use crate::back::write::create_informational_target_machine; use crate::errors::{ PossibleFeature, TargetFeatureDisableOrEnable, UnknownCTargetFeature, UnknownCTargetFeaturePrefix, UnstableCTargetFeature, }; use crate::llvm; use libc::c_int; use rustc_codegen_ssa::traits::PrintBackendInfo; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::small_c_str::SmallCStr; use rustc_fs_util::path_to_c_string; use rustc_middle::bug; use rustc_session::config::{PrintKind, PrintRequest}; use rustc_session::Session; use rustc_span::symbol::Symbol; use rustc_target::spec::{MergeFunctions, PanicStrategy}; use rustc_target::target_features::RUSTC_SPECIFIC_FEATURES; use std::ffi::{c_char, c_void, CStr, CString}; use std::path::Path; use std::ptr; use std::slice; use std::str; use std::sync::Once; static INIT: Once = Once::new(); pub(crate) fn init(sess: &Session) { unsafe { // Before we touch LLVM, make sure that multithreading is enabled. if llvm::LLVMIsMultithreaded() != 1 { bug!("LLVM compiled without support for threads"); } INIT.call_once(|| { configure_llvm(sess); }); } } fn require_inited() { if !INIT.is_completed() { bug!("LLVM is not initialized"); } } unsafe fn configure_llvm(sess: &Session) { let n_args = sess.opts.cg.llvm_args.len() + sess.target.llvm_args.len(); let mut llvm_c_strs = Vec::with_capacity(n_args + 1); let mut llvm_args = Vec::with_capacity(n_args + 1); llvm::LLVMRustInstallFatalErrorHandler(); // On Windows, an LLVM assertion will open an Abort/Retry/Ignore dialog // box for the purpose of launching a debugger. However, on CI this will // cause it to hang until it times out, which can take several hours. if std::env::var_os("CI").is_some() { llvm::LLVMRustDisableSystemDialogsOnCrash(); } fn llvm_arg_to_arg_name(full_arg: &str) -> &str { full_arg.trim().split(|c: char| c == '=' || c.is_whitespace()).next().unwrap_or("") } let cg_opts = sess.opts.cg.llvm_args.iter().map(AsRef::as_ref); let tg_opts = sess.target.llvm_args.iter().map(AsRef::as_ref); let sess_args = cg_opts.chain(tg_opts); let user_specified_args: FxHashSet<_> = sess_args.clone().map(|s| llvm_arg_to_arg_name(s)).filter(|s| !s.is_empty()).collect(); { // This adds the given argument to LLVM. Unless `force` is true // user specified arguments are *not* overridden. let mut add = |arg: &str, force: bool| { if force || !user_specified_args.contains(llvm_arg_to_arg_name(arg)) { let s = CString::new(arg).unwrap(); llvm_args.push(s.as_ptr()); llvm_c_strs.push(s); } }; // Set the llvm "program name" to make usage and invalid argument messages more clear. add("rustc -Cllvm-args=\"...\" with", true); if sess.opts.unstable_opts.time_llvm_passes { add("-time-passes", false); } if sess.opts.unstable_opts.print_llvm_passes { add("-debug-pass=Structure", false); } if sess.target.generate_arange_section && !sess.opts.unstable_opts.no_generate_arange_section { add("-generate-arange-section", false); } match sess.opts.unstable_opts.merge_functions.unwrap_or(sess.target.merge_functions) { MergeFunctions::Disabled | MergeFunctions::Trampolines => {} MergeFunctions::Aliases => { add("-mergefunc-use-aliases", false); } } if sess.target.os == "emscripten" && sess.panic_strategy() == PanicStrategy::Unwind { add("-enable-emscripten-cxx-exceptions", false); } // HACK(eddyb) LLVM inserts `llvm.assume` calls to preserve align attributes // during inlining. Unfortunately these may block other optimizations. add("-preserve-alignment-assumptions-during-inlining=false", false); // Use non-zero `import-instr-limit` multiplier for cold callsites. add("-import-cold-multiplier=0.1", false); if sess.print_llvm_stats() { add("-stats", false); } for arg in sess_args { add(&(*arg), true); } } if sess.opts.unstable_opts.llvm_time_trace { llvm::LLVMRustTimeTraceProfilerInitialize(); } rustc_llvm::initialize_available_targets(); llvm::LLVMRustSetLLVMOptions(llvm_args.len() as c_int, llvm_args.as_ptr()); } pub fn time_trace_profiler_finish(file_name: &Path) { unsafe { let file_name = path_to_c_string(file_name); llvm::LLVMRustTimeTraceProfilerFinish(file_name.as_ptr()); } } pub enum TargetFeatureFoldStrength<'a> { // The feature is only tied when enabling the feature, disabling // this feature shouldn't disable the tied feature. EnableOnly(&'a str), // The feature is tied for both enabling and disabling this feature. Both(&'a str), } impl<'a> TargetFeatureFoldStrength<'a> { fn as_str(&self) -> &'a str { match self { TargetFeatureFoldStrength::EnableOnly(feat) => feat, TargetFeatureFoldStrength::Both(feat) => feat, } } } pub struct LLVMFeature<'a> { pub llvm_feature_name: &'a str, pub dependency: Option>, } impl<'a> LLVMFeature<'a> { pub fn new(llvm_feature_name: &'a str) -> Self { Self { llvm_feature_name, dependency: None } } pub fn with_dependency( llvm_feature_name: &'a str, dependency: TargetFeatureFoldStrength<'a>, ) -> Self { Self { llvm_feature_name, dependency: Some(dependency) } } pub fn contains(&self, feat: &str) -> bool { self.iter().any(|dep| dep == feat) } pub fn iter(&'a self) -> impl Iterator { let dependencies = self.dependency.iter().map(|feat| feat.as_str()); std::iter::once(self.llvm_feature_name).chain(dependencies) } } impl<'a> IntoIterator for LLVMFeature<'a> { type Item = &'a str; type IntoIter = impl Iterator; fn into_iter(self) -> Self::IntoIter { let dependencies = self.dependency.into_iter().map(|feat| feat.as_str()); std::iter::once(self.llvm_feature_name).chain(dependencies) } } // WARNING: the features after applying `to_llvm_features` must be known // to LLVM or the feature detection code will walk past the end of the feature // array, leading to crashes. // // To find a list of LLVM's names, check llvm-project/llvm/include/llvm/Support/*TargetParser.def // where the * matches the architecture's name // // For targets not present in the above location, see llvm-project/llvm/lib/Target/{ARCH}/*.td // where `{ARCH}` is the architecture name. Look for instances of `SubtargetFeature`. // // Beware to not use the llvm github project for this, but check the git submodule // found in src/llvm-project // Though note that Rust can also be build with an external precompiled version of LLVM // which might lead to failures if the oldest tested / supported LLVM version // doesn't yet support the relevant intrinsics pub fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> LLVMFeature<'a> { let arch = if sess.target.arch == "x86_64" { "x86" } else { &*sess.target.arch }; match (arch, s) { ("x86", "sse4.2") => { LLVMFeature::with_dependency("sse4.2", TargetFeatureFoldStrength::EnableOnly("crc32")) } ("x86", "pclmulqdq") => LLVMFeature::new("pclmul"), ("x86", "rdrand") => LLVMFeature::new("rdrnd"), ("x86", "bmi1") => LLVMFeature::new("bmi"), ("x86", "cmpxchg16b") => LLVMFeature::new("cx16"), ("aarch64", "rcpc2") => LLVMFeature::new("rcpc-immo"), ("aarch64", "dpb") => LLVMFeature::new("ccpp"), ("aarch64", "dpb2") => LLVMFeature::new("ccdp"), ("aarch64", "frintts") => LLVMFeature::new("fptoint"), ("aarch64", "fcma") => LLVMFeature::new("complxnum"), ("aarch64", "pmuv3") => LLVMFeature::new("perfmon"), ("aarch64", "paca") => LLVMFeature::new("pauth"), ("aarch64", "pacg") => LLVMFeature::new("pauth"), // Rust ties fp and neon together. ("aarch64", "neon") => { LLVMFeature::with_dependency("neon", TargetFeatureFoldStrength::Both("fp-armv8")) } // In LLVM neon implicitly enables fp, but we manually enable // neon when a feature only implicitly enables fp ("aarch64", "f32mm") => { LLVMFeature::with_dependency("f32mm", TargetFeatureFoldStrength::EnableOnly("neon")) } ("aarch64", "f64mm") => { LLVMFeature::with_dependency("f64mm", TargetFeatureFoldStrength::EnableOnly("neon")) } ("aarch64", "fhm") => { LLVMFeature::with_dependency("fp16fml", TargetFeatureFoldStrength::EnableOnly("neon")) } ("aarch64", "fp16") => { LLVMFeature::with_dependency("fullfp16", TargetFeatureFoldStrength::EnableOnly("neon")) } ("aarch64", "jsconv") => { LLVMFeature::with_dependency("jsconv", TargetFeatureFoldStrength::EnableOnly("neon")) } ("aarch64", "sve") => { LLVMFeature::with_dependency("sve", TargetFeatureFoldStrength::EnableOnly("neon")) } ("aarch64", "sve2") => { LLVMFeature::with_dependency("sve2", TargetFeatureFoldStrength::EnableOnly("neon")) } ("aarch64", "sve2-aes") => { LLVMFeature::with_dependency("sve2-aes", TargetFeatureFoldStrength::EnableOnly("neon")) } ("aarch64", "sve2-sm4") => { LLVMFeature::with_dependency("sve2-sm4", TargetFeatureFoldStrength::EnableOnly("neon")) } ("aarch64", "sve2-sha3") => { LLVMFeature::with_dependency("sve2-sha3", TargetFeatureFoldStrength::EnableOnly("neon")) } ("aarch64", "sve2-bitperm") => LLVMFeature::with_dependency( "sve2-bitperm", TargetFeatureFoldStrength::EnableOnly("neon"), ), // The unaligned-scalar-mem feature was renamed to fast-unaligned-access. ("riscv32" | "riscv64", "fast-unaligned-access") if get_version().0 <= 17 => { LLVMFeature::new("unaligned-scalar-mem") } (_, s) => LLVMFeature::new(s), } } /// Given a map from target_features to whether they are enabled or disabled, /// ensure only valid combinations are allowed. pub fn check_tied_features( sess: &Session, features: &FxHashMap<&str, bool>, ) -> Option<&'static [&'static str]> { if !features.is_empty() { for tied in sess.target.tied_target_features() { // Tied features must be set to the same value, or not set at all let mut tied_iter = tied.iter(); let enabled = features.get(tied_iter.next().unwrap()); if tied_iter.any(|f| enabled != features.get(f)) { return Some(tied); } } } return None; } /// Used to generate cfg variables and apply features /// Must express features in the way Rust understands them pub fn target_features(sess: &Session, allow_unstable: bool) -> Vec { let target_machine = create_informational_target_machine(sess); sess.target .supported_target_features() .iter() .filter_map(|&(feature, gate)| { if sess.is_nightly_build() || allow_unstable || gate.is_stable() { Some(feature) } else { None } }) .filter(|feature| { // check that all features in a given smallvec are enabled for llvm_feature in to_llvm_features(sess, feature) { let cstr = SmallCStr::new(llvm_feature); if !unsafe { llvm::LLVMRustHasFeature(&target_machine, cstr.as_ptr()) } { return false; } } true }) .map(|feature| Symbol::intern(feature)) .collect() } pub fn print_version() { let (major, minor, patch) = get_version(); println!("LLVM version: {major}.{minor}.{patch}"); } pub fn get_version() -> (u32, u32, u32) { // Can be called without initializing LLVM unsafe { (llvm::LLVMRustVersionMajor(), llvm::LLVMRustVersionMinor(), llvm::LLVMRustVersionPatch()) } } pub fn print_passes() { // Can be called without initializing LLVM unsafe { llvm::LLVMRustPrintPasses(); } } fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> { let len = unsafe { llvm::LLVMRustGetTargetFeaturesCount(tm) }; let mut ret = Vec::with_capacity(len); for i in 0..len { unsafe { let mut feature = ptr::null(); let mut desc = ptr::null(); llvm::LLVMRustGetTargetFeature(tm, i, &mut feature, &mut desc); if feature.is_null() || desc.is_null() { bug!("LLVM returned a `null` target feature string"); } let feature = CStr::from_ptr(feature).to_str().unwrap_or_else(|e| { bug!("LLVM returned a non-utf8 feature string: {}", e); }); let desc = CStr::from_ptr(desc).to_str().unwrap_or_else(|e| { bug!("LLVM returned a non-utf8 feature string: {}", e); }); ret.push((feature, desc)); } } ret } fn print_target_features(out: &mut dyn PrintBackendInfo, sess: &Session, tm: &llvm::TargetMachine) { let mut llvm_target_features = llvm_target_features(tm); let mut known_llvm_target_features = FxHashSet::<&'static str>::default(); let mut rustc_target_features = sess .target .supported_target_features() .iter() .map(|(feature, _gate)| { // LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these strings. let llvm_feature = to_llvm_features(sess, *feature).llvm_feature_name; let desc = match llvm_target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok() { Some(index) => { known_llvm_target_features.insert(llvm_feature); llvm_target_features[index].1 } None => "", }; (*feature, desc) }) .collect::>(); rustc_target_features.extend_from_slice(&[( "crt-static", "Enables C Run-time Libraries to be statically linked", )]); llvm_target_features.retain(|(f, _d)| !known_llvm_target_features.contains(f)); let max_feature_len = llvm_target_features .iter() .chain(rustc_target_features.iter()) .map(|(feature, _desc)| feature.len()) .max() .unwrap_or(0); writeln!(out, "Features supported by rustc for this target:"); for (feature, desc) in &rustc_target_features { writeln!(out, " {feature:max_feature_len$} - {desc}."); } writeln!(out, "\nCode-generation features supported by LLVM for this target:"); for (feature, desc) in &llvm_target_features { writeln!(out, " {feature:max_feature_len$} - {desc}."); } if llvm_target_features.is_empty() { writeln!(out, " Target features listing is not supported by this LLVM version."); } writeln!(out, "\nUse +feature to enable a feature, or -feature to disable it."); writeln!(out, "For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n"); writeln!(out, "Code-generation features cannot be used in cfg or #[target_feature],"); writeln!(out, "and may be renamed or removed in a future version of LLVM or rustc.\n"); } pub(crate) fn print(req: &PrintRequest, mut out: &mut dyn PrintBackendInfo, sess: &Session) { require_inited(); let tm = create_informational_target_machine(sess); match req.kind { PrintKind::TargetCPUs => { // SAFETY generate a C compatible string from a byte slice to pass // the target CPU name into LLVM, the lifetime of the reference is // at least as long as the C function let cpu_cstring = CString::new(handle_native(sess.target.cpu.as_ref())) .unwrap_or_else(|e| bug!("failed to convert to cstring: {}", e)); unsafe extern "C" fn callback(out: *mut c_void, string: *const c_char, len: usize) { let out = &mut *(out as *mut &mut dyn PrintBackendInfo); let bytes = slice::from_raw_parts(string as *const u8, len); write!(out, "{}", String::from_utf8_lossy(bytes)); } unsafe { llvm::LLVMRustPrintTargetCPUs( &tm, cpu_cstring.as_ptr(), callback, &mut out as *mut &mut dyn PrintBackendInfo as *mut c_void, ); } } PrintKind::TargetFeatures => print_target_features(out, sess, &tm), _ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req), } } fn handle_native(name: &str) -> &str { if name != "native" { return name; } unsafe { let mut len = 0; let ptr = llvm::LLVMRustGetHostCPUName(&mut len); str::from_utf8(slice::from_raw_parts(ptr as *const u8, len)).unwrap() } } pub fn target_cpu(sess: &Session) -> &str { match sess.opts.cg.target_cpu { Some(ref name) => handle_native(name), None => handle_native(sess.target.cpu.as_ref()), } } /// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`, /// `--target` and similar). pub(crate) fn global_llvm_features(sess: &Session, diagnostics: bool) -> Vec { // Features that come earlier are overridden by conflicting features later in the string. // Typically we'll want more explicit settings to override the implicit ones, so: // // * Features from -Ctarget-cpu=*; are overridden by [^1] // * Features implied by --target; are overridden by // * Features from -Ctarget-feature; are overridden by // * function specific features. // // [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly // through LLVM TargetMachine implementation. // // FIXME(nagisa): it isn't clear what's the best interaction between features implied by // `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always // override anything that's implicit, so e.g. when there's no `--target` flag, features implied // the host target are overridden by `-Ctarget-cpu=*`. On the other hand, what about when both // `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both // flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence // should be taken in cases like these. let mut features = vec![]; // -Ctarget-cpu=native match sess.opts.cg.target_cpu { Some(ref s) if s == "native" => { let features_string = unsafe { let ptr = llvm::LLVMGetHostCPUFeatures(); let features_string = if !ptr.is_null() { CStr::from_ptr(ptr) .to_str() .unwrap_or_else(|e| { bug!("LLVM returned a non-utf8 features string: {}", e); }) .to_owned() } else { bug!("could not allocate host CPU features, LLVM returned a `null` string"); }; llvm::LLVMDisposeMessage(ptr); features_string }; features.extend(features_string.split(',').map(String::from)); } Some(_) | None => {} }; // Features implied by an implicit or explicit `--target`. features.extend( sess.target .features .split(',') .filter(|v| !v.is_empty() && backend_feature_name(v).is_some()) .map(String::from), ); // -Ctarget-features let supported_features = sess.target.supported_target_features(); let mut featsmap = FxHashMap::default(); let feats = sess .opts .cg .target_feature .split(',') .filter_map(|s| { let enable_disable = match s.chars().next() { None => return None, Some(c @ ('+' | '-')) => c, Some(_) => { if diagnostics { sess.emit_warning(UnknownCTargetFeaturePrefix { feature: s }); } return None; } }; let feature = backend_feature_name(s)?; // Warn against use of LLVM specific feature names and unstable features on the CLI. if diagnostics { let feature_state = supported_features.iter().find(|&&(v, _)| v == feature); if feature_state.is_none() { let rust_feature = supported_features.iter().find_map(|&(rust_feature, _)| { let llvm_features = to_llvm_features(sess, rust_feature); if llvm_features.contains(feature) && !llvm_features.contains(rust_feature) { Some(rust_feature) } else { None } }); let unknown_feature = if let Some(rust_feature) = rust_feature { UnknownCTargetFeature { feature, rust_feature: PossibleFeature::Some { rust_feature }, } } else { UnknownCTargetFeature { feature, rust_feature: PossibleFeature::None } }; sess.emit_warning(unknown_feature); } else if feature_state .is_some_and(|(_name, feature_gate)| !feature_gate.is_stable()) { // An unstable feature. Warn about using it. sess.emit_warning(UnstableCTargetFeature { feature }); } } if diagnostics { // FIXME(nagisa): figure out how to not allocate a full hashset here. featsmap.insert(feature, enable_disable == '+'); } // rustc-specific features do not get passed down to LLVM… if RUSTC_SPECIFIC_FEATURES.contains(&feature) { return None; } // ... otherwise though we run through `to_llvm_features` when // passing requests down to LLVM. This means that all in-language // features also work on the command line instead of having two // different names when the LLVM name and the Rust name differ. let llvm_feature = to_llvm_features(sess, feature); Some( std::iter::once(format!("{}{}", enable_disable, llvm_feature.llvm_feature_name)) .chain(llvm_feature.dependency.into_iter().filter_map(move |feat| { match (enable_disable, feat) { ('-' | '+', TargetFeatureFoldStrength::Both(f)) | ('+', TargetFeatureFoldStrength::EnableOnly(f)) => { Some(format!("{enable_disable}{f}")) } _ => None, } })), ) }) .flatten(); features.extend(feats); if diagnostics && let Some(f) = check_tied_features(sess, &featsmap) { sess.emit_err(TargetFeatureDisableOrEnable { features: f, span: None, missing_features: None, }); } features } /// Returns a feature name for the given `+feature` or `-feature` string. /// /// Only allows features that are backend specific (i.e. not [`RUSTC_SPECIFIC_FEATURES`].) fn backend_feature_name(s: &str) -> Option<&str> { // features must start with a `+` or `-`. let feature = s.strip_prefix(&['+', '-'][..]).unwrap_or_else(|| { bug!("target feature `{}` must begin with a `+` or `-`", s); }); // Rustc-specific feature requests like `+crt-static` or `-crt-static` // are not passed down to LLVM. if RUSTC_SPECIFIC_FEATURES.contains(&feature) { return None; } Some(feature) } pub fn tune_cpu(sess: &Session) -> Option<&str> { let name = sess.opts.unstable_opts.tune_cpu.as_ref()?; Some(handle_native(name)) }