use super::eval_queries::{mk_eval_cx, op_to_const}; use super::machine::CompileTimeEvalContext; use super::{ValTreeCreationError, ValTreeCreationResult, VALTREE_MAX_NODES}; use crate::interpret::{ intern_const_alloc_recursive, ConstValue, ImmTy, Immediate, InternKind, MemPlaceMeta, MemoryKind, PlaceTy, Scalar, }; use crate::interpret::{MPlaceTy, Value}; use rustc_middle::ty::{self, ScalarInt, Ty, TyCtxt}; use rustc_span::source_map::DUMMY_SP; use rustc_target::abi::{Align, VariantIdx}; #[instrument(skip(ecx), level = "debug")] fn branches<'tcx>( ecx: &CompileTimeEvalContext<'tcx, 'tcx>, place: &MPlaceTy<'tcx>, n: usize, variant: Option, num_nodes: &mut usize, ) -> ValTreeCreationResult<'tcx> { let place = match variant { Some(variant) => ecx.mplace_downcast(&place, variant).unwrap(), None => *place, }; let variant = variant.map(|variant| Some(ty::ValTree::Leaf(ScalarInt::from(variant.as_u32())))); debug!(?place, ?variant); let mut fields = Vec::with_capacity(n); for i in 0..n { let field = ecx.mplace_field(&place, i).unwrap(); let valtree = const_to_valtree_inner(ecx, &field, num_nodes)?; fields.push(Some(valtree)); } // For enums, we prepend their variant index before the variant's fields so we can figure out // the variant again when just seeing a valtree. let branches = variant .into_iter() .chain(fields.into_iter()) .collect::>>() .expect("should have already checked for errors in ValTree creation"); // Have to account for ZSTs here if branches.len() == 0 { *num_nodes += 1; } Ok(ty::ValTree::Branch(ecx.tcx.arena.alloc_from_iter(branches))) } #[instrument(skip(ecx), level = "debug")] fn slice_branches<'tcx>( ecx: &CompileTimeEvalContext<'tcx, 'tcx>, place: &MPlaceTy<'tcx>, num_nodes: &mut usize, ) -> ValTreeCreationResult<'tcx> { let n = place .len(&ecx.tcx.tcx) .unwrap_or_else(|_| panic!("expected to use len of place {:?}", place)); let mut elems = Vec::with_capacity(n as usize); for i in 0..n { let place_elem = ecx.mplace_index(place, i).unwrap(); let valtree = const_to_valtree_inner(ecx, &place_elem, num_nodes)?; elems.push(valtree); } Ok(ty::ValTree::Branch(ecx.tcx.arena.alloc_from_iter(elems))) } #[instrument(skip(ecx), level = "debug")] pub(crate) fn const_to_valtree_inner<'tcx>( ecx: &CompileTimeEvalContext<'tcx, 'tcx>, place: &MPlaceTy<'tcx>, num_nodes: &mut usize, ) -> ValTreeCreationResult<'tcx> { let ty = place.layout.ty; debug!("ty kind: {:?}", ty.kind()); if *num_nodes >= VALTREE_MAX_NODES { return Err(ValTreeCreationError::NodesOverflow); } match ty.kind() { ty::FnDef(..) => { *num_nodes += 1; Ok(ty::ValTree::zst()) } ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char => { let Ok(val) = ecx.read_immediate(&place.into()) else { return Err(ValTreeCreationError::Other); }; let val = val.to_scalar(); *num_nodes += 1; Ok(ty::ValTree::Leaf(val.assert_int())) } // Raw pointers are not allowed in type level constants, as we cannot properly test them for // equality at compile-time (see `ptr_guaranteed_cmp`). // Technically we could allow function pointers (represented as `ty::Instance`), but this is not guaranteed to // agree with runtime equality tests. ty::FnPtr(_) | ty::RawPtr(_) => Err(ValTreeCreationError::NonSupportedType), ty::Ref(_, _, _) => { let Ok(derefd_place)= ecx.deref_operand(&place.into()) else { return Err(ValTreeCreationError::Other); }; debug!(?derefd_place); const_to_valtree_inner(ecx, &derefd_place, num_nodes) } ty::Str | ty::Slice(_) | ty::Array(_, _) => { slice_branches(ecx, place, num_nodes) } // Trait objects are not allowed in type level constants, as we have no concept for // resolving their backing type, even if we can do that at const eval time. We may // hypothetically be able to allow `dyn StructuralEq` trait objects in the future, // but it is unclear if this is useful. ty::Dynamic(..) => Err(ValTreeCreationError::NonSupportedType), ty::Tuple(elem_tys) => { branches(ecx, place, elem_tys.len(), None, num_nodes) } ty::Adt(def, _) => { if def.is_union() { return Err(ValTreeCreationError::NonSupportedType); } else if def.variants().is_empty() { bug!("uninhabited types should have errored and never gotten converted to valtree") } let Ok((_, variant)) = ecx.read_discriminant(&place.into()) else { return Err(ValTreeCreationError::Other); }; branches(ecx, place, def.variant(variant).fields.len(), def.is_enum().then_some(variant), num_nodes) } ty::Never | ty::Error(_) | ty::Foreign(..) | ty::Infer(ty::FreshIntTy(_)) | ty::Infer(ty::FreshFloatTy(_)) // FIXME(oli-obk): we could look behind opaque types | ty::Alias(..) | ty::Param(_) | ty::Bound(..) | ty::Placeholder(..) | ty::Infer(_) // FIXME(oli-obk): we can probably encode closures just like structs | ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(..) => Err(ValTreeCreationError::NonSupportedType), } } #[instrument(skip(ecx), level = "debug")] fn create_mplace_from_layout<'tcx>( ecx: &mut CompileTimeEvalContext<'tcx, 'tcx>, ty: Ty<'tcx>, ) -> MPlaceTy<'tcx> { let tcx = ecx.tcx; let param_env = ecx.param_env; let layout = tcx.layout_of(param_env.and(ty)).unwrap(); debug!(?layout); ecx.allocate(layout, MemoryKind::Stack).unwrap() } // Walks custom DSTs and gets the type of the unsized field and the number of elements // in the unsized field. fn get_info_on_unsized_field<'tcx>( ty: Ty<'tcx>, valtree: ty::ValTree<'tcx>, tcx: TyCtxt<'tcx>, ) -> (Ty<'tcx>, usize) { let mut last_valtree = valtree; let tail = tcx.struct_tail_with_normalize( ty, |ty| ty, || { let branches = last_valtree.unwrap_branch(); last_valtree = branches[branches.len() - 1]; debug!(?branches, ?last_valtree); }, ); let unsized_inner_ty = match tail.kind() { ty::Slice(t) => *t, ty::Str => tail, _ => bug!("expected Slice or Str"), }; // Have to adjust type for ty::Str let unsized_inner_ty = match unsized_inner_ty.kind() { ty::Str => tcx.mk_ty(ty::Uint(ty::UintTy::U8)), _ => unsized_inner_ty, }; // Get the number of elements in the unsized field let num_elems = last_valtree.unwrap_branch().len(); (unsized_inner_ty, num_elems) } #[instrument(skip(ecx), level = "debug", ret)] fn create_pointee_place<'tcx>( ecx: &mut CompileTimeEvalContext<'tcx, 'tcx>, ty: Ty<'tcx>, valtree: ty::ValTree<'tcx>, ) -> MPlaceTy<'tcx> { let tcx = ecx.tcx.tcx; if !ty.is_sized(*ecx.tcx, ty::ParamEnv::empty()) { // We need to create `Allocation`s for custom DSTs let (unsized_inner_ty, num_elems) = get_info_on_unsized_field(ty, valtree, tcx); let unsized_inner_ty = match unsized_inner_ty.kind() { ty::Str => tcx.mk_ty(ty::Uint(ty::UintTy::U8)), _ => unsized_inner_ty, }; let unsized_inner_ty_size = tcx.layout_of(ty::ParamEnv::empty().and(unsized_inner_ty)).unwrap().layout.size(); debug!(?unsized_inner_ty, ?unsized_inner_ty_size, ?num_elems); // for custom DSTs only the last field/element is unsized, but we need to also allocate // space for the other fields/elements let layout = tcx.layout_of(ty::ParamEnv::empty().and(ty)).unwrap(); let size_of_sized_part = layout.layout.size(); // Get the size of the memory behind the DST let dst_size = unsized_inner_ty_size.checked_mul(num_elems as u64, &tcx).unwrap(); let size = size_of_sized_part.checked_add(dst_size, &tcx).unwrap(); let align = Align::from_bytes(size.bytes().next_power_of_two()).unwrap(); let ptr = ecx.allocate_ptr(size, align, MemoryKind::Stack).unwrap(); debug!(?ptr); MPlaceTy::from_aligned_ptr_with_meta( ptr.into(), layout, MemPlaceMeta::Meta(Scalar::from_machine_usize(num_elems as u64, &tcx)), ) } else { create_mplace_from_layout(ecx, ty) } } /// Converts a `ValTree` to a `ConstValue`, which is needed after mir /// construction has finished. // FIXME Merge `valtree_to_const_value` and `valtree_into_mplace` into one function #[instrument(skip(tcx), level = "debug", ret)] pub fn valtree_to_const_value<'tcx>( tcx: TyCtxt<'tcx>, param_env_ty: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, valtree: ty::ValTree<'tcx>, ) -> ConstValue<'tcx> { // Basic idea: We directly construct `Scalar` values from trivial `ValTree`s // (those for constants with type bool, int, uint, float or char). // For all other types we create an `MPlace` and fill that by walking // the `ValTree` and using `place_projection` and `place_field` to // create inner `MPlace`s which are filled recursively. // FIXME Does this need an example? let (param_env, ty) = param_env_ty.into_parts(); let mut ecx = mk_eval_cx(tcx, DUMMY_SP, param_env, false); match ty.kind() { ty::FnDef(..) => { assert!(valtree.unwrap_branch().is_empty()); ConstValue::ZeroSized } ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char => match valtree { ty::ValTree::Leaf(scalar_int) => ConstValue::Scalar(Scalar::Int(scalar_int)), ty::ValTree::Branch(_) => bug!( "ValTrees for Bool, Int, Uint, Float or Char should have the form ValTree::Leaf" ), }, ty::Ref(_, _, _) | ty::Tuple(_) | ty::Array(_, _) | ty::Adt(..) => { let mut place = match ty.kind() { ty::Ref(_, inner_ty, _) => { // Need to create a place for the pointee to fill for Refs create_pointee_place(&mut ecx, *inner_ty, valtree) } _ => create_mplace_from_layout(&mut ecx, ty), }; debug!(?place); valtree_into_mplace(&mut ecx, &mut place, valtree); dump_place(&ecx, place.into()); intern_const_alloc_recursive(&mut ecx, InternKind::Constant, &place).unwrap(); match ty.kind() { ty::Ref(_, _, _) => { let ref_place = place.to_ref(&tcx); let imm = ImmTy::from_immediate(ref_place, tcx.layout_of(param_env_ty).unwrap()); op_to_const(&ecx, &imm.into()) } _ => op_to_const(&ecx, &place.into()), } } ty::Never | ty::Error(_) | ty::Foreign(..) | ty::Infer(ty::FreshIntTy(_)) | ty::Infer(ty::FreshFloatTy(_)) | ty::Alias(..) | ty::Param(_) | ty::Bound(..) | ty::Placeholder(..) | ty::Infer(_) | ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(..) | ty::FnPtr(_) | ty::RawPtr(_) | ty::Str | ty::Slice(_) | ty::Dynamic(..) => bug!("no ValTree should have been created for type {:?}", ty.kind()), } } #[instrument(skip(ecx), level = "debug")] fn valtree_into_mplace<'tcx>( ecx: &mut CompileTimeEvalContext<'tcx, 'tcx>, place: &mut MPlaceTy<'tcx>, valtree: ty::ValTree<'tcx>, ) { // This will match on valtree and write the value(s) corresponding to the ValTree // inside the place recursively. let tcx = ecx.tcx.tcx; let ty = place.layout.ty; match ty.kind() { ty::FnDef(_, _) => { ecx.write_immediate(Immediate::Uninit, &place.into()).unwrap(); } ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char => { let scalar_int = valtree.unwrap_leaf(); debug!("writing trivial valtree {:?} to place {:?}", scalar_int, place); ecx.write_immediate(Immediate::Scalar(scalar_int.into()), &place.into()).unwrap(); } ty::Ref(_, inner_ty, _) => { let mut pointee_place = create_pointee_place(ecx, *inner_ty, valtree); debug!(?pointee_place); valtree_into_mplace(ecx, &mut pointee_place, valtree); dump_place(ecx, pointee_place.into()); intern_const_alloc_recursive(ecx, InternKind::Constant, &pointee_place).unwrap(); let imm = match inner_ty.kind() { ty::Slice(_) | ty::Str => { let len = valtree.unwrap_branch().len(); let len_scalar = Scalar::from_machine_usize(len as u64, &tcx); Immediate::ScalarPair( Scalar::from_maybe_pointer((*pointee_place).ptr, &tcx), len_scalar, ) } _ => pointee_place.to_ref(&tcx), }; debug!(?imm); ecx.write_immediate(imm, &place.into()).unwrap(); } ty::Adt(_, _) | ty::Tuple(_) | ty::Array(_, _) | ty::Str | ty::Slice(_) => { let branches = valtree.unwrap_branch(); // Need to downcast place for enums let (place_adjusted, branches, variant_idx) = match ty.kind() { ty::Adt(def, _) if def.is_enum() => { // First element of valtree corresponds to variant let scalar_int = branches[0].unwrap_leaf(); let variant_idx = VariantIdx::from_u32(scalar_int.try_to_u32().unwrap()); let variant = def.variant(variant_idx); debug!(?variant); ( place.project_downcast(ecx, variant_idx).unwrap(), &branches[1..], Some(variant_idx), ) } _ => (*place, branches, None), }; debug!(?place_adjusted, ?branches); // Create the places (by indexing into `place`) for the fields and fill // them recursively for (i, inner_valtree) in branches.iter().enumerate() { debug!(?i, ?inner_valtree); let mut place_inner = match ty.kind() { ty::Str | ty::Slice(_) => ecx.mplace_index(&place, i as u64).unwrap(), _ if !ty.is_sized(*ecx.tcx, ty::ParamEnv::empty()) && i == branches.len() - 1 => { // Note: For custom DSTs we need to manually process the last unsized field. // We created a `Pointer` for the `Allocation` of the complete sized version of // the Adt in `create_pointee_place` and now we fill that `Allocation` with the // values in the ValTree. For the unsized field we have to additionally add the meta // data. let (unsized_inner_ty, num_elems) = get_info_on_unsized_field(ty, valtree, tcx); debug!(?unsized_inner_ty); let inner_ty = match ty.kind() { ty::Adt(def, substs) => { def.variant(VariantIdx::from_u32(0)).fields[i].ty(tcx, substs) } ty::Tuple(inner_tys) => inner_tys[i], _ => bug!("unexpected unsized type {:?}", ty), }; let inner_layout = tcx.layout_of(ty::ParamEnv::empty().and(inner_ty)).unwrap(); debug!(?inner_layout); let offset = place_adjusted.layout.fields.offset(i); place .offset_with_meta( offset, MemPlaceMeta::Meta(Scalar::from_machine_usize( num_elems as u64, &tcx, )), inner_layout, &tcx, ) .unwrap() } _ => ecx.mplace_field(&place_adjusted, i).unwrap(), }; debug!(?place_inner); valtree_into_mplace(ecx, &mut place_inner, *inner_valtree); dump_place(&ecx, place_inner.into()); } debug!("dump of place_adjusted:"); dump_place(ecx, place_adjusted.into()); if let Some(variant_idx) = variant_idx { // don't forget filling the place with the discriminant of the enum ecx.write_discriminant(variant_idx, &place.into()).unwrap(); } debug!("dump of place after writing discriminant:"); dump_place(ecx, place.into()); } _ => bug!("shouldn't have created a ValTree for {:?}", ty), } } fn dump_place<'tcx>(ecx: &CompileTimeEvalContext<'tcx, 'tcx>, place: PlaceTy<'tcx>) { trace!("{:?}", ecx.dump_place(*place)); }