//! An analysis to determine which locals require allocas and //! which do not. use super::FunctionCx; use crate::traits::*; use rustc_data_structures::graph::dominators::Dominators; use rustc_index::bit_set::BitSet; use rustc_index::vec::IndexVec; use rustc_middle::mir::traversal; use rustc_middle::mir::visit::{MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor}; use rustc_middle::mir::{self, Location, TerminatorKind}; use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf}; pub fn non_ssa_locals<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>( fx: &FunctionCx<'a, 'tcx, Bx>, ) -> BitSet { let mir = fx.mir; let dominators = mir.basic_blocks.dominators(); let locals = mir .local_decls .iter() .map(|decl| { let ty = fx.monomorphize(decl.ty); let layout = fx.cx.spanned_layout_of(ty, decl.source_info.span); if layout.is_zst() { LocalKind::ZST } else if fx.cx.is_backend_immediate(layout) || fx.cx.is_backend_scalar_pair(layout) { LocalKind::Unused } else { LocalKind::Memory } }) .collect(); let mut analyzer = LocalAnalyzer { fx, dominators, locals }; // Arguments get assigned to by means of the function being called for arg in mir.args_iter() { analyzer.assign(arg, mir::START_BLOCK.start_location()); } // If there exists a local definition that dominates all uses of that local, // the definition should be visited first. Traverse blocks in an order that // is a topological sort of dominance partial order. for (bb, data) in traversal::reverse_postorder(&mir) { analyzer.visit_basic_block_data(bb, data); } let mut non_ssa_locals = BitSet::new_empty(analyzer.locals.len()); for (local, kind) in analyzer.locals.iter_enumerated() { if matches!(kind, LocalKind::Memory) { non_ssa_locals.insert(local); } } non_ssa_locals } #[derive(Copy, Clone, PartialEq, Eq)] enum LocalKind { ZST, /// A local that requires an alloca. Memory, /// A scalar or a scalar pair local that is neither defined nor used. Unused, /// A scalar or a scalar pair local with a single definition that dominates all uses. SSA(mir::Location), } struct LocalAnalyzer<'mir, 'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> { fx: &'mir FunctionCx<'a, 'tcx, Bx>, dominators: Dominators, locals: IndexVec, } impl<'mir, 'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> LocalAnalyzer<'mir, 'a, 'tcx, Bx> { fn assign(&mut self, local: mir::Local, location: Location) { let kind = &mut self.locals[local]; match *kind { LocalKind::ZST => {} LocalKind::Memory => {} LocalKind::Unused => { *kind = LocalKind::SSA(location); } LocalKind::SSA(_) => { *kind = LocalKind::Memory; } } } fn process_place( &mut self, place_ref: &mir::PlaceRef<'tcx>, context: PlaceContext, location: Location, ) { let cx = self.fx.cx; if let Some((place_base, elem)) = place_ref.last_projection() { let mut base_context = if context.is_mutating_use() { PlaceContext::MutatingUse(MutatingUseContext::Projection) } else { PlaceContext::NonMutatingUse(NonMutatingUseContext::Projection) }; // Allow uses of projections that are ZSTs or from scalar fields. let is_consume = matches!( context, PlaceContext::NonMutatingUse( NonMutatingUseContext::Copy | NonMutatingUseContext::Move, ) ); if is_consume { let base_ty = place_base.ty(self.fx.mir, cx.tcx()); let base_ty = self.fx.monomorphize(base_ty); // ZSTs don't require any actual memory access. let elem_ty = base_ty.projection_ty(cx.tcx(), self.fx.monomorphize(elem)).ty; let span = self.fx.mir.local_decls[place_ref.local].source_info.span; if cx.spanned_layout_of(elem_ty, span).is_zst() { return; } if let mir::ProjectionElem::Field(..) = elem { let layout = cx.spanned_layout_of(base_ty.ty, span); if cx.is_backend_immediate(layout) || cx.is_backend_scalar_pair(layout) { // Recurse with the same context, instead of `Projection`, // potentially stopping at non-operand projections, // which would trigger `not_ssa` on locals. base_context = context; } } } if let mir::ProjectionElem::Deref = elem { // Deref projections typically only read the pointer. base_context = PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy); } self.process_place(&place_base, base_context, location); // HACK(eddyb) this emulates the old `visit_projection_elem`, this // entire `visit_place`-like `process_place` method should be rewritten, // now that we have moved to the "slice of projections" representation. if let mir::ProjectionElem::Index(local) = elem { self.visit_local( local, PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy), location, ); } } else { self.visit_local(place_ref.local, context, location); } } } impl<'mir, 'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> Visitor<'tcx> for LocalAnalyzer<'mir, 'a, 'tcx, Bx> { fn visit_assign( &mut self, place: &mir::Place<'tcx>, rvalue: &mir::Rvalue<'tcx>, location: Location, ) { debug!("visit_assign(place={:?}, rvalue={:?})", place, rvalue); if let Some(local) = place.as_local() { self.assign(local, location); if self.locals[local] != LocalKind::Memory { let decl_span = self.fx.mir.local_decls[local].source_info.span; if !self.fx.rvalue_creates_operand(rvalue, decl_span) { self.locals[local] = LocalKind::Memory; } } } else { self.visit_place(place, PlaceContext::MutatingUse(MutatingUseContext::Store), location); } self.visit_rvalue(rvalue, location); } fn visit_place(&mut self, place: &mir::Place<'tcx>, context: PlaceContext, location: Location) { debug!("visit_place(place={:?}, context={:?})", place, context); self.process_place(&place.as_ref(), context, location); } fn visit_local(&mut self, local: mir::Local, context: PlaceContext, location: Location) { match context { PlaceContext::MutatingUse(MutatingUseContext::Call) | PlaceContext::MutatingUse(MutatingUseContext::Yield) => { self.assign(local, location); } PlaceContext::NonUse(_) | PlaceContext::MutatingUse(MutatingUseContext::Retag) => {} PlaceContext::NonMutatingUse( NonMutatingUseContext::Copy | NonMutatingUseContext::Move, ) => match &mut self.locals[local] { LocalKind::ZST => {} LocalKind::Memory => {} LocalKind::SSA(def) if def.dominates(location, &self.dominators) => {} // Reads from uninitialized variables (e.g., in dead code, after // optimizations) require locals to be in (uninitialized) memory. // N.B., there can be uninitialized reads of a local visited after // an assignment to that local, if they happen on disjoint paths. kind @ (LocalKind::Unused | LocalKind::SSA(_)) => { *kind = LocalKind::Memory; } }, PlaceContext::MutatingUse( MutatingUseContext::Store | MutatingUseContext::Deinit | MutatingUseContext::SetDiscriminant | MutatingUseContext::AsmOutput | MutatingUseContext::Borrow | MutatingUseContext::AddressOf | MutatingUseContext::Projection, ) | PlaceContext::NonMutatingUse( NonMutatingUseContext::Inspect | NonMutatingUseContext::SharedBorrow | NonMutatingUseContext::UniqueBorrow | NonMutatingUseContext::ShallowBorrow | NonMutatingUseContext::AddressOf | NonMutatingUseContext::Projection, ) => { self.locals[local] = LocalKind::Memory; } PlaceContext::MutatingUse(MutatingUseContext::Drop) => { let kind = &mut self.locals[local]; if *kind != LocalKind::Memory { let ty = self.fx.mir.local_decls[local].ty; let ty = self.fx.monomorphize(ty); if self.fx.cx.type_needs_drop(ty) { // Only need the place if we're actually dropping it. *kind = LocalKind::Memory; } } } } } } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum CleanupKind { NotCleanup, Funclet, Internal { funclet: mir::BasicBlock }, } impl CleanupKind { pub fn funclet_bb(self, for_bb: mir::BasicBlock) -> Option { match self { CleanupKind::NotCleanup => None, CleanupKind::Funclet => Some(for_bb), CleanupKind::Internal { funclet } => Some(funclet), } } } /// MSVC requires unwinding code to be split to a tree of *funclets*, where each funclet can only /// branch to itself or to its parent. Luckily, the code we generates matches this pattern. /// Recover that structure in an analyze pass. pub fn cleanup_kinds(mir: &mir::Body<'_>) -> IndexVec { fn discover_masters<'tcx>( result: &mut IndexVec, mir: &mir::Body<'tcx>, ) { for (bb, data) in mir.basic_blocks.iter_enumerated() { match data.terminator().kind { TerminatorKind::Goto { .. } | TerminatorKind::Resume | TerminatorKind::Abort | TerminatorKind::Return | TerminatorKind::GeneratorDrop | TerminatorKind::Unreachable | TerminatorKind::SwitchInt { .. } | TerminatorKind::Yield { .. } | TerminatorKind::FalseEdge { .. } | TerminatorKind::FalseUnwind { .. } => { /* nothing to do */ } TerminatorKind::Call { cleanup: unwind, .. } | TerminatorKind::InlineAsm { cleanup: unwind, .. } | TerminatorKind::Assert { cleanup: unwind, .. } | TerminatorKind::DropAndReplace { unwind, .. } | TerminatorKind::Drop { unwind, .. } => { if let Some(unwind) = unwind { debug!( "cleanup_kinds: {:?}/{:?} registering {:?} as funclet", bb, data, unwind ); result[unwind] = CleanupKind::Funclet; } } } } } fn propagate<'tcx>(result: &mut IndexVec, mir: &mir::Body<'tcx>) { let mut funclet_succs = IndexVec::from_elem(None, &mir.basic_blocks); let mut set_successor = |funclet: mir::BasicBlock, succ| match funclet_succs[funclet] { ref mut s @ None => { debug!("set_successor: updating successor of {:?} to {:?}", funclet, succ); *s = Some(succ); } Some(s) => { if s != succ { span_bug!( mir.span, "funclet {:?} has 2 parents - {:?} and {:?}", funclet, s, succ ); } } }; for (bb, data) in traversal::reverse_postorder(mir) { let funclet = match result[bb] { CleanupKind::NotCleanup => continue, CleanupKind::Funclet => bb, CleanupKind::Internal { funclet } => funclet, }; debug!( "cleanup_kinds: {:?}/{:?}/{:?} propagating funclet {:?}", bb, data, result[bb], funclet ); for succ in data.terminator().successors() { let kind = result[succ]; debug!("cleanup_kinds: propagating {:?} to {:?}/{:?}", funclet, succ, kind); match kind { CleanupKind::NotCleanup => { result[succ] = CleanupKind::Internal { funclet }; } CleanupKind::Funclet => { if funclet != succ { set_successor(funclet, succ); } } CleanupKind::Internal { funclet: succ_funclet } => { if funclet != succ_funclet { // `succ` has 2 different funclet going into it, so it must // be a funclet by itself. debug!( "promoting {:?} to a funclet and updating {:?}", succ, succ_funclet ); result[succ] = CleanupKind::Funclet; set_successor(succ_funclet, succ); set_successor(funclet, succ); } } } } } } let mut result = IndexVec::from_elem(CleanupKind::NotCleanup, &mir.basic_blocks); discover_masters(&mut result, mir); propagate(&mut result, mir); debug!("cleanup_kinds: result={:?}", result); result }