//! Code that is useful in various codegen modules. use crate::consts::{self, const_alloc_to_llvm}; pub use crate::context::CodegenCx; use crate::llvm::{self, BasicBlock, Bool, ConstantInt, False, OperandBundleDef, True}; use crate::type_::Type; use crate::type_of::LayoutLlvmExt; use crate::value::Value; use rustc_ast::Mutability; use rustc_codegen_ssa::mir::place::PlaceRef; use rustc_codegen_ssa::traits::*; use rustc_hir::def_id::DefId; use rustc_middle::bug; use rustc_middle::mir::interpret::{ConstAllocation, GlobalAlloc, Scalar}; use rustc_middle::ty::layout::{LayoutOf, TyAndLayout}; use rustc_middle::ty::TyCtxt; use rustc_session::cstore::{DllCallingConvention, DllImport, PeImportNameType}; use rustc_target::abi::{self, AddressSpace, HasDataLayout, Pointer, Size}; use rustc_target::spec::Target; use libc::{c_char, c_uint}; use std::fmt::Write; /* * A note on nomenclature of linking: "extern", "foreign", and "upcall". * * An "extern" is an LLVM symbol we wind up emitting an undefined external * reference to. This means "we don't have the thing in this compilation unit, * please make sure you link it in at runtime". This could be a reference to * C code found in a C library, or rust code found in a rust crate. * * Most "externs" are implicitly declared (automatically) as a result of a * user declaring an extern _module_ dependency; this causes the rust driver * to locate an extern crate, scan its compilation metadata, and emit extern * declarations for any symbols used by the declaring crate. * * A "foreign" is an extern that references C (or other non-rust ABI) code. * There is no metadata to scan for extern references so in these cases either * a header-digester like bindgen, or manual function prototypes, have to * serve as declarators. So these are usually given explicitly as prototype * declarations, in rust code, with ABI attributes on them noting which ABI to * link via. * * An "upcall" is a foreign call generated by the compiler (not corresponding * to any user-written call in the code) into the runtime library, to perform * some helper task such as bringing a task to life, allocating memory, etc. * */ /// A structure representing an active landing pad for the duration of a basic /// block. /// /// Each `Block` may contain an instance of this, indicating whether the block /// is part of a landing pad or not. This is used to make decision about whether /// to emit `invoke` instructions (e.g., in a landing pad we don't continue to /// use `invoke`) and also about various function call metadata. /// /// For GNU exceptions (`landingpad` + `resume` instructions) this structure is /// just a bunch of `None` instances (not too interesting), but for MSVC /// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data. /// When inside of a landing pad, each function call in LLVM IR needs to be /// annotated with which landing pad it's a part of. This is accomplished via /// the `OperandBundleDef` value created for MSVC landing pads. pub struct Funclet<'ll> { cleanuppad: &'ll Value, operand: OperandBundleDef<'ll>, } impl<'ll> Funclet<'ll> { pub fn new(cleanuppad: &'ll Value) -> Self { Funclet { cleanuppad, operand: OperandBundleDef::new("funclet", &[cleanuppad]) } } pub fn cleanuppad(&self) -> &'ll Value { self.cleanuppad } pub fn bundle(&self) -> &OperandBundleDef<'ll> { &self.operand } } impl<'ll> BackendTypes for CodegenCx<'ll, '_> { type Value = &'ll Value; // FIXME(eddyb) replace this with a `Function` "subclass" of `Value`. type Function = &'ll Value; type BasicBlock = &'ll BasicBlock; type Type = &'ll Type; type Funclet = Funclet<'ll>; type DIScope = &'ll llvm::debuginfo::DIScope; type DILocation = &'ll llvm::debuginfo::DILocation; type DIVariable = &'ll llvm::debuginfo::DIVariable; } impl<'ll> CodegenCx<'ll, '_> { pub fn const_array(&self, ty: &'ll Type, elts: &[&'ll Value]) -> &'ll Value { unsafe { llvm::LLVMConstArray(ty, elts.as_ptr(), elts.len() as c_uint) } } pub fn const_vector(&self, elts: &[&'ll Value]) -> &'ll Value { unsafe { llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint) } } pub fn const_bytes(&self, bytes: &[u8]) -> &'ll Value { bytes_in_context(self.llcx, bytes) } pub fn const_get_elt(&self, v: &'ll Value, idx: u64) -> &'ll Value { unsafe { assert_eq!(idx as c_uint as u64, idx); let r = llvm::LLVMGetAggregateElement(v, idx as c_uint).unwrap(); debug!("const_get_elt(v={:?}, idx={}, r={:?})", v, idx, r); r } } } impl<'ll, 'tcx> ConstMethods<'tcx> for CodegenCx<'ll, 'tcx> { fn const_null(&self, t: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMConstNull(t) } } fn const_undef(&self, t: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMGetUndef(t) } } fn const_int(&self, t: &'ll Type, i: i64) -> &'ll Value { unsafe { llvm::LLVMConstInt(t, i as u64, True) } } fn const_uint(&self, t: &'ll Type, i: u64) -> &'ll Value { unsafe { llvm::LLVMConstInt(t, i, False) } } fn const_uint_big(&self, t: &'ll Type, u: u128) -> &'ll Value { unsafe { let words = [u as u64, (u >> 64) as u64]; llvm::LLVMConstIntOfArbitraryPrecision(t, 2, words.as_ptr()) } } fn const_bool(&self, val: bool) -> &'ll Value { self.const_uint(self.type_i1(), val as u64) } fn const_i16(&self, i: i16) -> &'ll Value { self.const_int(self.type_i16(), i as i64) } fn const_i32(&self, i: i32) -> &'ll Value { self.const_int(self.type_i32(), i as i64) } fn const_u32(&self, i: u32) -> &'ll Value { self.const_uint(self.type_i32(), i as u64) } fn const_u64(&self, i: u64) -> &'ll Value { self.const_uint(self.type_i64(), i) } fn const_usize(&self, i: u64) -> &'ll Value { let bit_size = self.data_layout().pointer_size.bits(); if bit_size < 64 { // make sure it doesn't overflow assert!(i < (1 << bit_size)); } self.const_uint(self.isize_ty, i) } fn const_u8(&self, i: u8) -> &'ll Value { self.const_uint(self.type_i8(), i as u64) } fn const_real(&self, t: &'ll Type, val: f64) -> &'ll Value { unsafe { llvm::LLVMConstReal(t, val) } } fn const_str(&self, s: &str) -> (&'ll Value, &'ll Value) { let str_global = *self .const_str_cache .borrow_mut() .raw_entry_mut() .from_key(s) .or_insert_with(|| { let sc = self.const_bytes(s.as_bytes()); let sym = self.generate_local_symbol_name("str"); let g = self.define_global(&sym, self.val_ty(sc)).unwrap_or_else(|| { bug!("symbol `{}` is already defined", sym); }); unsafe { llvm::LLVMSetInitializer(g, sc); llvm::LLVMSetGlobalConstant(g, True); llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage); } (s.to_owned(), g) }) .1; let len = s.len(); let cs = consts::ptrcast( str_global, self.type_ptr_to(self.layout_of(self.tcx.types.str_).llvm_type(self)), ); (cs, self.const_usize(len as u64)) } fn const_struct(&self, elts: &[&'ll Value], packed: bool) -> &'ll Value { struct_in_context(self.llcx, elts, packed) } fn const_to_opt_uint(&self, v: &'ll Value) -> Option { try_as_const_integral(v).and_then(|v| unsafe { let mut i = 0u64; let success = llvm::LLVMRustConstIntGetZExtValue(v, &mut i); success.then_some(i) }) } fn const_to_opt_u128(&self, v: &'ll Value, sign_ext: bool) -> Option { try_as_const_integral(v).and_then(|v| unsafe { let (mut lo, mut hi) = (0u64, 0u64); let success = llvm::LLVMRustConstInt128Get(v, sign_ext, &mut hi, &mut lo); success.then_some(hi_lo_to_u128(lo, hi)) }) } fn scalar_to_backend(&self, cv: Scalar, layout: abi::Scalar, llty: &'ll Type) -> &'ll Value { let bitsize = if layout.is_bool() { 1 } else { layout.size(self).bits() }; match cv { Scalar::Int(int) => { let data = int.assert_bits(layout.size(self)); let llval = self.const_uint_big(self.type_ix(bitsize), data); if layout.primitive() == Pointer { unsafe { llvm::LLVMConstIntToPtr(llval, llty) } } else { self.const_bitcast(llval, llty) } } Scalar::Ptr(ptr, _size) => { let (alloc_id, offset) = ptr.into_parts(); let (base_addr, base_addr_space) = match self.tcx.global_alloc(alloc_id) { GlobalAlloc::Memory(alloc) => { let init = const_alloc_to_llvm(self, alloc); let alloc = alloc.inner(); let value = match alloc.mutability { Mutability::Mut => self.static_addr_of_mut(init, alloc.align, None), _ => self.static_addr_of(init, alloc.align, None), }; if !self.sess().fewer_names() { llvm::set_value_name(value, format!("{:?}", alloc_id).as_bytes()); } (value, AddressSpace::DATA) } GlobalAlloc::Function(fn_instance) => ( self.get_fn_addr(fn_instance.polymorphize(self.tcx)), self.data_layout().instruction_address_space, ), GlobalAlloc::VTable(ty, trait_ref) => { let alloc = self .tcx .global_alloc(self.tcx.vtable_allocation((ty, trait_ref))) .unwrap_memory(); let init = const_alloc_to_llvm(self, alloc); let value = self.static_addr_of(init, alloc.inner().align, None); (value, AddressSpace::DATA) } GlobalAlloc::Static(def_id) => { assert!(self.tcx.is_static(def_id)); assert!(!self.tcx.is_thread_local_static(def_id)); (self.get_static(def_id), AddressSpace::DATA) } }; let llval = unsafe { llvm::LLVMRustConstInBoundsGEP2( self.type_i8(), self.const_bitcast(base_addr, self.type_i8p_ext(base_addr_space)), &self.const_usize(offset.bytes()), 1, ) }; if layout.primitive() != Pointer { unsafe { llvm::LLVMConstPtrToInt(llval, llty) } } else { self.const_bitcast(llval, llty) } } } } fn const_data_from_alloc(&self, alloc: ConstAllocation<'tcx>) -> Self::Value { const_alloc_to_llvm(self, alloc) } fn from_const_alloc( &self, layout: TyAndLayout<'tcx>, alloc: ConstAllocation<'tcx>, offset: Size, ) -> PlaceRef<'tcx, &'ll Value> { let alloc_align = alloc.inner().align; assert_eq!(alloc_align, layout.align.abi); let llty = self.type_ptr_to(layout.llvm_type(self)); let llval = if layout.size == Size::ZERO { let llval = self.const_usize(alloc_align.bytes()); unsafe { llvm::LLVMConstIntToPtr(llval, llty) } } else { let init = const_alloc_to_llvm(self, alloc); let base_addr = self.static_addr_of(init, alloc_align, None); let llval = unsafe { llvm::LLVMRustConstInBoundsGEP2( self.type_i8(), self.const_bitcast(base_addr, self.type_i8p()), &self.const_usize(offset.bytes()), 1, ) }; self.const_bitcast(llval, llty) }; PlaceRef::new_sized(llval, layout) } fn const_ptrcast(&self, val: &'ll Value, ty: &'ll Type) -> &'ll Value { consts::ptrcast(val, ty) } } /// Get the [LLVM type][Type] of a [`Value`]. pub fn val_ty(v: &Value) -> &Type { unsafe { llvm::LLVMTypeOf(v) } } pub fn bytes_in_context<'ll>(llcx: &'ll llvm::Context, bytes: &[u8]) -> &'ll Value { unsafe { let ptr = bytes.as_ptr() as *const c_char; llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True) } } pub fn struct_in_context<'ll>( llcx: &'ll llvm::Context, elts: &[&'ll Value], packed: bool, ) -> &'ll Value { unsafe { llvm::LLVMConstStructInContext(llcx, elts.as_ptr(), elts.len() as c_uint, packed as Bool) } } #[inline] fn hi_lo_to_u128(lo: u64, hi: u64) -> u128 { ((hi as u128) << 64) | (lo as u128) } fn try_as_const_integral(v: &Value) -> Option<&ConstantInt> { unsafe { llvm::LLVMIsAConstantInt(v) } } pub(crate) fn get_dllimport<'tcx>( tcx: TyCtxt<'tcx>, id: DefId, name: &str, ) -> Option<&'tcx DllImport> { tcx.native_library(id) .map(|lib| lib.dll_imports.iter().find(|di| di.name.as_str() == name)) .flatten() } pub(crate) fn is_mingw_gnu_toolchain(target: &Target) -> bool { target.vendor == "pc" && target.os == "windows" && target.env == "gnu" && target.abi.is_empty() } pub(crate) fn i686_decorated_name( dll_import: &DllImport, mingw: bool, disable_name_mangling: bool, ) -> String { let name = dll_import.name.as_str(); let (add_prefix, add_suffix) = match dll_import.import_name_type { Some(PeImportNameType::NoPrefix) => (false, true), Some(PeImportNameType::Undecorated) => (false, false), _ => (true, true), }; // Worst case: +1 for disable name mangling, +1 for prefix, +4 for suffix (@@__). let mut decorated_name = String::with_capacity(name.len() + 6); if disable_name_mangling { // LLVM uses a binary 1 ('\x01') prefix to a name to indicate that mangling needs to be disabled. decorated_name.push('\x01'); } let prefix = if add_prefix && dll_import.is_fn { match dll_import.calling_convention { DllCallingConvention::C | DllCallingConvention::Vectorcall(_) => None, DllCallingConvention::Stdcall(_) => (!mingw || dll_import.import_name_type == Some(PeImportNameType::Decorated)) .then_some('_'), DllCallingConvention::Fastcall(_) => Some('@'), } } else if !dll_import.is_fn && !mingw { // For static variables, prefix with '_' on MSVC. Some('_') } else { None }; if let Some(prefix) = prefix { decorated_name.push(prefix); } decorated_name.push_str(name); if add_suffix && dll_import.is_fn { match dll_import.calling_convention { DllCallingConvention::C => {} DllCallingConvention::Stdcall(arg_list_size) | DllCallingConvention::Fastcall(arg_list_size) => { write!(&mut decorated_name, "@{}", arg_list_size).unwrap(); } DllCallingConvention::Vectorcall(arg_list_size) => { write!(&mut decorated_name, "@@{}", arg_list_size).unwrap(); } } } decorated_name }