use super::eval_queries::{mk_eval_cx, op_to_const}; use super::machine::CompileTimeEvalContext; use super::{ValTreeCreationError, ValTreeCreationResult, VALTREE_MAX_NODES}; use crate::const_eval::CanAccessStatics; use crate::interpret::MPlaceTy; use crate::interpret::{ intern_const_alloc_recursive, ImmTy, Immediate, InternKind, MemPlaceMeta, MemoryKind, PlaceTy, Projectable, Scalar, }; use rustc_middle::mir; use rustc_middle::ty::layout::{LayoutCx, LayoutOf, TyAndLayout}; use rustc_middle::ty::{self, ScalarInt, Ty, TyCtxt}; use rustc_span::DUMMY_SP; use rustc_target::abi::{Abi, VariantIdx}; #[instrument(skip(ecx), level = "debug")] fn branches<'tcx>( ecx: &CompileTimeEvalContext<'tcx, 'tcx>, place: &MPlaceTy<'tcx>, n: usize, variant: Option, num_nodes: &mut usize, ) -> ValTreeCreationResult<'tcx> { let place = match variant { Some(variant) => ecx.project_downcast(place, variant).unwrap(), None => place.clone(), }; let variant = variant.map(|variant| Some(ty::ValTree::Leaf(ScalarInt::from(variant.as_u32())))); debug!(?place, ?variant); let mut fields = Vec::with_capacity(n); for i in 0..n { let field = ecx.project_field(&place, i).unwrap(); let valtree = const_to_valtree_inner(ecx, &field, num_nodes)?; fields.push(Some(valtree)); } // For enums, we prepend their variant index before the variant's fields so we can figure out // the variant again when just seeing a valtree. let branches = variant .into_iter() .chain(fields.into_iter()) .collect::>>() .expect("should have already checked for errors in ValTree creation"); // Have to account for ZSTs here if branches.len() == 0 { *num_nodes += 1; } Ok(ty::ValTree::Branch(ecx.tcx.arena.alloc_from_iter(branches))) } #[instrument(skip(ecx), level = "debug")] fn slice_branches<'tcx>( ecx: &CompileTimeEvalContext<'tcx, 'tcx>, place: &MPlaceTy<'tcx>, num_nodes: &mut usize, ) -> ValTreeCreationResult<'tcx> { let n = place.len(ecx).unwrap_or_else(|_| panic!("expected to use len of place {place:?}")); let mut elems = Vec::with_capacity(n as usize); for i in 0..n { let place_elem = ecx.project_index(place, i).unwrap(); let valtree = const_to_valtree_inner(ecx, &place_elem, num_nodes)?; elems.push(valtree); } Ok(ty::ValTree::Branch(ecx.tcx.arena.alloc_from_iter(elems))) } #[instrument(skip(ecx), level = "debug")] pub(crate) fn const_to_valtree_inner<'tcx>( ecx: &CompileTimeEvalContext<'tcx, 'tcx>, place: &MPlaceTy<'tcx>, num_nodes: &mut usize, ) -> ValTreeCreationResult<'tcx> { let ty = place.layout.ty; debug!("ty kind: {:?}", ty.kind()); if *num_nodes >= VALTREE_MAX_NODES { return Err(ValTreeCreationError::NodesOverflow); } match ty.kind() { ty::FnDef(..) => { *num_nodes += 1; Ok(ty::ValTree::zst()) } ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char => { let Ok(val) = ecx.read_immediate(place) else { return Err(ValTreeCreationError::Other); }; let val = val.to_scalar(); *num_nodes += 1; Ok(ty::ValTree::Leaf(val.assert_int())) } ty::RawPtr(_) => { // Not all raw pointers are allowed, as we cannot properly test them for // equality at compile-time (see `ptr_guaranteed_cmp`). // However we allow those that are just integers in disguise. // First, get the pointer. Remember it might be wide! let Ok(val) = ecx.read_immediate(place) else { return Err(ValTreeCreationError::Other); }; // We could allow wide raw pointers where both sides are integers in the future, // but for now we reject them. if matches!(val.layout.abi, Abi::ScalarPair(..)) { return Err(ValTreeCreationError::Other); } let val = val.to_scalar(); // We are in the CTFE machine, so ptr-to-int casts will fail. // This can only be `Ok` if `val` already is an integer. let Ok(val) = val.try_to_int() else { return Err(ValTreeCreationError::Other); }; // It's just a ScalarInt! Ok(ty::ValTree::Leaf(val)) } // Technically we could allow function pointers (represented as `ty::Instance`), but this is not guaranteed to // agree with runtime equality tests. ty::FnPtr(_) => Err(ValTreeCreationError::NonSupportedType), ty::Ref(_, _, _) => { let Ok(derefd_place)= ecx.deref_pointer(place) else { return Err(ValTreeCreationError::Other); }; debug!(?derefd_place); const_to_valtree_inner(ecx, &derefd_place, num_nodes) } ty::Str | ty::Slice(_) | ty::Array(_, _) => { slice_branches(ecx, place, num_nodes) } // Trait objects are not allowed in type level constants, as we have no concept for // resolving their backing type, even if we can do that at const eval time. We may // hypothetically be able to allow `dyn StructuralEq` trait objects in the future, // but it is unclear if this is useful. ty::Dynamic(..) => Err(ValTreeCreationError::NonSupportedType), ty::Tuple(elem_tys) => { branches(ecx, place, elem_tys.len(), None, num_nodes) } ty::Adt(def, _) => { if def.is_union() { return Err(ValTreeCreationError::NonSupportedType); } else if def.variants().is_empty() { bug!("uninhabited types should have errored and never gotten converted to valtree") } let Ok(variant) = ecx.read_discriminant(place) else { return Err(ValTreeCreationError::Other); }; branches(ecx, place, def.variant(variant).fields.len(), def.is_enum().then_some(variant), num_nodes) } ty::Never | ty::Error(_) | ty::Foreign(..) | ty::Infer(ty::FreshIntTy(_)) | ty::Infer(ty::FreshFloatTy(_)) // FIXME(oli-obk): we could look behind opaque types | ty::Alias(..) | ty::Param(_) | ty::Bound(..) | ty::Placeholder(..) | ty::Infer(_) // FIXME(oli-obk): we can probably encode closures just like structs | ty::Closure(..) | ty::Coroutine(..) | ty::CoroutineWitness(..) => Err(ValTreeCreationError::NonSupportedType), } } /// Valtrees don't store the `MemPlaceMeta` that all dynamically sized values have in the interpreter. /// This function reconstructs it. fn reconstruct_place_meta<'tcx>( layout: TyAndLayout<'tcx>, valtree: ty::ValTree<'tcx>, tcx: TyCtxt<'tcx>, ) -> MemPlaceMeta { if layout.is_sized() { return MemPlaceMeta::None; } let mut last_valtree = valtree; // Traverse the type, and update `last_valtree` as we go. let tail = tcx.struct_tail_with_normalize( layout.ty, |ty| ty, || { let branches = last_valtree.unwrap_branch(); last_valtree = *branches.last().unwrap(); debug!(?branches, ?last_valtree); }, ); // Sanity-check that we got a tail we support. match tail.kind() { ty::Slice(..) | ty::Str => {} _ => bug!("unsized tail of a valtree must be Slice or Str"), }; // Get the number of elements in the unsized field. let num_elems = last_valtree.unwrap_branch().len(); MemPlaceMeta::Meta(Scalar::from_target_usize(num_elems as u64, &tcx)) } #[instrument(skip(ecx), level = "debug", ret)] fn create_valtree_place<'tcx>( ecx: &mut CompileTimeEvalContext<'tcx, 'tcx>, layout: TyAndLayout<'tcx>, valtree: ty::ValTree<'tcx>, ) -> MPlaceTy<'tcx> { let meta = reconstruct_place_meta(layout, valtree, ecx.tcx.tcx); ecx.allocate_dyn(layout, MemoryKind::Stack, meta).unwrap() } /// Converts a `ValTree` to a `ConstValue`, which is needed after mir /// construction has finished. // FIXME Merge `valtree_to_const_value` and `valtree_into_mplace` into one function #[instrument(skip(tcx), level = "debug", ret)] pub fn valtree_to_const_value<'tcx>( tcx: TyCtxt<'tcx>, param_env_ty: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, valtree: ty::ValTree<'tcx>, ) -> mir::ConstValue<'tcx> { // Basic idea: We directly construct `Scalar` values from trivial `ValTree`s // (those for constants with type bool, int, uint, float or char). // For all other types we create an `MPlace` and fill that by walking // the `ValTree` and using `place_projection` and `place_field` to // create inner `MPlace`s which are filled recursively. // FIXME Does this need an example? let (param_env, ty) = param_env_ty.into_parts(); match ty.kind() { ty::FnDef(..) => { assert!(valtree.unwrap_branch().is_empty()); mir::ConstValue::ZeroSized } ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char | ty::RawPtr(_) => { match valtree { ty::ValTree::Leaf(scalar_int) => mir::ConstValue::Scalar(Scalar::Int(scalar_int)), ty::ValTree::Branch(_) => bug!( "ValTrees for Bool, Int, Uint, Float, Char or RawPtr should have the form ValTree::Leaf" ), } } ty::Ref(_, inner_ty, _) => { let mut ecx = mk_eval_cx(tcx, DUMMY_SP, param_env, CanAccessStatics::No); let imm = valtree_to_ref(&mut ecx, valtree, *inner_ty); let imm = ImmTy::from_immediate(imm, tcx.layout_of(param_env_ty).unwrap()); op_to_const(&ecx, &imm.into(), /* for diagnostics */ false) } ty::Tuple(_) | ty::Array(_, _) | ty::Adt(..) => { let layout = tcx.layout_of(param_env_ty).unwrap(); if layout.is_zst() { // Fast path to avoid some allocations. return mir::ConstValue::ZeroSized; } if layout.abi.is_scalar() && (matches!(ty.kind(), ty::Tuple(_)) || matches!(ty.kind(), ty::Adt(def, _) if def.is_struct())) { // A Scalar tuple/struct; we can avoid creating an allocation. let branches = valtree.unwrap_branch(); // Find the non-ZST field. (There can be aligned ZST!) for (i, &inner_valtree) in branches.iter().enumerate() { let field = layout.field(&LayoutCx { tcx, param_env }, i); if !field.is_zst() { return valtree_to_const_value(tcx, param_env.and(field.ty), inner_valtree); } } bug!("could not find non-ZST field during in {layout:#?}"); } let mut ecx = mk_eval_cx(tcx, DUMMY_SP, param_env, CanAccessStatics::No); // Need to create a place for this valtree. let place = create_valtree_place(&mut ecx, layout, valtree); valtree_into_mplace(&mut ecx, &place, valtree); dump_place(&ecx, &place); intern_const_alloc_recursive(&mut ecx, InternKind::Constant, &place).unwrap(); op_to_const(&ecx, &place.into(), /* for diagnostics */ false) } ty::Never | ty::Error(_) | ty::Foreign(..) | ty::Infer(ty::FreshIntTy(_)) | ty::Infer(ty::FreshFloatTy(_)) | ty::Alias(..) | ty::Param(_) | ty::Bound(..) | ty::Placeholder(..) | ty::Infer(_) | ty::Closure(..) | ty::Coroutine(..) | ty::CoroutineWitness(..) | ty::FnPtr(_) | ty::Str | ty::Slice(_) | ty::Dynamic(..) => bug!("no ValTree should have been created for type {:?}", ty.kind()), } } /// Put a valtree into memory and return a reference to that. fn valtree_to_ref<'tcx>( ecx: &mut CompileTimeEvalContext<'tcx, 'tcx>, valtree: ty::ValTree<'tcx>, pointee_ty: Ty<'tcx>, ) -> Immediate { let pointee_place = create_valtree_place(ecx, ecx.layout_of(pointee_ty).unwrap(), valtree); debug!(?pointee_place); valtree_into_mplace(ecx, &pointee_place, valtree); dump_place(ecx, &pointee_place); intern_const_alloc_recursive(ecx, InternKind::Constant, &pointee_place).unwrap(); pointee_place.to_ref(&ecx.tcx) } #[instrument(skip(ecx), level = "debug")] fn valtree_into_mplace<'tcx>( ecx: &mut CompileTimeEvalContext<'tcx, 'tcx>, place: &MPlaceTy<'tcx>, valtree: ty::ValTree<'tcx>, ) { // This will match on valtree and write the value(s) corresponding to the ValTree // inside the place recursively. let ty = place.layout.ty; match ty.kind() { ty::FnDef(_, _) => { // Zero-sized type, nothing to do. } ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char => { let scalar_int = valtree.unwrap_leaf(); debug!("writing trivial valtree {:?} to place {:?}", scalar_int, place); ecx.write_immediate(Immediate::Scalar(scalar_int.into()), place).unwrap(); } ty::Ref(_, inner_ty, _) => { let imm = valtree_to_ref(ecx, valtree, *inner_ty); debug!(?imm); ecx.write_immediate(imm, place).unwrap(); } ty::Adt(_, _) | ty::Tuple(_) | ty::Array(_, _) | ty::Str | ty::Slice(_) => { let branches = valtree.unwrap_branch(); // Need to downcast place for enums let (place_adjusted, branches, variant_idx) = match ty.kind() { ty::Adt(def, _) if def.is_enum() => { // First element of valtree corresponds to variant let scalar_int = branches[0].unwrap_leaf(); let variant_idx = VariantIdx::from_u32(scalar_int.try_to_u32().unwrap()); let variant = def.variant(variant_idx); debug!(?variant); ( ecx.project_downcast(place, variant_idx).unwrap(), &branches[1..], Some(variant_idx), ) } _ => (place.clone(), branches, None), }; debug!(?place_adjusted, ?branches); // Create the places (by indexing into `place`) for the fields and fill // them recursively for (i, inner_valtree) in branches.iter().enumerate() { debug!(?i, ?inner_valtree); let place_inner = match ty.kind() { ty::Str | ty::Slice(_) | ty::Array(..) => { ecx.project_index(place, i as u64).unwrap() } _ => ecx.project_field(&place_adjusted, i).unwrap(), }; debug!(?place_inner); valtree_into_mplace(ecx, &place_inner, *inner_valtree); dump_place(ecx, &place_inner); } debug!("dump of place_adjusted:"); dump_place(ecx, &place_adjusted); if let Some(variant_idx) = variant_idx { // don't forget filling the place with the discriminant of the enum ecx.write_discriminant(variant_idx, place).unwrap(); } debug!("dump of place after writing discriminant:"); dump_place(ecx, place); } _ => bug!("shouldn't have created a ValTree for {:?}", ty), } } fn dump_place<'tcx>(ecx: &CompileTimeEvalContext<'tcx, 'tcx>, place: &MPlaceTy<'tcx>) { trace!("{:?}", ecx.dump_place(&PlaceTy::from(place.clone()))); }