use crate::const_eval::CheckAlignment; use std::borrow::Cow; use either::{Left, Right}; use rustc_hir::def::DefKind; use rustc_middle::mir; use rustc_middle::mir::interpret::ErrorHandled; use rustc_middle::mir::pretty::display_allocation; use rustc_middle::traits::Reveal; use rustc_middle::ty::layout::LayoutOf; use rustc_middle::ty::print::with_no_trimmed_paths; use rustc_middle::ty::{self, TyCtxt}; use rustc_span::source_map::Span; use rustc_target::abi::{self, Abi}; use super::{CompileTimeEvalContext, CompileTimeInterpreter, ConstEvalErr}; use crate::interpret::eval_nullary_intrinsic; use crate::interpret::{ intern_const_alloc_recursive, Allocation, ConstAlloc, ConstValue, CtfeValidationMode, GlobalId, Immediate, InternKind, InterpCx, InterpError, InterpResult, MPlaceTy, MemoryKind, OpTy, RefTracking, StackPopCleanup, }; const NOTE_ON_UNDEFINED_BEHAVIOR_ERROR: &str = "The rules on what exactly is undefined behavior aren't clear, \ so this check might be overzealous. Please open an issue on the rustc \ repository if you believe it should not be considered undefined behavior."; // Returns a pointer to where the result lives fn eval_body_using_ecx<'mir, 'tcx>( ecx: &mut CompileTimeEvalContext<'mir, 'tcx>, cid: GlobalId<'tcx>, body: &'mir mir::Body<'tcx>, ) -> InterpResult<'tcx, MPlaceTy<'tcx>> { debug!("eval_body_using_ecx: {:?}, {:?}", cid, ecx.param_env); let tcx = *ecx.tcx; assert!( cid.promoted.is_some() || matches!( ecx.tcx.def_kind(cid.instance.def_id()), DefKind::Const | DefKind::Static(_) | DefKind::ConstParam | DefKind::AnonConst | DefKind::InlineConst | DefKind::AssocConst ), "Unexpected DefKind: {:?}", ecx.tcx.def_kind(cid.instance.def_id()) ); let layout = ecx.layout_of(body.bound_return_ty().subst(tcx, cid.instance.substs))?; assert!(layout.is_sized()); let ret = ecx.allocate(layout, MemoryKind::Stack)?; trace!( "eval_body_using_ecx: pushing stack frame for global: {}{}", with_no_trimmed_paths!(ecx.tcx.def_path_str(cid.instance.def_id())), cid.promoted.map_or_else(String::new, |p| format!("::promoted[{:?}]", p)) ); ecx.push_stack_frame( cid.instance, body, &ret.into(), StackPopCleanup::Root { cleanup: false }, )?; // The main interpreter loop. while ecx.step()? {} // Intern the result let intern_kind = if cid.promoted.is_some() { InternKind::Promoted } else { match tcx.static_mutability(cid.instance.def_id()) { Some(m) => InternKind::Static(m), None => InternKind::Constant, } }; ecx.machine.check_alignment = CheckAlignment::No; // interning doesn't need to respect alignment intern_const_alloc_recursive(ecx, intern_kind, &ret)?; // we leave alignment checks off, since this `ecx` will not be used for further evaluation anyway debug!("eval_body_using_ecx done: {:?}", *ret); Ok(ret) } /// The `InterpCx` is only meant to be used to do field and index projections into constants for /// `simd_shuffle` and const patterns in match arms. It never performs alignment checks. /// /// The function containing the `match` that is currently being analyzed may have generic bounds /// that inform us about the generic bounds of the constant. E.g., using an associated constant /// of a function's generic parameter will require knowledge about the bounds on the generic /// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument. pub(super) fn mk_eval_cx<'mir, 'tcx>( tcx: TyCtxt<'tcx>, root_span: Span, param_env: ty::ParamEnv<'tcx>, can_access_statics: bool, ) -> CompileTimeEvalContext<'mir, 'tcx> { debug!("mk_eval_cx: {:?}", param_env); InterpCx::new( tcx, root_span, param_env, CompileTimeInterpreter::new(tcx.const_eval_limit(), can_access_statics, CheckAlignment::No), ) } /// This function converts an interpreter value into a constant that is meant for use in the /// type system. #[instrument(skip(ecx), level = "debug")] pub(super) fn op_to_const<'tcx>( ecx: &CompileTimeEvalContext<'_, 'tcx>, op: &OpTy<'tcx>, ) -> ConstValue<'tcx> { // We do not have value optimizations for everything. // Only scalars and slices, since they are very common. // Note that further down we turn scalars of uninitialized bits back to `ByRef`. These can result // from scalar unions that are initialized with one of their zero sized variants. We could // instead allow `ConstValue::Scalar` to store `ScalarMaybeUninit`, but that would affect all // the usual cases of extracting e.g. a `usize`, without there being a real use case for the // `Undef` situation. let try_as_immediate = match op.layout.abi { Abi::Scalar(abi::Scalar::Initialized { .. }) => true, Abi::ScalarPair(..) => match op.layout.ty.kind() { ty::Ref(_, inner, _) => match *inner.kind() { ty::Slice(elem) => elem == ecx.tcx.types.u8, ty::Str => true, _ => false, }, _ => false, }, _ => false, }; let immediate = if try_as_immediate { Right(ecx.read_immediate(op).expect("normalization works on validated constants")) } else { // It is guaranteed that any non-slice scalar pair is actually ByRef here. // When we come back from raw const eval, we are always by-ref. The only way our op here is // by-val is if we are in destructure_mir_constant, i.e., if this is (a field of) something that we // "tried to make immediate" before. We wouldn't do that for non-slice scalar pairs or // structs containing such. op.as_mplace_or_imm() }; debug!(?immediate); // We know `offset` is relative to the allocation, so we can use `into_parts`. let to_const_value = |mplace: &MPlaceTy<'_>| { debug!("to_const_value(mplace: {:?})", mplace); match mplace.ptr.into_parts() { (Some(alloc_id), offset) => { let alloc = ecx.tcx.global_alloc(alloc_id).unwrap_memory(); ConstValue::ByRef { alloc, offset } } (None, offset) => { assert!(mplace.layout.is_zst()); assert_eq!( offset.bytes() % mplace.layout.align.abi.bytes(), 0, "this MPlaceTy must come from a validated constant, thus we can assume the \ alignment is correct", ); ConstValue::ZeroSized } } }; match immediate { Left(ref mplace) => to_const_value(mplace), // see comment on `let try_as_immediate` above Right(imm) => match *imm { _ if imm.layout.is_zst() => ConstValue::ZeroSized, Immediate::Scalar(x) => ConstValue::Scalar(x), Immediate::ScalarPair(a, b) => { debug!("ScalarPair(a: {:?}, b: {:?})", a, b); // We know `offset` is relative to the allocation, so we can use `into_parts`. let (data, start) = match a.to_pointer(ecx).unwrap().into_parts() { (Some(alloc_id), offset) => { (ecx.tcx.global_alloc(alloc_id).unwrap_memory(), offset.bytes()) } (None, _offset) => ( ecx.tcx.mk_const_alloc(Allocation::from_bytes_byte_aligned_immutable( b"" as &[u8], )), 0, ), }; let len = b.to_target_usize(ecx).unwrap(); let start = start.try_into().unwrap(); let len: usize = len.try_into().unwrap(); ConstValue::Slice { data, start, end: start + len } } Immediate::Uninit => to_const_value(&op.assert_mem_place()), }, } } #[instrument(skip(tcx), level = "debug", ret)] pub(crate) fn turn_into_const_value<'tcx>( tcx: TyCtxt<'tcx>, constant: ConstAlloc<'tcx>, key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>, ) -> ConstValue<'tcx> { let cid = key.value; let def_id = cid.instance.def.def_id(); let is_static = tcx.is_static(def_id); // This is just accessing an already computed constant, so no need to check alginment here. let ecx = mk_eval_cx( tcx, tcx.def_span(key.value.instance.def_id()), key.param_env, /*can_access_statics:*/ is_static, ); let mplace = ecx.raw_const_to_mplace(constant).expect( "can only fail if layout computation failed, \ which should have given a good error before ever invoking this function", ); assert!( !is_static || cid.promoted.is_some(), "the `eval_to_const_value_raw` query should not be used for statics, use `eval_to_allocation` instead" ); // Turn this into a proper constant. op_to_const(&ecx, &mplace.into()) } #[instrument(skip(tcx), level = "debug")] pub fn eval_to_const_value_raw_provider<'tcx>( tcx: TyCtxt<'tcx>, key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>, ) -> ::rustc_middle::mir::interpret::EvalToConstValueResult<'tcx> { assert!(key.param_env.is_const()); // see comment in eval_to_allocation_raw_provider for what we're doing here if key.param_env.reveal() == Reveal::All { let mut key = key; key.param_env = key.param_env.with_user_facing(); match tcx.eval_to_const_value_raw(key) { // try again with reveal all as requested Err(ErrorHandled::TooGeneric) => {} // deduplicate calls other => return other, } } // We call `const_eval` for zero arg intrinsics, too, in order to cache their value. // Catch such calls and evaluate them instead of trying to load a constant's MIR. if let ty::InstanceDef::Intrinsic(def_id) = key.value.instance.def { let ty = key.value.instance.ty(tcx, key.param_env); let ty::FnDef(_, substs) = ty.kind() else { bug!("intrinsic with type {:?}", ty); }; return eval_nullary_intrinsic(tcx, key.param_env, def_id, substs).map_err(|error| { let span = tcx.def_span(def_id); let error = ConstEvalErr { error: error.into_kind(), stacktrace: vec![], span }; error.report(tcx.at(span), "could not evaluate nullary intrinsic") }); } tcx.eval_to_allocation_raw(key).map(|val| turn_into_const_value(tcx, val, key)) } #[instrument(skip(tcx), level = "debug")] pub fn eval_to_allocation_raw_provider<'tcx>( tcx: TyCtxt<'tcx>, key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>, ) -> ::rustc_middle::mir::interpret::EvalToAllocationRawResult<'tcx> { assert!(key.param_env.is_const()); // Because the constant is computed twice (once per value of `Reveal`), we are at risk of // reporting the same error twice here. To resolve this, we check whether we can evaluate the // constant in the more restrictive `Reveal::UserFacing`, which most likely already was // computed. For a large percentage of constants that will already have succeeded. Only // associated constants of generic functions will fail due to not enough monomorphization // information being available. // In case we fail in the `UserFacing` variant, we just do the real computation. if key.param_env.reveal() == Reveal::All { let mut key = key; key.param_env = key.param_env.with_user_facing(); match tcx.eval_to_allocation_raw(key) { // try again with reveal all as requested Err(ErrorHandled::TooGeneric) => {} // deduplicate calls other => return other, } } if cfg!(debug_assertions) { // Make sure we format the instance even if we do not print it. // This serves as a regression test against an ICE on printing. // The next two lines concatenated contain some discussion: // https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/ // subject/anon_const_instance_printing/near/135980032 let instance = with_no_trimmed_paths!(key.value.instance.to_string()); trace!("const eval: {:?} ({})", key, instance); } let cid = key.value; let def = cid.instance.def.with_opt_param(); let is_static = tcx.is_static(def.did); let mut ecx = InterpCx::new( tcx, tcx.def_span(def.did), key.param_env, // Statics (and promoteds inside statics) may access other statics, because unlike consts // they do not have to behave "as if" they were evaluated at runtime. CompileTimeInterpreter::new( tcx.const_eval_limit(), /*can_access_statics:*/ is_static, if tcx.sess.opts.unstable_opts.extra_const_ub_checks { CheckAlignment::Error } else { CheckAlignment::FutureIncompat }, ), ); let res = ecx.load_mir(cid.instance.def, cid.promoted); match res.and_then(|body| eval_body_using_ecx(&mut ecx, cid, &body)) { Err(error) => { let err = ConstEvalErr::new(&ecx, error, None); let msg = if is_static { Cow::from("could not evaluate static initializer") } else { // If the current item has generics, we'd like to enrich the message with the // instance and its substs: to show the actual compile-time values, in addition to // the expression, leading to the const eval error. let instance = &key.value.instance; if !instance.substs.is_empty() { let instance = with_no_trimmed_paths!(instance.to_string()); let msg = format!("evaluation of `{}` failed", instance); Cow::from(msg) } else { Cow::from("evaluation of constant value failed") } }; Err(err.report(ecx.tcx.at(err.span), &msg)) } Ok(mplace) => { // Since evaluation had no errors, validate the resulting constant. // This is a separate `try` block to provide more targeted error reporting. let validation = try { let mut ref_tracking = RefTracking::new(mplace); let mut inner = false; while let Some((mplace, path)) = ref_tracking.todo.pop() { let mode = match tcx.static_mutability(cid.instance.def_id()) { Some(_) if cid.promoted.is_some() => { // Promoteds in statics are allowed to point to statics. CtfeValidationMode::Const { inner, allow_static_ptrs: true } } Some(_) => CtfeValidationMode::Regular, // a `static` None => CtfeValidationMode::Const { inner, allow_static_ptrs: false }, }; ecx.const_validate_operand(&mplace.into(), path, &mut ref_tracking, mode)?; inner = true; } }; let alloc_id = mplace.ptr.provenance.unwrap(); if let Err(error) = validation { // Validation failed, report an error. This is always a hard error. let err = ConstEvalErr::new(&ecx, error, None); Err(err.report_decorated( ecx.tcx, "it is undefined behavior to use this value", |diag| { if matches!(err.error, InterpError::UndefinedBehavior(_)) { diag.note(NOTE_ON_UNDEFINED_BEHAVIOR_ERROR); } diag.note(&format!( "the raw bytes of the constant ({}", display_allocation( *ecx.tcx, ecx.tcx.global_alloc(alloc_id).unwrap_memory().inner() ) )); }, )) } else { // Convert to raw constant Ok(ConstAlloc { alloc_id, ty: mplace.layout.ty }) } } } }