use crate::common::CodegenCx; use crate::coverageinfo; use crate::coverageinfo::ffi::CounterMappingRegion; use crate::coverageinfo::map_data::FunctionCoverage; use crate::llvm; use rustc_codegen_ssa::traits::ConstMethods; use rustc_data_structures::fx::FxIndexSet; use rustc_hir::def::DefKind; use rustc_hir::def_id::DefId; use rustc_index::IndexVec; use rustc_middle::bug; use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags; use rustc_middle::mir::coverage::CodeRegion; use rustc_middle::ty::TyCtxt; use rustc_span::Symbol; /// Generates and exports the Coverage Map. /// /// Rust Coverage Map generation supports LLVM Coverage Mapping Format version /// 6 (zero-based encoded as 5), as defined at /// [LLVM Code Coverage Mapping Format](https://github.com/rust-lang/llvm-project/blob/rustc/13.0-2021-09-30/llvm/docs/CoverageMappingFormat.rst#llvm-code-coverage-mapping-format). /// These versions are supported by the LLVM coverage tools (`llvm-profdata` and `llvm-cov`) /// bundled with Rust's fork of LLVM. /// /// Consequently, Rust's bundled version of Clang also generates Coverage Maps compliant with /// the same version. Clang's implementation of Coverage Map generation was referenced when /// implementing this Rust version, and though the format documentation is very explicit and /// detailed, some undocumented details in Clang's implementation (that may or may not be important) /// were also replicated for Rust's Coverage Map. pub fn finalize(cx: &CodegenCx<'_, '_>) { let tcx = cx.tcx; // Ensure the installed version of LLVM supports Coverage Map Version 6 // (encoded as a zero-based value: 5), which was introduced with LLVM 13. let version = coverageinfo::mapping_version(); assert_eq!(version, 5, "The `CoverageMappingVersion` exposed by `llvm-wrapper` is out of sync"); debug!("Generating coverage map for CodegenUnit: `{}`", cx.codegen_unit.name()); // In order to show that unused functions have coverage counts of zero (0), LLVM requires the // functions exist. Generate synthetic functions with a (required) single counter, and add the // MIR `Coverage` code regions to the `function_coverage_map`, before calling // `ctx.take_function_coverage_map()`. if cx.codegen_unit.is_code_coverage_dead_code_cgu() { add_unused_functions(cx); } let function_coverage_map = match cx.coverage_context() { Some(ctx) => ctx.take_function_coverage_map(), None => return, }; if function_coverage_map.is_empty() { // This module has no functions with coverage instrumentation return; } let mut global_file_table = GlobalFileTable::new(tcx); // Encode coverage mappings and generate function records let mut function_data = Vec::new(); for (instance, mut function_coverage) in function_coverage_map { debug!("Generate function coverage for {}, {:?}", cx.codegen_unit.name(), instance); function_coverage.simplify_expressions(); let function_coverage = function_coverage; let mangled_function_name = tcx.symbol_name(instance).name; let source_hash = function_coverage.source_hash(); let is_used = function_coverage.is_used(); let coverage_mapping_buffer = encode_mappings_for_function(&mut global_file_table, &function_coverage); if coverage_mapping_buffer.is_empty() { if function_coverage.is_used() { bug!( "A used function should have had coverage mapping data but did not: {}", mangled_function_name ); } else { debug!("unused function had no coverage mapping data: {}", mangled_function_name); continue; } } function_data.push((mangled_function_name, source_hash, is_used, coverage_mapping_buffer)); } // Encode all filenames referenced by counters/expressions in this module let filenames_buffer = global_file_table.into_filenames_buffer(); let filenames_size = filenames_buffer.len(); let filenames_val = cx.const_bytes(&filenames_buffer); let filenames_ref = coverageinfo::hash_bytes(&filenames_buffer); // Generate the LLVM IR representation of the coverage map and store it in a well-known global let cov_data_val = generate_coverage_map(cx, version, filenames_size, filenames_val); let covfun_section_name = coverageinfo::covfun_section_name(cx); for (mangled_function_name, source_hash, is_used, coverage_mapping_buffer) in function_data { save_function_record( cx, &covfun_section_name, mangled_function_name, source_hash, filenames_ref, coverage_mapping_buffer, is_used, ); } // Save the coverage data value to LLVM IR coverageinfo::save_cov_data_to_mod(cx, cov_data_val); } struct GlobalFileTable { global_file_table: FxIndexSet, } impl GlobalFileTable { fn new(tcx: TyCtxt<'_>) -> Self { let mut global_file_table = FxIndexSet::default(); // LLVM Coverage Mapping Format version 6 (zero-based encoded as 5) // requires setting the first filename to the compilation directory. // Since rustc generates coverage maps with relative paths, the // compilation directory can be combined with the relative paths // to get absolute paths, if needed. let working_dir = Symbol::intern( &tcx.sess.opts.working_dir.remapped_path_if_available().to_string_lossy(), ); global_file_table.insert(working_dir); Self { global_file_table } } fn global_file_id_for_file_name(&mut self, file_name: Symbol) -> u32 { let (global_file_id, _) = self.global_file_table.insert_full(file_name); global_file_id as u32 } fn into_filenames_buffer(self) -> Vec { // This method takes `self` so that the caller can't accidentally // modify the original file table after encoding it into a buffer. llvm::build_byte_buffer(|buffer| { coverageinfo::write_filenames_section_to_buffer( self.global_file_table.iter().map(Symbol::as_str), buffer, ); }) } } /// Using the expressions and counter regions collected for a single function, /// generate the variable-sized payload of its corresponding `__llvm_covfun` /// entry. The payload is returned as a vector of bytes. /// /// Newly-encountered filenames will be added to the global file table. fn encode_mappings_for_function( global_file_table: &mut GlobalFileTable, function_coverage: &FunctionCoverage<'_>, ) -> Vec { let (expressions, counter_regions) = function_coverage.get_expressions_and_counter_regions(); let mut counter_regions = counter_regions.collect::>(); if counter_regions.is_empty() { return Vec::new(); } let mut virtual_file_mapping = IndexVec::::new(); let mut mapping_regions = Vec::with_capacity(counter_regions.len()); // Sort the list of (counter, region) mapping pairs by region, so that they // can be grouped by filename. Prepare file IDs for each filename, and // prepare the mapping data so that we can pass it through FFI to LLVM. counter_regions.sort_by_key(|(_counter, region)| *region); for counter_regions_for_file in counter_regions.group_by(|(_, a), (_, b)| a.file_name == b.file_name) { // Look up (or allocate) the global file ID for this filename. let file_name = counter_regions_for_file[0].1.file_name; let global_file_id = global_file_table.global_file_id_for_file_name(file_name); // Associate that global file ID with a local file ID for this function. let local_file_id: u32 = virtual_file_mapping.push(global_file_id); debug!(" file id: local {local_file_id} => global {global_file_id} = '{file_name:?}'"); // For each counter/region pair in this function+file, convert it to a // form suitable for FFI. for &(counter, region) in counter_regions_for_file { let CodeRegion { file_name: _, start_line, start_col, end_line, end_col } = *region; debug!("Adding counter {counter:?} to map for {region:?}"); mapping_regions.push(CounterMappingRegion::code_region( counter, local_file_id, start_line, start_col, end_line, end_col, )); } } // Encode the function's coverage mappings into a buffer. llvm::build_byte_buffer(|buffer| { coverageinfo::write_mapping_to_buffer( virtual_file_mapping.raw, expressions, mapping_regions, buffer, ); }) } /// Construct coverage map header and the array of function records, and combine them into the /// coverage map. Save the coverage map data into the LLVM IR as a static global using a /// specific, well-known section and name. fn generate_coverage_map<'ll>( cx: &CodegenCx<'ll, '_>, version: u32, filenames_size: usize, filenames_val: &'ll llvm::Value, ) -> &'ll llvm::Value { debug!("cov map: filenames_size = {}, 0-based version = {}", filenames_size, version); // Create the coverage data header (Note, fields 0 and 2 are now always zero, // as of `llvm::coverage::CovMapVersion::Version4`.) let zero_was_n_records_val = cx.const_u32(0); let filenames_size_val = cx.const_u32(filenames_size as u32); let zero_was_coverage_size_val = cx.const_u32(0); let version_val = cx.const_u32(version); let cov_data_header_val = cx.const_struct( &[zero_was_n_records_val, filenames_size_val, zero_was_coverage_size_val, version_val], /*packed=*/ false, ); // Create the complete LLVM coverage data value to add to the LLVM IR cx.const_struct(&[cov_data_header_val, filenames_val], /*packed=*/ false) } /// Construct a function record and combine it with the function's coverage mapping data. /// Save the function record into the LLVM IR as a static global using a /// specific, well-known section and name. fn save_function_record( cx: &CodegenCx<'_, '_>, covfun_section_name: &str, mangled_function_name: &str, source_hash: u64, filenames_ref: u64, coverage_mapping_buffer: Vec, is_used: bool, ) { // Concatenate the encoded coverage mappings let coverage_mapping_size = coverage_mapping_buffer.len(); let coverage_mapping_val = cx.const_bytes(&coverage_mapping_buffer); let func_name_hash = coverageinfo::hash_bytes(mangled_function_name.as_bytes()); let func_name_hash_val = cx.const_u64(func_name_hash); let coverage_mapping_size_val = cx.const_u32(coverage_mapping_size as u32); let source_hash_val = cx.const_u64(source_hash); let filenames_ref_val = cx.const_u64(filenames_ref); let func_record_val = cx.const_struct( &[ func_name_hash_val, coverage_mapping_size_val, source_hash_val, filenames_ref_val, coverage_mapping_val, ], /*packed=*/ true, ); coverageinfo::save_func_record_to_mod( cx, covfun_section_name, func_name_hash, func_record_val, is_used, ); } /// When finalizing the coverage map, `FunctionCoverage` only has the `CodeRegion`s and counters for /// the functions that went through codegen; such as public functions and "used" functions /// (functions referenced by other "used" or public items). Any other functions considered unused, /// or "Unreachable", were still parsed and processed through the MIR stage, but were not /// codegenned. (Note that `-Clink-dead-code` can force some unused code to be codegenned, but /// that flag is known to cause other errors, when combined with `-C instrument-coverage`; and /// `-Clink-dead-code` will not generate code for unused generic functions.) /// /// We can find the unused functions (including generic functions) by the set difference of all MIR /// `DefId`s (`tcx` query `mir_keys`) minus the codegenned `DefId`s (`tcx` query /// `codegened_and_inlined_items`). /// /// These unused functions are then codegen'd in one of the CGUs which is marked as the /// "code coverage dead code cgu" during the partitioning process. This prevents us from generating /// code regions for the same function more than once which can lead to linker errors regarding /// duplicate symbols. fn add_unused_functions(cx: &CodegenCx<'_, '_>) { assert!(cx.codegen_unit.is_code_coverage_dead_code_cgu()); let tcx = cx.tcx; let ignore_unused_generics = tcx.sess.instrument_coverage_except_unused_generics(); let eligible_def_ids: Vec = tcx .mir_keys(()) .iter() .filter_map(|local_def_id| { let def_id = local_def_id.to_def_id(); let kind = tcx.def_kind(def_id); // `mir_keys` will give us `DefId`s for all kinds of things, not // just "functions", like consts, statics, etc. Filter those out. // If `ignore_unused_generics` was specified, filter out any // generic functions from consideration as well. if !matches!( kind, DefKind::Fn | DefKind::AssocFn | DefKind::Closure | DefKind::Generator ) { return None; } if ignore_unused_generics && tcx.generics_of(def_id).requires_monomorphization(tcx) { return None; } Some(local_def_id.to_def_id()) }) .collect(); let codegenned_def_ids = tcx.codegened_and_inlined_items(()); for non_codegenned_def_id in eligible_def_ids.into_iter().filter(|id| !codegenned_def_ids.contains(id)) { let codegen_fn_attrs = tcx.codegen_fn_attrs(non_codegenned_def_id); // If a function is marked `#[coverage(off)]`, then skip generating a // dead code stub for it. if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NO_COVERAGE) { debug!("skipping unused fn marked #[coverage(off)]: {:?}", non_codegenned_def_id); continue; } debug!("generating unused fn: {:?}", non_codegenned_def_id); cx.define_unused_fn(non_codegenned_def_id); } }