use crate::attributes; use crate::back::write::to_llvm_code_model; use crate::callee::get_fn; use crate::coverageinfo; use crate::debuginfo; use crate::llvm; use crate::llvm_util; use crate::type_::Type; use crate::value::Value; use cstr::cstr; use rustc_codegen_ssa::base::wants_msvc_seh; use rustc_codegen_ssa::traits::*; use rustc_data_structures::base_n; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::small_c_str::SmallCStr; use rustc_hir::def_id::DefId; use rustc_middle::mir::mono::CodegenUnit; use rustc_middle::ty::layout::{ FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasParamEnv, LayoutError, LayoutOfHelpers, TyAndLayout, }; use rustc_middle::ty::{self, Instance, Ty, TyCtxt}; use rustc_middle::{bug, span_bug}; use rustc_session::config::{BranchProtection, CFGuard, CFProtection}; use rustc_session::config::{CrateType, DebugInfo, PAuthKey, PacRet}; use rustc_session::Session; use rustc_span::source_map::Span; use rustc_span::source_map::Spanned; use rustc_target::abi::{ call::FnAbi, HasDataLayout, PointeeInfo, Size, TargetDataLayout, VariantIdx, }; use rustc_target::spec::{HasTargetSpec, RelocModel, Target, TlsModel}; use smallvec::SmallVec; use std::cell::{Cell, RefCell}; use std::ffi::CStr; use std::str; /// There is one `CodegenCx` per compilation unit. Each one has its own LLVM /// `llvm::Context` so that several compilation units may be optimized in parallel. /// All other LLVM data structures in the `CodegenCx` are tied to that `llvm::Context`. pub struct CodegenCx<'ll, 'tcx> { pub tcx: TyCtxt<'tcx>, pub check_overflow: bool, pub use_dll_storage_attrs: bool, pub tls_model: llvm::ThreadLocalMode, pub llmod: &'ll llvm::Module, pub llcx: &'ll llvm::Context, pub codegen_unit: &'tcx CodegenUnit<'tcx>, /// Cache instances of monomorphic and polymorphic items pub instances: RefCell, &'ll Value>>, /// Cache generated vtables pub vtables: RefCell, Option>), &'ll Value>>, /// Cache of constant strings, pub const_str_cache: RefCell>, /// Reverse-direction for const ptrs cast from globals. /// /// Key is a Value holding a `*T`, /// Val is a Value holding a `*[T]`. /// /// Needed because LLVM loses pointer->pointee association /// when we ptrcast, and we have to ptrcast during codegen /// of a `[T]` const because we form a slice, a `(*T,usize)` pair, not /// a pointer to an LLVM array type. Similar for trait objects. pub const_unsized: RefCell>, /// Cache of emitted const globals (value -> global) pub const_globals: RefCell>, /// List of globals for static variables which need to be passed to the /// LLVM function ReplaceAllUsesWith (RAUW) when codegen is complete. /// (We have to make sure we don't invalidate any Values referring /// to constants.) pub statics_to_rauw: RefCell>, /// Statics that will be placed in the llvm.used variable /// See for details pub used_statics: RefCell>, /// Statics that will be placed in the llvm.compiler.used variable /// See for details pub compiler_used_statics: RefCell>, /// Mapping of non-scalar types to llvm types and field remapping if needed. pub type_lowering: RefCell, Option), TypeLowering<'ll>>>, /// Mapping of scalar types to llvm types. pub scalar_lltypes: RefCell, &'ll Type>>, pub pointee_infos: RefCell, Size), Option>>, pub isize_ty: &'ll Type, pub coverage_cx: Option>, pub dbg_cx: Option>, eh_personality: Cell>, eh_catch_typeinfo: Cell>, pub rust_try_fn: Cell>, intrinsics: RefCell>, /// A counter that is used for generating local symbol names local_gen_sym_counter: Cell, /// `codegen_static` will sometimes create a second global variable with a /// different type and clear the symbol name of the original global. /// `global_asm!` needs to be able to find this new global so that it can /// compute the correct mangled symbol name to insert into the asm. pub renamed_statics: RefCell>, } pub struct TypeLowering<'ll> { /// Associated LLVM type pub lltype: &'ll Type, /// If padding is used the slice maps fields from source order /// to llvm order. pub field_remapping: Option>, } fn to_llvm_tls_model(tls_model: TlsModel) -> llvm::ThreadLocalMode { match tls_model { TlsModel::GeneralDynamic => llvm::ThreadLocalMode::GeneralDynamic, TlsModel::LocalDynamic => llvm::ThreadLocalMode::LocalDynamic, TlsModel::InitialExec => llvm::ThreadLocalMode::InitialExec, TlsModel::LocalExec => llvm::ThreadLocalMode::LocalExec, } } pub unsafe fn create_module<'ll>( tcx: TyCtxt<'_>, llcx: &'ll llvm::Context, mod_name: &str, ) -> &'ll llvm::Module { let sess = tcx.sess; let mod_name = SmallCStr::new(mod_name); let llmod = llvm::LLVMModuleCreateWithNameInContext(mod_name.as_ptr(), llcx); let mut target_data_layout = sess.target.data_layout.to_string(); let llvm_version = llvm_util::get_version(); if llvm_version < (14, 0, 0) { if sess.target.llvm_target == "i686-pc-windows-msvc" || sess.target.llvm_target == "i586-pc-windows-msvc" { target_data_layout = "e-m:x-p:32:32-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:32-n8:16:32-a:0:32-S32" .to_string(); } if sess.target.arch == "wasm32" { target_data_layout = target_data_layout.replace("-p10:8:8-p20:8:8", ""); } } if llvm_version < (16, 0, 0) { if sess.target.arch == "s390x" { target_data_layout = target_data_layout.replace("-v128:64", ""); } if sess.target.arch == "riscv64" { target_data_layout = target_data_layout.replace("-n32:64-", "-n64-"); } } // Ensure the data-layout values hardcoded remain the defaults. if sess.target.is_builtin { let tm = crate::back::write::create_informational_target_machine(tcx.sess); llvm::LLVMRustSetDataLayoutFromTargetMachine(llmod, tm); llvm::LLVMRustDisposeTargetMachine(tm); let llvm_data_layout = llvm::LLVMGetDataLayoutStr(llmod); let llvm_data_layout = str::from_utf8(CStr::from_ptr(llvm_data_layout).to_bytes()) .expect("got a non-UTF8 data-layout from LLVM"); // Unfortunately LLVM target specs change over time, and right now we // don't have proper support to work with any more than one // `data_layout` than the one that is in the rust-lang/rust repo. If // this compiler is configured against a custom LLVM, we may have a // differing data layout, even though we should update our own to use // that one. // // As an interim hack, if CFG_LLVM_ROOT is not an empty string then we // disable this check entirely as we may be configured with something // that has a different target layout. // // Unsure if this will actually cause breakage when rustc is configured // as such. // // FIXME(#34960) let cfg_llvm_root = option_env!("CFG_LLVM_ROOT").unwrap_or(""); let custom_llvm_used = cfg_llvm_root.trim() != ""; if !custom_llvm_used && target_data_layout != llvm_data_layout { bug!( "data-layout for target `{rustc_target}`, `{rustc_layout}`, \ differs from LLVM target's `{llvm_target}` default layout, `{llvm_layout}`", rustc_target = sess.opts.target_triple, rustc_layout = target_data_layout, llvm_target = sess.target.llvm_target, llvm_layout = llvm_data_layout ); } } let data_layout = SmallCStr::new(&target_data_layout); llvm::LLVMSetDataLayout(llmod, data_layout.as_ptr()); let llvm_target = SmallCStr::new(&sess.target.llvm_target); llvm::LLVMRustSetNormalizedTarget(llmod, llvm_target.as_ptr()); let reloc_model = sess.relocation_model(); if matches!(reloc_model, RelocModel::Pic | RelocModel::Pie) { llvm::LLVMRustSetModulePICLevel(llmod); // PIE is potentially more effective than PIC, but can only be used in executables. // If all our outputs are executables, then we can relax PIC to PIE. if reloc_model == RelocModel::Pie || sess.crate_types().iter().all(|ty| *ty == CrateType::Executable) { llvm::LLVMRustSetModulePIELevel(llmod); } } // Linking object files with different code models is undefined behavior // because the compiler would have to generate additional code (to span // longer jumps) if a larger code model is used with a smaller one. // // See https://reviews.llvm.org/D52322 and https://reviews.llvm.org/D52323. llvm::LLVMRustSetModuleCodeModel(llmod, to_llvm_code_model(sess.code_model())); // If skipping the PLT is enabled, we need to add some module metadata // to ensure intrinsic calls don't use it. if !sess.needs_plt() { let avoid_plt = "RtLibUseGOT\0".as_ptr().cast(); llvm::LLVMRustAddModuleFlag(llmod, llvm::LLVMModFlagBehavior::Warning, avoid_plt, 1); } if sess.is_sanitizer_cfi_enabled() { // FIXME(rcvalle): Add support for non canonical jump tables. let canonical_jump_tables = "CFI Canonical Jump Tables\0".as_ptr().cast(); // FIXME(rcvalle): Add it with Override behavior flag. llvm::LLVMRustAddModuleFlag( llmod, llvm::LLVMModFlagBehavior::Warning, canonical_jump_tables, 1, ); } if sess.is_sanitizer_kcfi_enabled() { let kcfi = "kcfi\0".as_ptr().cast(); llvm::LLVMRustAddModuleFlag(llmod, llvm::LLVMModFlagBehavior::Override, kcfi, 1); } // Control Flow Guard is currently only supported by the MSVC linker on Windows. if sess.target.is_like_msvc { match sess.opts.cg.control_flow_guard { CFGuard::Disabled => {} CFGuard::NoChecks => { // Set `cfguard=1` module flag to emit metadata only. llvm::LLVMRustAddModuleFlag( llmod, llvm::LLVMModFlagBehavior::Warning, "cfguard\0".as_ptr() as *const _, 1, ) } CFGuard::Checks => { // Set `cfguard=2` module flag to emit metadata and checks. llvm::LLVMRustAddModuleFlag( llmod, llvm::LLVMModFlagBehavior::Warning, "cfguard\0".as_ptr() as *const _, 2, ) } } } if let Some(BranchProtection { bti, pac_ret }) = sess.opts.unstable_opts.branch_protection { let behavior = if llvm_version >= (15, 0, 0) { llvm::LLVMModFlagBehavior::Min } else { llvm::LLVMModFlagBehavior::Error }; if sess.target.arch == "aarch64" { llvm::LLVMRustAddModuleFlag( llmod, behavior, "branch-target-enforcement\0".as_ptr().cast(), bti.into(), ); llvm::LLVMRustAddModuleFlag( llmod, behavior, "sign-return-address\0".as_ptr().cast(), pac_ret.is_some().into(), ); let pac_opts = pac_ret.unwrap_or(PacRet { leaf: false, key: PAuthKey::A }); llvm::LLVMRustAddModuleFlag( llmod, behavior, "sign-return-address-all\0".as_ptr().cast(), pac_opts.leaf.into(), ); llvm::LLVMRustAddModuleFlag( llmod, behavior, "sign-return-address-with-bkey\0".as_ptr().cast(), u32::from(pac_opts.key == PAuthKey::B), ); } else { bug!( "branch-protection used on non-AArch64 target; \ this should be checked in rustc_session." ); } } // Pass on the control-flow protection flags to LLVM (equivalent to `-fcf-protection` in Clang). if let CFProtection::Branch | CFProtection::Full = sess.opts.unstable_opts.cf_protection { llvm::LLVMRustAddModuleFlag( llmod, llvm::LLVMModFlagBehavior::Override, "cf-protection-branch\0".as_ptr().cast(), 1, ) } if let CFProtection::Return | CFProtection::Full = sess.opts.unstable_opts.cf_protection { llvm::LLVMRustAddModuleFlag( llmod, llvm::LLVMModFlagBehavior::Override, "cf-protection-return\0".as_ptr().cast(), 1, ) } if sess.opts.unstable_opts.virtual_function_elimination { llvm::LLVMRustAddModuleFlag( llmod, llvm::LLVMModFlagBehavior::Error, "Virtual Function Elim\0".as_ptr().cast(), 1, ); } llmod } impl<'ll, 'tcx> CodegenCx<'ll, 'tcx> { pub(crate) fn new( tcx: TyCtxt<'tcx>, codegen_unit: &'tcx CodegenUnit<'tcx>, llvm_module: &'ll crate::ModuleLlvm, ) -> Self { // An interesting part of Windows which MSVC forces our hand on (and // apparently MinGW didn't) is the usage of `dllimport` and `dllexport` // attributes in LLVM IR as well as native dependencies (in C these // correspond to `__declspec(dllimport)`). // // LD (BFD) in MinGW mode can often correctly guess `dllexport` but // relying on that can result in issues like #50176. // LLD won't support that and expects symbols with proper attributes. // Because of that we make MinGW target emit dllexport just like MSVC. // When it comes to dllimport we use it for constants but for functions // rely on the linker to do the right thing. Opposed to dllexport this // task is easy for them (both LD and LLD) and allows us to easily use // symbols from static libraries in shared libraries. // // Whenever a dynamic library is built on Windows it must have its public // interface specified by functions tagged with `dllexport` or otherwise // they're not available to be linked against. This poses a few problems // for the compiler, some of which are somewhat fundamental, but we use // the `use_dll_storage_attrs` variable below to attach the `dllexport` // attribute to all LLVM functions that are exported e.g., they're // already tagged with external linkage). This is suboptimal for a few // reasons: // // * If an object file will never be included in a dynamic library, // there's no need to attach the dllexport attribute. Most object // files in Rust are not destined to become part of a dll as binaries // are statically linked by default. // * If the compiler is emitting both an rlib and a dylib, the same // source object file is currently used but with MSVC this may be less // feasible. The compiler may be able to get around this, but it may // involve some invasive changes to deal with this. // // The flip side of this situation is that whenever you link to a dll and // you import a function from it, the import should be tagged with // `dllimport`. At this time, however, the compiler does not emit // `dllimport` for any declarations other than constants (where it is // required), which is again suboptimal for even more reasons! // // * Calling a function imported from another dll without using // `dllimport` causes the linker/compiler to have extra overhead (one // `jmp` instruction on x86) when calling the function. // * The same object file may be used in different circumstances, so a // function may be imported from a dll if the object is linked into a // dll, but it may be just linked against if linked into an rlib. // * The compiler has no knowledge about whether native functions should // be tagged dllimport or not. // // For now the compiler takes the perf hit (I do not have any numbers to // this effect) by marking very little as `dllimport` and praying the // linker will take care of everything. Fixing this problem will likely // require adding a few attributes to Rust itself (feature gated at the // start) and then strongly recommending static linkage on Windows! let use_dll_storage_attrs = tcx.sess.target.is_like_windows; let check_overflow = tcx.sess.overflow_checks(); let tls_model = to_llvm_tls_model(tcx.sess.tls_model()); let (llcx, llmod) = (&*llvm_module.llcx, llvm_module.llmod()); let coverage_cx = if tcx.sess.instrument_coverage() { let covctx = coverageinfo::CrateCoverageContext::new(); Some(covctx) } else { None }; let dbg_cx = if tcx.sess.opts.debuginfo != DebugInfo::None { let dctx = debuginfo::CodegenUnitDebugContext::new(llmod); debuginfo::metadata::build_compile_unit_di_node( tcx, codegen_unit.name().as_str(), &dctx, ); Some(dctx) } else { None }; let isize_ty = Type::ix_llcx(llcx, tcx.data_layout.pointer_size.bits()); CodegenCx { tcx, check_overflow, use_dll_storage_attrs, tls_model, llmod, llcx, codegen_unit, instances: Default::default(), vtables: Default::default(), const_str_cache: Default::default(), const_unsized: Default::default(), const_globals: Default::default(), statics_to_rauw: RefCell::new(Vec::new()), used_statics: RefCell::new(Vec::new()), compiler_used_statics: RefCell::new(Vec::new()), type_lowering: Default::default(), scalar_lltypes: Default::default(), pointee_infos: Default::default(), isize_ty, coverage_cx, dbg_cx, eh_personality: Cell::new(None), eh_catch_typeinfo: Cell::new(None), rust_try_fn: Cell::new(None), intrinsics: Default::default(), local_gen_sym_counter: Cell::new(0), renamed_statics: Default::default(), } } pub(crate) fn statics_to_rauw(&self) -> &RefCell> { &self.statics_to_rauw } #[inline] pub fn coverage_context(&self) -> Option<&coverageinfo::CrateCoverageContext<'ll, 'tcx>> { self.coverage_cx.as_ref() } pub(crate) fn create_used_variable_impl(&self, name: &'static CStr, values: &[&'ll Value]) { let section = cstr!("llvm.metadata"); let array = self.const_array(self.type_ptr_to(self.type_i8()), values); unsafe { let g = llvm::LLVMAddGlobal(self.llmod, self.val_ty(array), name.as_ptr()); llvm::LLVMSetInitializer(g, array); llvm::LLVMRustSetLinkage(g, llvm::Linkage::AppendingLinkage); llvm::LLVMSetSection(g, section.as_ptr()); } } } impl<'ll, 'tcx> MiscMethods<'tcx> for CodegenCx<'ll, 'tcx> { fn vtables( &self, ) -> &RefCell, Option>), &'ll Value>> { &self.vtables } fn get_fn(&self, instance: Instance<'tcx>) -> &'ll Value { get_fn(self, instance) } fn get_fn_addr(&self, instance: Instance<'tcx>) -> &'ll Value { get_fn(self, instance) } fn eh_personality(&self) -> &'ll Value { // The exception handling personality function. // // If our compilation unit has the `eh_personality` lang item somewhere // within it, then we just need to codegen that. Otherwise, we're // building an rlib which will depend on some upstream implementation of // this function, so we just codegen a generic reference to it. We don't // specify any of the types for the function, we just make it a symbol // that LLVM can later use. // // Note that MSVC is a little special here in that we don't use the // `eh_personality` lang item at all. Currently LLVM has support for // both Dwarf and SEH unwind mechanisms for MSVC targets and uses the // *name of the personality function* to decide what kind of unwind side // tables/landing pads to emit. It looks like Dwarf is used by default, // injecting a dependency on the `_Unwind_Resume` symbol for resuming // an "exception", but for MSVC we want to force SEH. This means that we // can't actually have the personality function be our standard // `rust_eh_personality` function, but rather we wired it up to the // CRT's custom personality function, which forces LLVM to consider // landing pads as "landing pads for SEH". if let Some(llpersonality) = self.eh_personality.get() { return llpersonality; } let tcx = self.tcx; let llfn = match tcx.lang_items().eh_personality() { Some(def_id) if !wants_msvc_seh(self.sess()) => self.get_fn_addr( ty::Instance::resolve( tcx, ty::ParamEnv::reveal_all(), def_id, tcx.intern_substs(&[]), ) .unwrap() .unwrap(), ), _ => { let name = if wants_msvc_seh(self.sess()) { "__CxxFrameHandler3" } else { "rust_eh_personality" }; if let Some(llfn) = self.get_declared_value(name) { llfn } else { let fty = self.type_variadic_func(&[], self.type_i32()); let llfn = self.declare_cfn(name, llvm::UnnamedAddr::Global, fty); let target_cpu = attributes::target_cpu_attr(self); attributes::apply_to_llfn(llfn, llvm::AttributePlace::Function, &[target_cpu]); llfn } } }; self.eh_personality.set(Some(llfn)); llfn } fn sess(&self) -> &Session { self.tcx.sess } fn check_overflow(&self) -> bool { self.check_overflow } fn codegen_unit(&self) -> &'tcx CodegenUnit<'tcx> { self.codegen_unit } fn set_frame_pointer_type(&self, llfn: &'ll Value) { if let Some(attr) = attributes::frame_pointer_type_attr(self) { attributes::apply_to_llfn(llfn, llvm::AttributePlace::Function, &[attr]); } } fn apply_target_cpu_attr(&self, llfn: &'ll Value) { let mut attrs = SmallVec::<[_; 2]>::new(); attrs.push(attributes::target_cpu_attr(self)); attrs.extend(attributes::tune_cpu_attr(self)); attributes::apply_to_llfn(llfn, llvm::AttributePlace::Function, &attrs); } fn declare_c_main(&self, fn_type: Self::Type) -> Option { let entry_name = self.sess().target.entry_name.as_ref(); if self.get_declared_value(entry_name).is_none() { Some(self.declare_entry_fn( entry_name, self.sess().target.entry_abi.into(), llvm::UnnamedAddr::Global, fn_type, )) } else { // If the symbol already exists, it is an error: for example, the user wrote // #[no_mangle] extern "C" fn main(..) {..} // instead of #[start] None } } } impl<'ll> CodegenCx<'ll, '_> { pub(crate) fn get_intrinsic(&self, key: &str) -> (&'ll Type, &'ll Value) { if let Some(v) = self.intrinsics.borrow().get(key).cloned() { return v; } self.declare_intrinsic(key).unwrap_or_else(|| bug!("unknown intrinsic '{}'", key)) } fn insert_intrinsic( &self, name: &'static str, args: Option<&[&'ll llvm::Type]>, ret: &'ll llvm::Type, ) -> (&'ll llvm::Type, &'ll llvm::Value) { let fn_ty = if let Some(args) = args { self.type_func(args, ret) } else { self.type_variadic_func(&[], ret) }; let f = self.declare_cfn(name, llvm::UnnamedAddr::No, fn_ty); self.intrinsics.borrow_mut().insert(name, (fn_ty, f)); (fn_ty, f) } fn declare_intrinsic(&self, key: &str) -> Option<(&'ll Type, &'ll Value)> { macro_rules! ifn { ($name:expr, fn() -> $ret:expr) => ( if key == $name { return Some(self.insert_intrinsic($name, Some(&[]), $ret)); } ); ($name:expr, fn(...) -> $ret:expr) => ( if key == $name { return Some(self.insert_intrinsic($name, None, $ret)); } ); ($name:expr, fn($($arg:expr),*) -> $ret:expr) => ( if key == $name { return Some(self.insert_intrinsic($name, Some(&[$($arg),*]), $ret)); } ); } macro_rules! mk_struct { ($($field_ty:expr),*) => (self.type_struct( &[$($field_ty),*], false)) } let i8p = self.type_i8p(); let void = self.type_void(); let i1 = self.type_i1(); let t_i8 = self.type_i8(); let t_i16 = self.type_i16(); let t_i32 = self.type_i32(); let t_i64 = self.type_i64(); let t_i128 = self.type_i128(); let t_isize = self.type_isize(); let t_f32 = self.type_f32(); let t_f64 = self.type_f64(); let t_metadata = self.type_metadata(); ifn!("llvm.wasm.trunc.unsigned.i32.f32", fn(t_f32) -> t_i32); ifn!("llvm.wasm.trunc.unsigned.i32.f64", fn(t_f64) -> t_i32); ifn!("llvm.wasm.trunc.unsigned.i64.f32", fn(t_f32) -> t_i64); ifn!("llvm.wasm.trunc.unsigned.i64.f64", fn(t_f64) -> t_i64); ifn!("llvm.wasm.trunc.signed.i32.f32", fn(t_f32) -> t_i32); ifn!("llvm.wasm.trunc.signed.i32.f64", fn(t_f64) -> t_i32); ifn!("llvm.wasm.trunc.signed.i64.f32", fn(t_f32) -> t_i64); ifn!("llvm.wasm.trunc.signed.i64.f64", fn(t_f64) -> t_i64); ifn!("llvm.fptosi.sat.i8.f32", fn(t_f32) -> t_i8); ifn!("llvm.fptosi.sat.i16.f32", fn(t_f32) -> t_i16); ifn!("llvm.fptosi.sat.i32.f32", fn(t_f32) -> t_i32); ifn!("llvm.fptosi.sat.i64.f32", fn(t_f32) -> t_i64); ifn!("llvm.fptosi.sat.i128.f32", fn(t_f32) -> t_i128); ifn!("llvm.fptosi.sat.i8.f64", fn(t_f64) -> t_i8); ifn!("llvm.fptosi.sat.i16.f64", fn(t_f64) -> t_i16); ifn!("llvm.fptosi.sat.i32.f64", fn(t_f64) -> t_i32); ifn!("llvm.fptosi.sat.i64.f64", fn(t_f64) -> t_i64); ifn!("llvm.fptosi.sat.i128.f64", fn(t_f64) -> t_i128); ifn!("llvm.fptoui.sat.i8.f32", fn(t_f32) -> t_i8); ifn!("llvm.fptoui.sat.i16.f32", fn(t_f32) -> t_i16); ifn!("llvm.fptoui.sat.i32.f32", fn(t_f32) -> t_i32); ifn!("llvm.fptoui.sat.i64.f32", fn(t_f32) -> t_i64); ifn!("llvm.fptoui.sat.i128.f32", fn(t_f32) -> t_i128); ifn!("llvm.fptoui.sat.i8.f64", fn(t_f64) -> t_i8); ifn!("llvm.fptoui.sat.i16.f64", fn(t_f64) -> t_i16); ifn!("llvm.fptoui.sat.i32.f64", fn(t_f64) -> t_i32); ifn!("llvm.fptoui.sat.i64.f64", fn(t_f64) -> t_i64); ifn!("llvm.fptoui.sat.i128.f64", fn(t_f64) -> t_i128); ifn!("llvm.trap", fn() -> void); ifn!("llvm.debugtrap", fn() -> void); ifn!("llvm.frameaddress", fn(t_i32) -> i8p); ifn!("llvm.powi.f32", fn(t_f32, t_i32) -> t_f32); ifn!("llvm.powi.f64", fn(t_f64, t_i32) -> t_f64); ifn!("llvm.pow.f32", fn(t_f32, t_f32) -> t_f32); ifn!("llvm.pow.f64", fn(t_f64, t_f64) -> t_f64); ifn!("llvm.sqrt.f32", fn(t_f32) -> t_f32); ifn!("llvm.sqrt.f64", fn(t_f64) -> t_f64); ifn!("llvm.sin.f32", fn(t_f32) -> t_f32); ifn!("llvm.sin.f64", fn(t_f64) -> t_f64); ifn!("llvm.cos.f32", fn(t_f32) -> t_f32); ifn!("llvm.cos.f64", fn(t_f64) -> t_f64); ifn!("llvm.exp.f32", fn(t_f32) -> t_f32); ifn!("llvm.exp.f64", fn(t_f64) -> t_f64); ifn!("llvm.exp2.f32", fn(t_f32) -> t_f32); ifn!("llvm.exp2.f64", fn(t_f64) -> t_f64); ifn!("llvm.log.f32", fn(t_f32) -> t_f32); ifn!("llvm.log.f64", fn(t_f64) -> t_f64); ifn!("llvm.log10.f32", fn(t_f32) -> t_f32); ifn!("llvm.log10.f64", fn(t_f64) -> t_f64); ifn!("llvm.log2.f32", fn(t_f32) -> t_f32); ifn!("llvm.log2.f64", fn(t_f64) -> t_f64); ifn!("llvm.fma.f32", fn(t_f32, t_f32, t_f32) -> t_f32); ifn!("llvm.fma.f64", fn(t_f64, t_f64, t_f64) -> t_f64); ifn!("llvm.fabs.f32", fn(t_f32) -> t_f32); ifn!("llvm.fabs.f64", fn(t_f64) -> t_f64); ifn!("llvm.minnum.f32", fn(t_f32, t_f32) -> t_f32); ifn!("llvm.minnum.f64", fn(t_f64, t_f64) -> t_f64); ifn!("llvm.maxnum.f32", fn(t_f32, t_f32) -> t_f32); ifn!("llvm.maxnum.f64", fn(t_f64, t_f64) -> t_f64); ifn!("llvm.floor.f32", fn(t_f32) -> t_f32); ifn!("llvm.floor.f64", fn(t_f64) -> t_f64); ifn!("llvm.ceil.f32", fn(t_f32) -> t_f32); ifn!("llvm.ceil.f64", fn(t_f64) -> t_f64); ifn!("llvm.trunc.f32", fn(t_f32) -> t_f32); ifn!("llvm.trunc.f64", fn(t_f64) -> t_f64); ifn!("llvm.copysign.f32", fn(t_f32, t_f32) -> t_f32); ifn!("llvm.copysign.f64", fn(t_f64, t_f64) -> t_f64); ifn!("llvm.round.f32", fn(t_f32) -> t_f32); ifn!("llvm.round.f64", fn(t_f64) -> t_f64); ifn!("llvm.rint.f32", fn(t_f32) -> t_f32); ifn!("llvm.rint.f64", fn(t_f64) -> t_f64); ifn!("llvm.nearbyint.f32", fn(t_f32) -> t_f32); ifn!("llvm.nearbyint.f64", fn(t_f64) -> t_f64); ifn!("llvm.ctpop.i8", fn(t_i8) -> t_i8); ifn!("llvm.ctpop.i16", fn(t_i16) -> t_i16); ifn!("llvm.ctpop.i32", fn(t_i32) -> t_i32); ifn!("llvm.ctpop.i64", fn(t_i64) -> t_i64); ifn!("llvm.ctpop.i128", fn(t_i128) -> t_i128); ifn!("llvm.ctlz.i8", fn(t_i8, i1) -> t_i8); ifn!("llvm.ctlz.i16", fn(t_i16, i1) -> t_i16); ifn!("llvm.ctlz.i32", fn(t_i32, i1) -> t_i32); ifn!("llvm.ctlz.i64", fn(t_i64, i1) -> t_i64); ifn!("llvm.ctlz.i128", fn(t_i128, i1) -> t_i128); ifn!("llvm.cttz.i8", fn(t_i8, i1) -> t_i8); ifn!("llvm.cttz.i16", fn(t_i16, i1) -> t_i16); ifn!("llvm.cttz.i32", fn(t_i32, i1) -> t_i32); ifn!("llvm.cttz.i64", fn(t_i64, i1) -> t_i64); ifn!("llvm.cttz.i128", fn(t_i128, i1) -> t_i128); ifn!("llvm.bswap.i16", fn(t_i16) -> t_i16); ifn!("llvm.bswap.i32", fn(t_i32) -> t_i32); ifn!("llvm.bswap.i64", fn(t_i64) -> t_i64); ifn!("llvm.bswap.i128", fn(t_i128) -> t_i128); ifn!("llvm.bitreverse.i8", fn(t_i8) -> t_i8); ifn!("llvm.bitreverse.i16", fn(t_i16) -> t_i16); ifn!("llvm.bitreverse.i32", fn(t_i32) -> t_i32); ifn!("llvm.bitreverse.i64", fn(t_i64) -> t_i64); ifn!("llvm.bitreverse.i128", fn(t_i128) -> t_i128); ifn!("llvm.fshl.i8", fn(t_i8, t_i8, t_i8) -> t_i8); ifn!("llvm.fshl.i16", fn(t_i16, t_i16, t_i16) -> t_i16); ifn!("llvm.fshl.i32", fn(t_i32, t_i32, t_i32) -> t_i32); ifn!("llvm.fshl.i64", fn(t_i64, t_i64, t_i64) -> t_i64); ifn!("llvm.fshl.i128", fn(t_i128, t_i128, t_i128) -> t_i128); ifn!("llvm.fshr.i8", fn(t_i8, t_i8, t_i8) -> t_i8); ifn!("llvm.fshr.i16", fn(t_i16, t_i16, t_i16) -> t_i16); ifn!("llvm.fshr.i32", fn(t_i32, t_i32, t_i32) -> t_i32); ifn!("llvm.fshr.i64", fn(t_i64, t_i64, t_i64) -> t_i64); ifn!("llvm.fshr.i128", fn(t_i128, t_i128, t_i128) -> t_i128); ifn!("llvm.sadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct! {t_i8, i1}); ifn!("llvm.sadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct! {t_i16, i1}); ifn!("llvm.sadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct! {t_i32, i1}); ifn!("llvm.sadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct! {t_i64, i1}); ifn!("llvm.sadd.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct! {t_i128, i1}); ifn!("llvm.uadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct! {t_i8, i1}); ifn!("llvm.uadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct! {t_i16, i1}); ifn!("llvm.uadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct! {t_i32, i1}); ifn!("llvm.uadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct! {t_i64, i1}); ifn!("llvm.uadd.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct! {t_i128, i1}); ifn!("llvm.ssub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct! {t_i8, i1}); ifn!("llvm.ssub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct! {t_i16, i1}); ifn!("llvm.ssub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct! {t_i32, i1}); ifn!("llvm.ssub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct! {t_i64, i1}); ifn!("llvm.ssub.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct! {t_i128, i1}); ifn!("llvm.usub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct! {t_i8, i1}); ifn!("llvm.usub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct! {t_i16, i1}); ifn!("llvm.usub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct! {t_i32, i1}); ifn!("llvm.usub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct! {t_i64, i1}); ifn!("llvm.usub.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct! {t_i128, i1}); ifn!("llvm.smul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct! {t_i8, i1}); ifn!("llvm.smul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct! {t_i16, i1}); ifn!("llvm.smul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct! {t_i32, i1}); ifn!("llvm.smul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct! {t_i64, i1}); ifn!("llvm.smul.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct! {t_i128, i1}); ifn!("llvm.umul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct! {t_i8, i1}); ifn!("llvm.umul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct! {t_i16, i1}); ifn!("llvm.umul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct! {t_i32, i1}); ifn!("llvm.umul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct! {t_i64, i1}); ifn!("llvm.umul.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct! {t_i128, i1}); ifn!("llvm.sadd.sat.i8", fn(t_i8, t_i8) -> t_i8); ifn!("llvm.sadd.sat.i16", fn(t_i16, t_i16) -> t_i16); ifn!("llvm.sadd.sat.i32", fn(t_i32, t_i32) -> t_i32); ifn!("llvm.sadd.sat.i64", fn(t_i64, t_i64) -> t_i64); ifn!("llvm.sadd.sat.i128", fn(t_i128, t_i128) -> t_i128); ifn!("llvm.uadd.sat.i8", fn(t_i8, t_i8) -> t_i8); ifn!("llvm.uadd.sat.i16", fn(t_i16, t_i16) -> t_i16); ifn!("llvm.uadd.sat.i32", fn(t_i32, t_i32) -> t_i32); ifn!("llvm.uadd.sat.i64", fn(t_i64, t_i64) -> t_i64); ifn!("llvm.uadd.sat.i128", fn(t_i128, t_i128) -> t_i128); ifn!("llvm.ssub.sat.i8", fn(t_i8, t_i8) -> t_i8); ifn!("llvm.ssub.sat.i16", fn(t_i16, t_i16) -> t_i16); ifn!("llvm.ssub.sat.i32", fn(t_i32, t_i32) -> t_i32); ifn!("llvm.ssub.sat.i64", fn(t_i64, t_i64) -> t_i64); ifn!("llvm.ssub.sat.i128", fn(t_i128, t_i128) -> t_i128); ifn!("llvm.usub.sat.i8", fn(t_i8, t_i8) -> t_i8); ifn!("llvm.usub.sat.i16", fn(t_i16, t_i16) -> t_i16); ifn!("llvm.usub.sat.i32", fn(t_i32, t_i32) -> t_i32); ifn!("llvm.usub.sat.i64", fn(t_i64, t_i64) -> t_i64); ifn!("llvm.usub.sat.i128", fn(t_i128, t_i128) -> t_i128); ifn!("llvm.lifetime.start.p0i8", fn(t_i64, i8p) -> void); ifn!("llvm.lifetime.end.p0i8", fn(t_i64, i8p) -> void); ifn!("llvm.expect.i1", fn(i1, i1) -> i1); ifn!("llvm.eh.typeid.for", fn(i8p) -> t_i32); ifn!("llvm.localescape", fn(...) -> void); ifn!("llvm.localrecover", fn(i8p, i8p, t_i32) -> i8p); ifn!("llvm.x86.seh.recoverfp", fn(i8p, i8p) -> i8p); ifn!("llvm.assume", fn(i1) -> void); ifn!("llvm.prefetch", fn(i8p, t_i32, t_i32, t_i32) -> void); // This isn't an "LLVM intrinsic", but LLVM's optimization passes // recognize it like one and we assume it exists in `core::slice::cmp` match self.sess().target.arch.as_ref() { "avr" | "msp430" => ifn!("memcmp", fn(i8p, i8p, t_isize) -> t_i16), _ => ifn!("memcmp", fn(i8p, i8p, t_isize) -> t_i32), } // variadic intrinsics ifn!("llvm.va_start", fn(i8p) -> void); ifn!("llvm.va_end", fn(i8p) -> void); ifn!("llvm.va_copy", fn(i8p, i8p) -> void); if self.sess().instrument_coverage() { ifn!("llvm.instrprof.increment", fn(i8p, t_i64, t_i32, t_i32) -> void); } ifn!("llvm.type.test", fn(i8p, t_metadata) -> i1); ifn!("llvm.type.checked.load", fn(i8p, t_i32, t_metadata) -> mk_struct! {i8p, i1}); if self.sess().opts.debuginfo != DebugInfo::None { ifn!("llvm.dbg.declare", fn(t_metadata, t_metadata) -> void); ifn!("llvm.dbg.value", fn(t_metadata, t_i64, t_metadata) -> void); } ifn!("llvm.ptrmask", fn(i8p, t_isize) -> i8p); None } pub(crate) fn eh_catch_typeinfo(&self) -> &'ll Value { if let Some(eh_catch_typeinfo) = self.eh_catch_typeinfo.get() { return eh_catch_typeinfo; } let tcx = self.tcx; assert!(self.sess().target.os == "emscripten"); let eh_catch_typeinfo = match tcx.lang_items().eh_catch_typeinfo() { Some(def_id) => self.get_static(def_id), _ => { let ty = self .type_struct(&[self.type_ptr_to(self.type_isize()), self.type_i8p()], false); self.declare_global("rust_eh_catch_typeinfo", ty) } }; let eh_catch_typeinfo = self.const_bitcast(eh_catch_typeinfo, self.type_i8p()); self.eh_catch_typeinfo.set(Some(eh_catch_typeinfo)); eh_catch_typeinfo } } impl CodegenCx<'_, '_> { /// Generates a new symbol name with the given prefix. This symbol name must /// only be used for definitions with `internal` or `private` linkage. pub fn generate_local_symbol_name(&self, prefix: &str) -> String { let idx = self.local_gen_sym_counter.get(); self.local_gen_sym_counter.set(idx + 1); // Include a '.' character, so there can be no accidental conflicts with // user defined names let mut name = String::with_capacity(prefix.len() + 6); name.push_str(prefix); name.push('.'); base_n::push_str(idx as u128, base_n::ALPHANUMERIC_ONLY, &mut name); name } } impl HasDataLayout for CodegenCx<'_, '_> { #[inline] fn data_layout(&self) -> &TargetDataLayout { &self.tcx.data_layout } } impl HasTargetSpec for CodegenCx<'_, '_> { #[inline] fn target_spec(&self) -> &Target { &self.tcx.sess.target } } impl<'tcx> ty::layout::HasTyCtxt<'tcx> for CodegenCx<'_, 'tcx> { #[inline] fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } } impl<'tcx, 'll> HasParamEnv<'tcx> for CodegenCx<'ll, 'tcx> { fn param_env(&self) -> ty::ParamEnv<'tcx> { ty::ParamEnv::reveal_all() } } impl<'tcx> LayoutOfHelpers<'tcx> for CodegenCx<'_, 'tcx> { type LayoutOfResult = TyAndLayout<'tcx>; #[inline] fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! { if let LayoutError::SizeOverflow(_) = err { self.sess().emit_fatal(Spanned { span, node: err }) } else { span_bug!(span, "failed to get layout for `{}`: {}", ty, err) } } } impl<'tcx> FnAbiOfHelpers<'tcx> for CodegenCx<'_, 'tcx> { type FnAbiOfResult = &'tcx FnAbi<'tcx, Ty<'tcx>>; #[inline] fn handle_fn_abi_err( &self, err: FnAbiError<'tcx>, span: Span, fn_abi_request: FnAbiRequest<'tcx>, ) -> ! { if let FnAbiError::Layout(LayoutError::SizeOverflow(_)) = err { self.sess().emit_fatal(Spanned { span, node: err }) } else { match fn_abi_request { FnAbiRequest::OfFnPtr { sig, extra_args } => { span_bug!( span, "`fn_abi_of_fn_ptr({}, {:?})` failed: {}", sig, extra_args, err ); } FnAbiRequest::OfInstance { instance, extra_args } => { span_bug!( span, "`fn_abi_of_instance({}, {:?})` failed: {}", instance, extra_args, err ); } } } } }