//! Functions for reading and writing discriminants of multi-variant layouts (enums and generators). use rustc_middle::ty::layout::{LayoutOf, PrimitiveExt}; use rustc_middle::{mir, ty}; use rustc_target::abi::{self, TagEncoding}; use rustc_target::abi::{VariantIdx, Variants}; use super::{ImmTy, InterpCx, InterpResult, Machine, OpTy, PlaceTy, Scalar}; impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> { /// Writes the discriminant of the given variant. #[instrument(skip(self), level = "trace")] pub fn write_discriminant( &mut self, variant_index: VariantIdx, dest: &PlaceTy<'tcx, M::Provenance>, ) -> InterpResult<'tcx> { // Layout computation excludes uninhabited variants from consideration // therefore there's no way to represent those variants in the given layout. // Essentially, uninhabited variants do not have a tag that corresponds to their // discriminant, so we cannot do anything here. // When evaluating we will always error before even getting here, but ConstProp 'executes' // dead code, so we cannot ICE here. if dest.layout.for_variant(self, variant_index).abi.is_uninhabited() { throw_ub!(UninhabitedEnumVariantWritten) } match dest.layout.variants { abi::Variants::Single { index } => { assert_eq!(index, variant_index); } abi::Variants::Multiple { tag_encoding: TagEncoding::Direct, tag: tag_layout, tag_field, .. } => { // No need to validate that the discriminant here because the // `TyAndLayout::for_variant()` call earlier already checks the variant is valid. let discr_val = dest.layout.ty.discriminant_for_variant(*self.tcx, variant_index).unwrap().val; // raw discriminants for enums are isize or bigger during // their computation, but the in-memory tag is the smallest possible // representation let size = tag_layout.size(self); let tag_val = size.truncate(discr_val); let tag_dest = self.place_field(dest, tag_field)?; self.write_scalar(Scalar::from_uint(tag_val, size), &tag_dest)?; } abi::Variants::Multiple { tag_encoding: TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start }, tag: tag_layout, tag_field, .. } => { // No need to validate that the discriminant here because the // `TyAndLayout::for_variant()` call earlier already checks the variant is valid. if variant_index != untagged_variant { let variants_start = niche_variants.start().as_u32(); let variant_index_relative = variant_index .as_u32() .checked_sub(variants_start) .expect("overflow computing relative variant idx"); // We need to use machine arithmetic when taking into account `niche_start`: // tag_val = variant_index_relative + niche_start_val let tag_layout = self.layout_of(tag_layout.primitive().to_int_ty(*self.tcx))?; let niche_start_val = ImmTy::from_uint(niche_start, tag_layout); let variant_index_relative_val = ImmTy::from_uint(variant_index_relative, tag_layout); let tag_val = self.binary_op( mir::BinOp::Add, &variant_index_relative_val, &niche_start_val, )?; // Write result. let niche_dest = self.place_field(dest, tag_field)?; self.write_immediate(*tag_val, &niche_dest)?; } } } Ok(()) } /// Read discriminant, return the runtime value as well as the variant index. /// Can also legally be called on non-enums (e.g. through the discriminant_value intrinsic)! #[instrument(skip(self), level = "trace")] pub fn read_discriminant( &self, op: &OpTy<'tcx, M::Provenance>, ) -> InterpResult<'tcx, (Scalar, VariantIdx)> { trace!("read_discriminant_value {:#?}", op.layout); // Get type and layout of the discriminant. let discr_layout = self.layout_of(op.layout.ty.discriminant_ty(*self.tcx))?; trace!("discriminant type: {:?}", discr_layout.ty); // We use "discriminant" to refer to the value associated with a particular enum variant. // This is not to be confused with its "variant index", which is just determining its position in the // declared list of variants -- they can differ with explicitly assigned discriminants. // We use "tag" to refer to how the discriminant is encoded in memory, which can be either // straight-forward (`TagEncoding::Direct`) or with a niche (`TagEncoding::Niche`). let (tag_scalar_layout, tag_encoding, tag_field) = match op.layout.variants { Variants::Single { index } => { let discr = match op.layout.ty.discriminant_for_variant(*self.tcx, index) { Some(discr) => { // This type actually has discriminants. assert_eq!(discr.ty, discr_layout.ty); Scalar::from_uint(discr.val, discr_layout.size) } None => { // On a type without actual discriminants, variant is 0. assert_eq!(index.as_u32(), 0); Scalar::from_uint(index.as_u32(), discr_layout.size) } }; return Ok((discr, index)); } Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => { (tag, tag_encoding, tag_field) } }; // There are *three* layouts that come into play here: // - The discriminant has a type for typechecking. This is `discr_layout`, and is used for // the `Scalar` we return. // - The tag (encoded discriminant) has layout `tag_layout`. This is always an integer type, // and used to interpret the value we read from the tag field. // For the return value, a cast to `discr_layout` is performed. // - The field storing the tag has a layout, which is very similar to `tag_layout` but // may be a pointer. This is `tag_val.layout`; we just use it for sanity checks. // Get layout for tag. let tag_layout = self.layout_of(tag_scalar_layout.primitive().to_int_ty(*self.tcx))?; // Read tag and sanity-check `tag_layout`. let tag_val = self.read_immediate(&self.operand_field(op, tag_field)?)?; assert_eq!(tag_layout.size, tag_val.layout.size); assert_eq!(tag_layout.abi.is_signed(), tag_val.layout.abi.is_signed()); trace!("tag value: {}", tag_val); // Figure out which discriminant and variant this corresponds to. Ok(match *tag_encoding { TagEncoding::Direct => { let scalar = tag_val.to_scalar(); // Generate a specific error if `tag_val` is not an integer. // (`tag_bits` itself is only used for error messages below.) let tag_bits = scalar .try_to_int() .map_err(|dbg_val| err_ub!(InvalidTag(dbg_val)))? .assert_bits(tag_layout.size); // Cast bits from tag layout to discriminant layout. // After the checks we did above, this cannot fail, as // discriminants are int-like. let discr_val = self.cast_from_int_like(scalar, tag_val.layout, discr_layout.ty).unwrap(); let discr_bits = discr_val.assert_bits(discr_layout.size); // Convert discriminant to variant index, and catch invalid discriminants. let index = match *op.layout.ty.kind() { ty::Adt(adt, _) => { adt.discriminants(*self.tcx).find(|(_, var)| var.val == discr_bits) } ty::Generator(def_id, substs, _) => { let substs = substs.as_generator(); substs .discriminants(def_id, *self.tcx) .find(|(_, var)| var.val == discr_bits) } _ => span_bug!(self.cur_span(), "tagged layout for non-adt non-generator"), } .ok_or_else(|| err_ub!(InvalidTag(Scalar::from_uint(tag_bits, tag_layout.size))))?; // Return the cast value, and the index. (discr_val, index.0) } TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start } => { let tag_val = tag_val.to_scalar(); // Compute the variant this niche value/"tag" corresponds to. With niche layout, // discriminant (encoded in niche/tag) and variant index are the same. let variants_start = niche_variants.start().as_u32(); let variants_end = niche_variants.end().as_u32(); let variant = match tag_val.try_to_int() { Err(dbg_val) => { // So this is a pointer then, and casting to an int failed. // Can only happen during CTFE. // The niche must be just 0, and the ptr not null, then we know this is // okay. Everything else, we conservatively reject. let ptr_valid = niche_start == 0 && variants_start == variants_end && !self.scalar_may_be_null(tag_val)?; if !ptr_valid { throw_ub!(InvalidTag(dbg_val)) } untagged_variant } Ok(tag_bits) => { let tag_bits = tag_bits.assert_bits(tag_layout.size); // We need to use machine arithmetic to get the relative variant idx: // variant_index_relative = tag_val - niche_start_val let tag_val = ImmTy::from_uint(tag_bits, tag_layout); let niche_start_val = ImmTy::from_uint(niche_start, tag_layout); let variant_index_relative_val = self.binary_op(mir::BinOp::Sub, &tag_val, &niche_start_val)?; let variant_index_relative = variant_index_relative_val.to_scalar().assert_bits(tag_val.layout.size); // Check if this is in the range that indicates an actual discriminant. if variant_index_relative <= u128::from(variants_end - variants_start) { let variant_index_relative = u32::try_from(variant_index_relative) .expect("we checked that this fits into a u32"); // Then computing the absolute variant idx should not overflow any more. let variant_index = variants_start .checked_add(variant_index_relative) .expect("overflow computing absolute variant idx"); let variants_len = op .layout .ty .ty_adt_def() .expect("tagged layout for non adt") .variants() .len(); assert!(usize::try_from(variant_index).unwrap() < variants_len); VariantIdx::from_u32(variant_index) } else { untagged_variant } } }; // Compute the size of the scalar we need to return. // No need to cast, because the variant index directly serves as discriminant and is // encoded in the tag. (Scalar::from_uint(variant.as_u32(), discr_layout.size), variant) } }) } }