src: &'ll Value, is_signed: bool) -> &'ll Value { unsafe { llvm::LLVMRustBuildVectorReduceMin(self.llbuilder, src, is_signed) } } pub fn vector_reduce_max(&mut self, src: &'ll Value, is_signed: bool) -> &'ll Value { unsafe { llvm::LLVMRustBuildVectorReduceMax(self.llbuilder, src, is_signed) } } pub fn add_clause(&mut self, landing_pad: &'ll Value, clause: &'ll Value) { unsafe { llvm::LLVMAddClause(landing_pad, clause); } } pub fn catch_ret(&mut self, funclet: &Funclet<'ll>, unwind: &'ll BasicBlock) -> &'ll Value { let ret = unsafe { llvm::LLVMRustBuildCatchRet(self.llbuilder, funclet.cleanuppad(), unwind) }; ret.expect("LLVM does not have support for catchret") } fn check_store(&mut self, val: &'ll Value, ptr: &'ll Value) -> &'ll Value { let dest_ptr_ty = self.cx.val_ty(ptr); let stored_ty = self.cx.val_ty(val); let stored_ptr_ty = self.cx.type_ptr_to(stored_ty); assert_eq!(self.cx.type_kind(dest_ptr_ty), TypeKind::Pointer); if dest_ptr_ty == stored_ptr_ty { ptr } else { debug!( "type mismatch in store. \ Expected {:?}, got {:?}; inserting bitcast", dest_ptr_ty, stored_ptr_ty ); self.bitcast(ptr, stored_ptr_ty) } } fn check_call<'b>( &mut self, typ: &str, fn_ty: &'ll Type, llfn: &'ll Value, args: &'b [&'ll Value], ) -> Cow<'b, [&'ll Value]> { assert!( self.cx.type_kind(fn_ty) == TypeKind::Function, "builder::{} not passed a function, but {:?}", typ, fn_ty ); let param_tys = self.cx.func_params_types(fn_ty); let all_args_match = iter::zip(¶m_tys, args.iter().map(|&v| self.val_ty(v))) .all(|(expected_ty, actual_ty)| *expected_ty == actual_ty); if all_args_match { return Cow::Borrowed(args); } let casted_args: Vec<_> = iter::zip(param_tys, args) .enumerate() .map(|(i, (expected_ty, &actual_val))| { let actual_ty = self.val_ty(actual_val); if expected_ty != actual_ty { debug!( "type mismatch in function call of {:?}. \ Expected {:?} for param {}, got {:?}; injecting bitcast", llfn, expected_ty, i, actual_ty ); self.bitcast(actual_val, expected_ty) } else { actual_val } }) .collect(); Cow::Owned(casted_args) } pub fn va_arg(&mut self, list: &'ll Value, ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMBuildVAArg(self.llbuilder, list, ty, UNNAMED) } } pub(crate) fn call_intrinsic(&mut self, intrinsic: &str, args: &[&'ll Value]) -> &'ll Value { let (ty, f) = self.cx.get_intrinsic(intrinsic); self.call(ty, None, f, args, None) } fn call_lifetime_intrinsic(&mut self, intrinsic: &str, ptr: &'ll Value, size: Size) { let size = size.bytes(); if size == 0 { return; } if !self.cx().sess().emit_lifetime_markers() { return; } let ptr = self.pointercast(ptr, self.cx.type_i8p()); self.call_intrinsic(intrinsic, &[self.cx.const_u64(size), ptr]); } pub(crate) fn phi( &mut self, ty: &'ll Type, vals: &[&'ll Value], bbs: &[&'ll BasicBlock], ) -> &'ll Value { assert_eq!(vals.len(), bbs.len()); let phi = unsafe { llvm::LLVMBuildPhi(self.llbuilder, ty, UNNAMED) }; unsafe { llvm::LLVMAddIncoming(phi, vals.as_ptr(), bbs.as_ptr(), vals.len() as c_uint); phi } } fn add_incoming_to_phi(&mut self, phi: &'ll Value, val: &'ll Value, bb: &'ll BasicBlock) { unsafe { llvm::LLVMAddIncoming(phi, &val, &bb, 1 as c_uint); } } fn fptoint_sat(&mut self, signed: bool, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value { let src_ty = self.cx.val_ty(val); let (float_ty, int_ty, vector_length) = if self.cx.type_kind(src_ty) == TypeKind::Vector { assert_eq!(self.cx.vector_length(src_ty), self.cx.vector_length(dest_ty)); ( self.cx.element_type(src_ty), self.cx.element_type(dest_ty), Some(self.cx.vector_length(src_ty)), ) } else { (src_ty, dest_ty, None) }; let float_width = self.cx.float_width(float_ty); let int_width = self.cx.int_width(int_ty); let instr = if signed { "fptosi" } else { "fptoui" }; let name = if let Some(vector_length) = vector_length { format!( "llvm.{}.sat.v{}i{}.v{}f{}", instr, vector_length, int_width, vector_length, float_width ) } else { format!("llvm.{}.sat.i{}.f{}", instr, int_width, float_width) }; let f = self.declare_cfn(&name, llvm::UnnamedAddr::No, self.type_func(&[src_ty], dest_ty)); self.call(self.type_func(&[src_ty], dest_ty), None, f, &[val], None) } pub(crate) fn landing_pad( &mut self, ty: &'ll Type, pers_fn: &'ll Value, num_clauses: usize, ) -> &'ll Value { // Use LLVMSetPersonalityFn to set the personality. It supports arbitrary Consts while, // LLVMBuildLandingPad requires the argument to be a Function (as of LLVM 12). The // personality lives on the parent function anyway. self.set_personality_fn(pers_fn); unsafe { llvm::LLVMBuildLandingPad(self.llbuilder, ty, None, num_clauses as c_uint, UNNAMED) } } }