//! Intrinsics and other functions that the miri engine executes without //! looking at their MIR. Intrinsics/functions supported here are shared by CTFE //! and miri. use rustc_hir::def_id::DefId; use rustc_middle::mir::{ self, interpret::{ Allocation, ConstAllocation, ConstValue, GlobalId, InterpResult, PointerArithmetic, Scalar, }, BinOp, NonDivergingIntrinsic, }; use rustc_middle::ty; use rustc_middle::ty::layout::LayoutOf as _; use rustc_middle::ty::subst::SubstsRef; use rustc_middle::ty::{Ty, TyCtxt}; use rustc_span::symbol::{sym, Symbol}; use rustc_target::abi::{Abi, Align, Primitive, Size}; use super::{ util::ensure_monomorphic_enough, CheckInAllocMsg, ImmTy, InterpCx, Machine, OpTy, PlaceTy, Pointer, }; mod caller_location; fn numeric_intrinsic(name: Symbol, bits: u128, kind: Primitive) -> Scalar { let size = match kind { Primitive::Int(integer, _) => integer.size(), _ => bug!("invalid `{}` argument: {:?}", name, bits), }; let extra = 128 - u128::from(size.bits()); let bits_out = match name { sym::ctpop => u128::from(bits.count_ones()), sym::ctlz => u128::from(bits.leading_zeros()) - extra, sym::cttz => u128::from((bits << extra).trailing_zeros()) - extra, sym::bswap => (bits << extra).swap_bytes(), sym::bitreverse => (bits << extra).reverse_bits(), _ => bug!("not a numeric intrinsic: {}", name), }; Scalar::from_uint(bits_out, size) } /// Directly returns an `Allocation` containing an absolute path representation of the given type. pub(crate) fn alloc_type_name<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> ConstAllocation<'tcx> { let path = crate::util::type_name(tcx, ty); let alloc = Allocation::from_bytes_byte_aligned_immutable(path.into_bytes()); tcx.intern_const_alloc(alloc) } /// The logic for all nullary intrinsics is implemented here. These intrinsics don't get evaluated /// inside an `InterpCx` and instead have their value computed directly from rustc internal info. pub(crate) fn eval_nullary_intrinsic<'tcx>( tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, def_id: DefId, substs: SubstsRef<'tcx>, ) -> InterpResult<'tcx, ConstValue<'tcx>> { let tp_ty = substs.type_at(0); let name = tcx.item_name(def_id); Ok(match name { sym::type_name => { ensure_monomorphic_enough(tcx, tp_ty)?; let alloc = alloc_type_name(tcx, tp_ty); ConstValue::Slice { data: alloc, start: 0, end: alloc.inner().len() } } sym::needs_drop => { ensure_monomorphic_enough(tcx, tp_ty)?; ConstValue::from_bool(tp_ty.needs_drop(tcx, param_env)) } sym::pref_align_of => { // Correctly handles non-monomorphic calls, so there is no need for ensure_monomorphic_enough. let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(e)))?; ConstValue::from_machine_usize(layout.align.pref.bytes(), &tcx) } sym::type_id => { ensure_monomorphic_enough(tcx, tp_ty)?; ConstValue::from_u64(tcx.type_id_hash(tp_ty)) } sym::variant_count => match tp_ty.kind() { // Correctly handles non-monomorphic calls, so there is no need for ensure_monomorphic_enough. ty::Adt(adt, _) => ConstValue::from_machine_usize(adt.variants().len() as u64, &tcx), ty::Alias(..) | ty::Param(_) | ty::Placeholder(_) | ty::Infer(_) => { throw_inval!(TooGeneric) } ty::Bound(_, _) => bug!("bound ty during ctfe"), ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Slice(_) | ty::RawPtr(_) | ty::Ref(_, _, _) | ty::FnDef(_, _) | ty::FnPtr(_) | ty::Dynamic(_, _, _) | ty::Closure(_, _) | ty::Generator(_, _, _) | ty::GeneratorWitness(_) | ty::Never | ty::Tuple(_) | ty::Error(_) => ConstValue::from_machine_usize(0u64, &tcx), }, other => bug!("`{}` is not a zero arg intrinsic", other), }) } impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> { /// Returns `true` if emulation happened. /// Here we implement the intrinsics that are common to all Miri instances; individual machines can add their own /// intrinsic handling. pub fn emulate_intrinsic( &mut self, instance: ty::Instance<'tcx>, args: &[OpTy<'tcx, M::Provenance>], dest: &PlaceTy<'tcx, M::Provenance>, ret: Option, ) -> InterpResult<'tcx, bool> { let substs = instance.substs; let intrinsic_name = self.tcx.item_name(instance.def_id()); // First handle intrinsics without return place. let ret = match ret { None => match intrinsic_name { sym::transmute => throw_ub_format!("transmuting to uninhabited type"), sym::abort => M::abort(self, "the program aborted execution".to_owned())?, // Unsupported diverging intrinsic. _ => return Ok(false), }, Some(p) => p, }; match intrinsic_name { sym::caller_location => { let span = self.find_closest_untracked_caller_location(); let location = self.alloc_caller_location_for_span(span); self.write_immediate(location.to_ref(self), dest)?; } sym::min_align_of_val | sym::size_of_val => { // Avoid `deref_operand` -- this is not a deref, the ptr does not have to be // dereferenceable! let place = self.ref_to_mplace(&self.read_immediate(&args[0])?)?; let (size, align) = self .size_and_align_of_mplace(&place)? .ok_or_else(|| err_unsup_format!("`extern type` does not have known layout"))?; let result = match intrinsic_name { sym::min_align_of_val => align.bytes(), sym::size_of_val => size.bytes(), _ => bug!(), }; self.write_scalar(Scalar::from_machine_usize(result, self), dest)?; } sym::pref_align_of | sym::needs_drop | sym::type_id | sym::type_name | sym::variant_count => { let gid = GlobalId { instance, promoted: None }; let ty = match intrinsic_name { sym::pref_align_of | sym::variant_count => self.tcx.types.usize, sym::needs_drop => self.tcx.types.bool, sym::type_id => self.tcx.types.u64, sym::type_name => self.tcx.mk_static_str(), _ => bug!(), }; let val = self.ctfe_query(None, |tcx| { tcx.const_eval_global_id(self.param_env, gid, Some(tcx.span)) })?; let val = self.const_val_to_op(val, ty, Some(dest.layout))?; self.copy_op(&val, dest, /*allow_transmute*/ false)?; } sym::ctpop | sym::cttz | sym::cttz_nonzero | sym::ctlz | sym::ctlz_nonzero | sym::bswap | sym::bitreverse => { let ty = substs.type_at(0); let layout_of = self.layout_of(ty)?; let val = self.read_scalar(&args[0])?; let bits = val.to_bits(layout_of.size)?; let kind = match layout_of.abi { Abi::Scalar(scalar) => scalar.primitive(), _ => span_bug!( self.cur_span(), "{} called on invalid type {:?}", intrinsic_name, ty ), }; let (nonzero, intrinsic_name) = match intrinsic_name { sym::cttz_nonzero => (true, sym::cttz), sym::ctlz_nonzero => (true, sym::ctlz), other => (false, other), }; if nonzero && bits == 0 { throw_ub_format!("`{}_nonzero` called on 0", intrinsic_name); } let out_val = numeric_intrinsic(intrinsic_name, bits, kind); self.write_scalar(out_val, dest)?; } sym::add_with_overflow | sym::sub_with_overflow | sym::mul_with_overflow => { let lhs = self.read_immediate(&args[0])?; let rhs = self.read_immediate(&args[1])?; let bin_op = match intrinsic_name { sym::add_with_overflow => BinOp::Add, sym::sub_with_overflow => BinOp::Sub, sym::mul_with_overflow => BinOp::Mul, _ => bug!(), }; self.binop_with_overflow( bin_op, /*force_overflow_checks*/ true, &lhs, &rhs, dest, )?; } sym::saturating_add | sym::saturating_sub => { let l = self.read_immediate(&args[0])?; let r = self.read_immediate(&args[1])?; let val = self.saturating_arith( if intrinsic_name == sym::saturating_add { BinOp::Add } else { BinOp::Sub }, &l, &r, )?; self.write_scalar(val, dest)?; } sym::discriminant_value => { let place = self.deref_operand(&args[0])?; let discr_val = self.read_discriminant(&place.into())?.0; self.write_scalar(discr_val, dest)?; } sym::exact_div => { let l = self.read_immediate(&args[0])?; let r = self.read_immediate(&args[1])?; self.exact_div(&l, &r, dest)?; } sym::unchecked_shl | sym::unchecked_shr | sym::unchecked_add | sym::unchecked_sub | sym::unchecked_mul | sym::unchecked_div | sym::unchecked_rem => { let l = self.read_immediate(&args[0])?; let r = self.read_immediate(&args[1])?; let bin_op = match intrinsic_name { sym::unchecked_shl => BinOp::Shl, sym::unchecked_shr => BinOp::Shr, sym::unchecked_add => BinOp::Add, sym::unchecked_sub => BinOp::Sub, sym::unchecked_mul => BinOp::Mul, sym::unchecked_div => BinOp::Div, sym::unchecked_rem => BinOp::Rem, _ => bug!(), }; let (val, overflowed, _ty) = self.overflowing_binary_op(bin_op, &l, &r)?; if overflowed { let layout = self.layout_of(substs.type_at(0))?; let r_val = r.to_scalar().to_bits(layout.size)?; if let sym::unchecked_shl | sym::unchecked_shr = intrinsic_name { throw_ub_format!("overflowing shift by {} in `{}`", r_val, intrinsic_name); } else { throw_ub_format!("overflow executing `{}`", intrinsic_name); } } self.write_scalar(val, dest)?; } sym::rotate_left | sym::rotate_right => { // rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW)) // rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW)) let layout = self.layout_of(substs.type_at(0))?; let val = self.read_scalar(&args[0])?; let val_bits = val.to_bits(layout.size)?; let raw_shift = self.read_scalar(&args[1])?; let raw_shift_bits = raw_shift.to_bits(layout.size)?; let width_bits = u128::from(layout.size.bits()); let shift_bits = raw_shift_bits % width_bits; let inv_shift_bits = (width_bits - shift_bits) % width_bits; let result_bits = if intrinsic_name == sym::rotate_left { (val_bits << shift_bits) | (val_bits >> inv_shift_bits) } else { (val_bits >> shift_bits) | (val_bits << inv_shift_bits) }; let truncated_bits = self.truncate(result_bits, layout); let result = Scalar::from_uint(truncated_bits, layout.size); self.write_scalar(result, dest)?; } sym::copy => { self.copy_intrinsic(&args[0], &args[1], &args[2], /*nonoverlapping*/ false)?; } sym::write_bytes => { self.write_bytes_intrinsic(&args[0], &args[1], &args[2])?; } sym::offset => { let ptr = self.read_pointer(&args[0])?; let offset_count = self.read_machine_isize(&args[1])?; let pointee_ty = substs.type_at(0); let offset_ptr = self.ptr_offset_inbounds(ptr, pointee_ty, offset_count)?; self.write_pointer(offset_ptr, dest)?; } sym::arith_offset => { let ptr = self.read_pointer(&args[0])?; let offset_count = self.read_machine_isize(&args[1])?; let pointee_ty = substs.type_at(0); let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap(); let offset_bytes = offset_count.wrapping_mul(pointee_size); let offset_ptr = ptr.wrapping_signed_offset(offset_bytes, self); self.write_pointer(offset_ptr, dest)?; } sym::ptr_offset_from | sym::ptr_offset_from_unsigned => { let a = self.read_pointer(&args[0])?; let b = self.read_pointer(&args[1])?; let usize_layout = self.layout_of(self.tcx.types.usize)?; let isize_layout = self.layout_of(self.tcx.types.isize)?; // Get offsets for both that are at least relative to the same base. let (a_offset, b_offset) = match (self.ptr_try_get_alloc_id(a), self.ptr_try_get_alloc_id(b)) { (Err(a), Err(b)) => { // Neither pointer points to an allocation. // If these are inequal or null, this *will* fail the deref check below. (a, b) } (Err(_), _) | (_, Err(_)) => { // We managed to find a valid allocation for one pointer, but not the other. // That means they are definitely not pointing to the same allocation. throw_ub_format!( "`{}` called on pointers into different allocations", intrinsic_name ); } (Ok((a_alloc_id, a_offset, _)), Ok((b_alloc_id, b_offset, _))) => { // Found allocation for both. They must be into the same allocation. if a_alloc_id != b_alloc_id { throw_ub_format!( "`{}` called on pointers into different allocations", intrinsic_name ); } // Use these offsets for distance calculation. (a_offset.bytes(), b_offset.bytes()) } }; // Compute distance. let dist = { // Addresses are unsigned, so this is a `usize` computation. We have to do the // overflow check separately anyway. let (val, overflowed, _ty) = { let a_offset = ImmTy::from_uint(a_offset, usize_layout); let b_offset = ImmTy::from_uint(b_offset, usize_layout); self.overflowing_binary_op(BinOp::Sub, &a_offset, &b_offset)? }; if overflowed { // a < b if intrinsic_name == sym::ptr_offset_from_unsigned { throw_ub_format!( "`{}` called when first pointer has smaller offset than second: {} < {}", intrinsic_name, a_offset, b_offset, ); } // The signed form of the intrinsic allows this. If we interpret the // difference as isize, we'll get the proper signed difference. If that // seems *positive*, they were more than isize::MAX apart. let dist = val.to_machine_isize(self)?; if dist >= 0 { throw_ub_format!( "`{}` called when first pointer is too far before second", intrinsic_name ); } dist } else { // b >= a let dist = val.to_machine_isize(self)?; // If converting to isize produced a *negative* result, we had an overflow // because they were more than isize::MAX apart. if dist < 0 { throw_ub_format!( "`{}` called when first pointer is too far ahead of second", intrinsic_name ); } dist } }; // Check that the range between them is dereferenceable ("in-bounds or one past the // end of the same allocation"). This is like the check in ptr_offset_inbounds. let min_ptr = if dist >= 0 { b } else { a }; self.check_ptr_access_align( min_ptr, Size::from_bytes(dist.unsigned_abs()), Align::ONE, CheckInAllocMsg::OffsetFromTest, )?; // Perform division by size to compute return value. let ret_layout = if intrinsic_name == sym::ptr_offset_from_unsigned { assert!(0 <= dist && dist <= self.machine_isize_max()); usize_layout } else { assert!(self.machine_isize_min() <= dist && dist <= self.machine_isize_max()); isize_layout }; let pointee_layout = self.layout_of(substs.type_at(0))?; // If ret_layout is unsigned, we checked that so is the distance, so we are good. let val = ImmTy::from_int(dist, ret_layout); let size = ImmTy::from_int(pointee_layout.size.bytes(), ret_layout); self.exact_div(&val, &size, dest)?; } sym::transmute => { self.copy_op(&args[0], dest, /*allow_transmute*/ true)?; } sym::assert_inhabited | sym::assert_zero_valid | sym::assert_mem_uninitialized_valid => { let ty = instance.substs.type_at(0); let layout = self.layout_of(ty)?; // For *all* intrinsics we first check `is_uninhabited` to give a more specific // error message. if layout.abi.is_uninhabited() { // The run-time intrinsic panics just to get a good backtrace; here we abort // since there is no problem showing a backtrace even for aborts. M::abort( self, format!( "aborted execution: attempted to instantiate uninhabited type `{}`", ty ), )?; } if intrinsic_name == sym::assert_zero_valid { let should_panic = !self.tcx.permits_zero_init(layout); if should_panic { M::abort( self, format!( "aborted execution: attempted to zero-initialize type `{}`, which is invalid", ty ), )?; } } if intrinsic_name == sym::assert_mem_uninitialized_valid { let should_panic = !self.tcx.permits_uninit_init(layout); if should_panic { M::abort( self, format!( "aborted execution: attempted to leave type `{}` uninitialized, which is invalid", ty ), )?; } } } sym::simd_insert => { let index = u64::from(self.read_scalar(&args[1])?.to_u32()?); let elem = &args[2]; let (input, input_len) = self.operand_to_simd(&args[0])?; let (dest, dest_len) = self.place_to_simd(dest)?; assert_eq!(input_len, dest_len, "Return vector length must match input length"); assert!( index < dest_len, "Index `{}` must be in bounds of vector with length {}`", index, dest_len ); for i in 0..dest_len { let place = self.mplace_index(&dest, i)?; let value = if i == index { elem.clone() } else { self.mplace_index(&input, i)?.into() }; self.copy_op(&value, &place.into(), /*allow_transmute*/ false)?; } } sym::simd_extract => { let index = u64::from(self.read_scalar(&args[1])?.to_u32()?); let (input, input_len) = self.operand_to_simd(&args[0])?; assert!( index < input_len, "index `{}` must be in bounds of vector with length `{}`", index, input_len ); self.copy_op( &self.mplace_index(&input, index)?.into(), dest, /*allow_transmute*/ false, )?; } sym::likely | sym::unlikely | sym::black_box => { // These just return their argument self.copy_op(&args[0], dest, /*allow_transmute*/ false)?; } sym::raw_eq => { let result = self.raw_eq_intrinsic(&args[0], &args[1])?; self.write_scalar(result, dest)?; } sym::vtable_size => { let ptr = self.read_pointer(&args[0])?; let (size, _align) = self.get_vtable_size_and_align(ptr)?; self.write_scalar(Scalar::from_machine_usize(size.bytes(), self), dest)?; } sym::vtable_align => { let ptr = self.read_pointer(&args[0])?; let (_size, align) = self.get_vtable_size_and_align(ptr)?; self.write_scalar(Scalar::from_machine_usize(align.bytes(), self), dest)?; } _ => return Ok(false), } trace!("{:?}", self.dump_place(**dest)); self.go_to_block(ret); Ok(true) } pub(super) fn emulate_nondiverging_intrinsic( &mut self, intrinsic: &NonDivergingIntrinsic<'tcx>, ) -> InterpResult<'tcx> { match intrinsic { NonDivergingIntrinsic::Assume(op) => { let op = self.eval_operand(op, None)?; let cond = self.read_scalar(&op)?.to_bool()?; if !cond { throw_ub_format!("`assume` called with `false`"); } Ok(()) } NonDivergingIntrinsic::CopyNonOverlapping(mir::CopyNonOverlapping { count, src, dst, }) => { let src = self.eval_operand(src, None)?; let dst = self.eval_operand(dst, None)?; let count = self.eval_operand(count, None)?; self.copy_intrinsic(&src, &dst, &count, /* nonoverlapping */ true) } } } pub fn exact_div( &mut self, a: &ImmTy<'tcx, M::Provenance>, b: &ImmTy<'tcx, M::Provenance>, dest: &PlaceTy<'tcx, M::Provenance>, ) -> InterpResult<'tcx> { // Performs an exact division, resulting in undefined behavior where // `x % y != 0` or `y == 0` or `x == T::MIN && y == -1`. // First, check x % y != 0 (or if that computation overflows). let (res, overflow, _ty) = self.overflowing_binary_op(BinOp::Rem, &a, &b)?; assert!(!overflow); // All overflow is UB, so this should never return on overflow. if res.assert_bits(a.layout.size) != 0 { throw_ub_format!("exact_div: {} cannot be divided by {} without remainder", a, b) } // `Rem` says this is all right, so we can let `Div` do its job. self.binop_ignore_overflow(BinOp::Div, &a, &b, dest) } pub fn saturating_arith( &self, mir_op: BinOp, l: &ImmTy<'tcx, M::Provenance>, r: &ImmTy<'tcx, M::Provenance>, ) -> InterpResult<'tcx, Scalar> { assert!(matches!(mir_op, BinOp::Add | BinOp::Sub)); let (val, overflowed, _ty) = self.overflowing_binary_op(mir_op, l, r)?; Ok(if overflowed { let size = l.layout.size; let num_bits = size.bits(); if l.layout.abi.is_signed() { // For signed ints the saturated value depends on the sign of the first // term since the sign of the second term can be inferred from this and // the fact that the operation has overflowed (if either is 0 no // overflow can occur) let first_term: u128 = l.to_scalar().to_bits(l.layout.size)?; let first_term_positive = first_term & (1 << (num_bits - 1)) == 0; if first_term_positive { // Negative overflow not possible since the positive first term // can only increase an (in range) negative term for addition // or corresponding negated positive term for subtraction Scalar::from_int(size.signed_int_max(), size) } else { // Positive overflow not possible for similar reason // max negative Scalar::from_int(size.signed_int_min(), size) } } else { // unsigned if matches!(mir_op, BinOp::Add) { // max unsigned Scalar::from_uint(size.unsigned_int_max(), size) } else { // underflow to 0 Scalar::from_uint(0u128, size) } } } else { val }) } /// Offsets a pointer by some multiple of its type, returning an error if the pointer leaves its /// allocation. For integer pointers, we consider each of them their own tiny allocation of size /// 0, so offset-by-0 (and only 0) is okay -- except that null cannot be offset by _any_ value. pub fn ptr_offset_inbounds( &self, ptr: Pointer>, pointee_ty: Ty<'tcx>, offset_count: i64, ) -> InterpResult<'tcx, Pointer>> { // We cannot overflow i64 as a type's size must be <= isize::MAX. let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap(); // The computed offset, in bytes, must not overflow an isize. // `checked_mul` enforces a too small bound, but no actual allocation can be big enough for // the difference to be noticeable. let offset_bytes = offset_count.checked_mul(pointee_size).ok_or(err_ub!(PointerArithOverflow))?; // The offset being in bounds cannot rely on "wrapping around" the address space. // So, first rule out overflows in the pointer arithmetic. let offset_ptr = ptr.signed_offset(offset_bytes, self)?; // ptr and offset_ptr must be in bounds of the same allocated object. This means all of the // memory between these pointers must be accessible. Note that we do not require the // pointers to be properly aligned (unlike a read/write operation). let min_ptr = if offset_bytes >= 0 { ptr } else { offset_ptr }; // This call handles checking for integer/null pointers. self.check_ptr_access_align( min_ptr, Size::from_bytes(offset_bytes.unsigned_abs()), Align::ONE, CheckInAllocMsg::PointerArithmeticTest, )?; Ok(offset_ptr) } /// Copy `count*size_of::()` many bytes from `*src` to `*dst`. pub(crate) fn copy_intrinsic( &mut self, src: &OpTy<'tcx, >::Provenance>, dst: &OpTy<'tcx, >::Provenance>, count: &OpTy<'tcx, >::Provenance>, nonoverlapping: bool, ) -> InterpResult<'tcx> { let count = self.read_machine_usize(&count)?; let layout = self.layout_of(src.layout.ty.builtin_deref(true).unwrap().ty)?; let (size, align) = (layout.size, layout.align.abi); // `checked_mul` enforces a too small bound (the correct one would probably be machine_isize_max), // but no actual allocation can be big enough for the difference to be noticeable. let size = size.checked_mul(count, self).ok_or_else(|| { err_ub_format!( "overflow computing total size of `{}`", if nonoverlapping { "copy_nonoverlapping" } else { "copy" } ) })?; let src = self.read_pointer(&src)?; let dst = self.read_pointer(&dst)?; self.mem_copy(src, align, dst, align, size, nonoverlapping) } pub(crate) fn write_bytes_intrinsic( &mut self, dst: &OpTy<'tcx, >::Provenance>, byte: &OpTy<'tcx, >::Provenance>, count: &OpTy<'tcx, >::Provenance>, ) -> InterpResult<'tcx> { let layout = self.layout_of(dst.layout.ty.builtin_deref(true).unwrap().ty)?; let dst = self.read_pointer(&dst)?; let byte = self.read_scalar(&byte)?.to_u8()?; let count = self.read_machine_usize(&count)?; // `checked_mul` enforces a too small bound (the correct one would probably be machine_isize_max), // but no actual allocation can be big enough for the difference to be noticeable. let len = layout .size .checked_mul(count, self) .ok_or_else(|| err_ub_format!("overflow computing total size of `write_bytes`"))?; let bytes = std::iter::repeat(byte).take(len.bytes_usize()); self.write_bytes_ptr(dst, bytes) } pub(crate) fn raw_eq_intrinsic( &mut self, lhs: &OpTy<'tcx, >::Provenance>, rhs: &OpTy<'tcx, >::Provenance>, ) -> InterpResult<'tcx, Scalar> { let layout = self.layout_of(lhs.layout.ty.builtin_deref(true).unwrap().ty)?; assert!(layout.is_sized()); let get_bytes = |this: &InterpCx<'mir, 'tcx, M>, op: &OpTy<'tcx, >::Provenance>, size| -> InterpResult<'tcx, &[u8]> { let ptr = this.read_pointer(op)?; let Some(alloc_ref) = self.get_ptr_alloc(ptr, size, Align::ONE)? else { // zero-sized access return Ok(&[]); }; if alloc_ref.has_provenance() { throw_ub_format!("`raw_eq` on bytes with provenance"); } alloc_ref.get_bytes_strip_provenance() }; let lhs_bytes = get_bytes(self, lhs, layout.size)?; let rhs_bytes = get_bytes(self, rhs, layout.size)?; Ok(Scalar::from_bool(lhs_bytes == rhs_bytes)) } }