//! A pass that promotes borrows of constant rvalues. //! //! The rvalues considered constant are trees of temps, //! each with exactly one initialization, and holding //! a constant value with no interior mutability. //! They are placed into a new MIR constant body in //! `promoted` and the borrow rvalue is replaced with //! a `Literal::Promoted` using the index into `promoted` //! of that constant MIR. //! //! This pass assumes that every use is dominated by an //! initialization and can otherwise silence errors, if //! move analysis runs after promotion on broken MIR. use rustc_hir as hir; use rustc_middle::mir; use rustc_middle::mir::traversal::ReversePostorderIter; use rustc_middle::mir::visit::{MutVisitor, MutatingUseContext, PlaceContext, Visitor}; use rustc_middle::mir::*; use rustc_middle::ty::subst::InternalSubsts; use rustc_middle::ty::{self, List, TyCtxt, TypeVisitableExt}; use rustc_span::Span; use rustc_index::vec::{Idx, IndexVec}; use std::cell::Cell; use std::{cmp, iter, mem}; use crate::transform::check_consts::{qualifs, ConstCx}; /// A `MirPass` for promotion. /// /// Promotion is the extraction of promotable temps into separate MIR bodies so they can have /// `'static` lifetime. /// /// After this pass is run, `promoted_fragments` will hold the MIR body corresponding to each /// newly created `Constant`. #[derive(Default)] pub struct PromoteTemps<'tcx> { pub promoted_fragments: Cell>>, } impl<'tcx> MirPass<'tcx> for PromoteTemps<'tcx> { fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { // There's not really any point in promoting errorful MIR. // // This does not include MIR that failed const-checking, which we still try to promote. if let Err(_) = body.return_ty().error_reported() { debug!("PromoteTemps: MIR had errors"); return; } if body.source.promoted.is_some() { return; } let mut rpo = traversal::reverse_postorder(body); let ccx = ConstCx::new(tcx, body); let (mut temps, all_candidates) = collect_temps_and_candidates(&ccx, &mut rpo); let promotable_candidates = validate_candidates(&ccx, &mut temps, &all_candidates); let promoted = promote_candidates(body, tcx, temps, promotable_candidates); self.promoted_fragments.set(promoted); } } /// State of a temporary during collection and promotion. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub enum TempState { /// No references to this temp. Undefined, /// One direct assignment and any number of direct uses. /// A borrow of this temp is promotable if the assigned /// value is qualified as constant. Defined { location: Location, uses: usize, valid: Result<(), ()> }, /// Any other combination of assignments/uses. Unpromotable, /// This temp was part of an rvalue which got extracted /// during promotion and needs cleanup. PromotedOut, } impl TempState { pub fn is_promotable(&self) -> bool { debug!("is_promotable: self={:?}", self); matches!(self, TempState::Defined { .. }) } } /// A "root candidate" for promotion, which will become the /// returned value in a promoted MIR, unless it's a subset /// of a larger candidate. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct Candidate { location: Location, } struct Collector<'a, 'tcx> { ccx: &'a ConstCx<'a, 'tcx>, temps: IndexVec, candidates: Vec, } impl<'tcx> Visitor<'tcx> for Collector<'_, 'tcx> { fn visit_local(&mut self, index: Local, context: PlaceContext, location: Location) { debug!("visit_local: index={:?} context={:?} location={:?}", index, context, location); // We're only interested in temporaries and the return place match self.ccx.body.local_kind(index) { LocalKind::Temp | LocalKind::ReturnPointer => {} LocalKind::Arg | LocalKind::Var => return, } // Ignore drops, if the temp gets promoted, // then it's constant and thus drop is noop. // Non-uses are also irrelevant. if context.is_drop() || !context.is_use() { debug!( "visit_local: context.is_drop={:?} context.is_use={:?}", context.is_drop(), context.is_use(), ); return; } let temp = &mut self.temps[index]; debug!("visit_local: temp={:?}", temp); if *temp == TempState::Undefined { match context { PlaceContext::MutatingUse(MutatingUseContext::Store) | PlaceContext::MutatingUse(MutatingUseContext::Call) => { *temp = TempState::Defined { location, uses: 0, valid: Err(()) }; return; } _ => { /* mark as unpromotable below */ } } } else if let TempState::Defined { uses, .. } = temp { // We always allow borrows, even mutable ones, as we need // to promote mutable borrows of some ZSTs e.g., `&mut []`. let allowed_use = match context { PlaceContext::MutatingUse(MutatingUseContext::Borrow) | PlaceContext::NonMutatingUse(_) => true, PlaceContext::MutatingUse(_) | PlaceContext::NonUse(_) => false, }; debug!("visit_local: allowed_use={:?}", allowed_use); if allowed_use { *uses += 1; return; } /* mark as unpromotable below */ } *temp = TempState::Unpromotable; } fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) { self.super_rvalue(rvalue, location); match *rvalue { Rvalue::Ref(..) => { self.candidates.push(Candidate { location }); } _ => {} } } } pub fn collect_temps_and_candidates<'tcx>( ccx: &ConstCx<'_, 'tcx>, rpo: &mut ReversePostorderIter<'_, 'tcx>, ) -> (IndexVec, Vec) { let mut collector = Collector { temps: IndexVec::from_elem(TempState::Undefined, &ccx.body.local_decls), candidates: vec![], ccx, }; for (bb, data) in rpo { collector.visit_basic_block_data(bb, data); } (collector.temps, collector.candidates) } /// Checks whether locals that appear in a promotion context (`Candidate`) are actually promotable. /// /// This wraps an `Item`, and has access to all fields of that `Item` via `Deref` coercion. struct Validator<'a, 'tcx> { ccx: &'a ConstCx<'a, 'tcx>, temps: &'a mut IndexVec, } impl<'a, 'tcx> std::ops::Deref for Validator<'a, 'tcx> { type Target = ConstCx<'a, 'tcx>; fn deref(&self) -> &Self::Target { &self.ccx } } struct Unpromotable; impl<'tcx> Validator<'_, 'tcx> { fn validate_candidate(&mut self, candidate: Candidate) -> Result<(), Unpromotable> { let loc = candidate.location; let statement = &self.body[loc.block].statements[loc.statement_index]; match &statement.kind { StatementKind::Assign(box (_, Rvalue::Ref(_, kind, place))) => { // We can only promote interior borrows of promotable temps (non-temps // don't get promoted anyway). self.validate_local(place.local)?; // The reference operation itself must be promotable. // (Needs to come after `validate_local` to avoid ICEs.) self.validate_ref(*kind, place)?; // We do not check all the projections (they do not get promoted anyway), // but we do stay away from promoting anything involving a dereference. if place.projection.contains(&ProjectionElem::Deref) { return Err(Unpromotable); } Ok(()) } _ => bug!(), } } // FIXME(eddyb) maybe cache this? fn qualif_local(&mut self, local: Local) -> bool { if let TempState::Defined { location: loc, .. } = self.temps[local] { let num_stmts = self.body[loc.block].statements.len(); if loc.statement_index < num_stmts { let statement = &self.body[loc.block].statements[loc.statement_index]; match &statement.kind { StatementKind::Assign(box (_, rhs)) => qualifs::in_rvalue::( &self.ccx, &mut |l| self.qualif_local::(l), rhs, ), _ => { span_bug!( statement.source_info.span, "{:?} is not an assignment", statement ); } } } else { let terminator = self.body[loc.block].terminator(); match &terminator.kind { TerminatorKind::Call { .. } => { let return_ty = self.body.local_decls[local].ty; Q::in_any_value_of_ty(&self.ccx, return_ty) } kind => { span_bug!(terminator.source_info.span, "{:?} not promotable", kind); } } } } else { false } } fn validate_local(&mut self, local: Local) -> Result<(), Unpromotable> { if let TempState::Defined { location: loc, uses, valid } = self.temps[local] { // We cannot promote things that need dropping, since the promoted value // would not get dropped. if self.qualif_local::(local) { return Err(Unpromotable); } valid.or_else(|_| { let ok = { let block = &self.body[loc.block]; let num_stmts = block.statements.len(); if loc.statement_index < num_stmts { let statement = &block.statements[loc.statement_index]; match &statement.kind { StatementKind::Assign(box (_, rhs)) => self.validate_rvalue(rhs), _ => { span_bug!( statement.source_info.span, "{:?} is not an assignment", statement ); } } } else { let terminator = block.terminator(); match &terminator.kind { TerminatorKind::Call { func, args, .. } => { self.validate_call(func, args) } TerminatorKind::Yield { .. } => Err(Unpromotable), kind => { span_bug!(terminator.source_info.span, "{:?} not promotable", kind); } } } }; self.temps[local] = match ok { Ok(()) => TempState::Defined { location: loc, uses, valid: Ok(()) }, Err(_) => TempState::Unpromotable, }; ok }) } else { Err(Unpromotable) } } fn validate_place(&mut self, place: PlaceRef<'tcx>) -> Result<(), Unpromotable> { match place.last_projection() { None => self.validate_local(place.local), Some((place_base, elem)) => { // Validate topmost projection, then recurse. match elem { ProjectionElem::Deref => { let mut promotable = false; // When a static is used by-value, that gets desugared to `*STATIC_ADDR`, // and we need to be able to promote this. So check if this deref matches // that specific pattern. // We need to make sure this is a `Deref` of a local with no further projections. // Discussion can be found at // https://github.com/rust-lang/rust/pull/74945#discussion_r463063247 if let Some(local) = place_base.as_local() { if let TempState::Defined { location, .. } = self.temps[local] { let def_stmt = self.body[location.block] .statements .get(location.statement_index); if let Some(Statement { kind: StatementKind::Assign(box ( _, Rvalue::Use(Operand::Constant(c)), )), .. }) = def_stmt { if let Some(did) = c.check_static_ptr(self.tcx) { // Evaluating a promoted may not read statics except if it got // promoted from a static (this is a CTFE check). So we // can only promote static accesses inside statics. if let Some(hir::ConstContext::Static(..)) = self.const_kind { if !self.tcx.is_thread_local_static(did) { promotable = true; } } } } } } if !promotable { return Err(Unpromotable); } } ProjectionElem::OpaqueCast(..) | ProjectionElem::Downcast(..) => { return Err(Unpromotable); } ProjectionElem::ConstantIndex { .. } | ProjectionElem::Subslice { .. } => {} ProjectionElem::Index(local) => { let mut promotable = false; // Only accept if we can predict the index and are indexing an array. let val = if let TempState::Defined { location: loc, .. } = self.temps[local] { let block = &self.body[loc.block]; if loc.statement_index < block.statements.len() { let statement = &block.statements[loc.statement_index]; match &statement.kind { StatementKind::Assign(box ( _, Rvalue::Use(Operand::Constant(c)), )) => c.literal.try_eval_target_usize(self.tcx, self.param_env), _ => None, } } else { None } } else { None }; if let Some(idx) = val { // Determine the type of the thing we are indexing. let ty = place_base.ty(self.body, self.tcx).ty; match ty.kind() { ty::Array(_, len) => { // It's an array; determine its length. if let Some(len) = len.try_eval_target_usize(self.tcx, self.param_env) { // If the index is in-bounds, go ahead. if idx < len { promotable = true; } } } _ => {} } } if !promotable { return Err(Unpromotable); } self.validate_local(local)?; } ProjectionElem::Field(..) => { let base_ty = place_base.ty(self.body, self.tcx).ty; if base_ty.is_union() { // No promotion of union field accesses. return Err(Unpromotable); } } } self.validate_place(place_base) } } } fn validate_operand(&mut self, operand: &Operand<'tcx>) -> Result<(), Unpromotable> { match operand { Operand::Copy(place) | Operand::Move(place) => self.validate_place(place.as_ref()), // The qualifs for a constant (e.g. `HasMutInterior`) are checked in // `validate_rvalue` upon access. Operand::Constant(c) => { if let Some(def_id) = c.check_static_ptr(self.tcx) { // Only allow statics (not consts) to refer to other statics. // FIXME(eddyb) does this matter at all for promotion? // FIXME(RalfJung) it makes little sense to not promote this in `fn`/`const fn`, // and in `const` this cannot occur anyway. The only concern is that we might // promote even `let x = &STATIC` which would be useless, but this applies to // promotion inside statics as well. let is_static = matches!(self.const_kind, Some(hir::ConstContext::Static(_))); if !is_static { return Err(Unpromotable); } let is_thread_local = self.tcx.is_thread_local_static(def_id); if is_thread_local { return Err(Unpromotable); } } Ok(()) } } } fn validate_ref(&mut self, kind: BorrowKind, place: &Place<'tcx>) -> Result<(), Unpromotable> { match kind { // Reject these borrow types just to be safe. // FIXME(RalfJung): could we allow them? Should we? No point in it until we have a usecase. BorrowKind::Shallow | BorrowKind::Unique => return Err(Unpromotable), BorrowKind::Shared => { let has_mut_interior = self.qualif_local::(place.local); if has_mut_interior { return Err(Unpromotable); } } BorrowKind::Mut { .. } => { let ty = place.ty(self.body, self.tcx).ty; // In theory, any zero-sized value could be borrowed // mutably without consequences. However, only &mut [] // is allowed right now. if let ty::Array(_, len) = ty.kind() { match len.try_eval_target_usize(self.tcx, self.param_env) { Some(0) => {} _ => return Err(Unpromotable), } } else { return Err(Unpromotable); } } } Ok(()) } fn validate_rvalue(&mut self, rvalue: &Rvalue<'tcx>) -> Result<(), Unpromotable> { match rvalue { Rvalue::Use(operand) | Rvalue::Repeat(operand, _) => { self.validate_operand(operand)?; } Rvalue::CopyForDeref(place) => { let op = &Operand::Copy(*place); self.validate_operand(op)? } Rvalue::Discriminant(place) | Rvalue::Len(place) => { self.validate_place(place.as_ref())? } Rvalue::ThreadLocalRef(_) => return Err(Unpromotable), // ptr-to-int casts are not possible in consts and thus not promotable Rvalue::Cast(CastKind::PointerExposeAddress, _, _) => return Err(Unpromotable), // all other casts including int-to-ptr casts are fine, they just use the integer value // at pointer type. Rvalue::Cast(_, operand, _) => { self.validate_operand(operand)?; } Rvalue::NullaryOp(op, _) => match op { NullOp::SizeOf => {} NullOp::AlignOf => {} }, Rvalue::ShallowInitBox(_, _) => return Err(Unpromotable), Rvalue::UnaryOp(op, operand) => { match op { // These operations can never fail. UnOp::Neg | UnOp::Not => {} } self.validate_operand(operand)?; } Rvalue::BinaryOp(op, box (lhs, rhs)) | Rvalue::CheckedBinaryOp(op, box (lhs, rhs)) => { let op = *op; let lhs_ty = lhs.ty(self.body, self.tcx); if let ty::RawPtr(_) | ty::FnPtr(..) = lhs_ty.kind() { // Raw and fn pointer operations are not allowed inside consts and thus not promotable. assert!(matches!( op, BinOp::Eq | BinOp::Ne | BinOp::Le | BinOp::Lt | BinOp::Ge | BinOp::Gt | BinOp::Offset )); return Err(Unpromotable); } match op { BinOp::Div | BinOp::Rem => { if lhs_ty.is_integral() { // Integer division: the RHS must be a non-zero const. let const_val = match rhs { Operand::Constant(c) => { c.literal.try_eval_bits(self.tcx, self.param_env, lhs_ty) } _ => None, }; match const_val { Some(x) if x != 0 => {} // okay _ => return Err(Unpromotable), // value not known or 0 -- not okay } } } // The remaining operations can never fail. BinOp::Eq | BinOp::Ne | BinOp::Le | BinOp::Lt | BinOp::Ge | BinOp::Gt | BinOp::Offset | BinOp::Add | BinOp::Sub | BinOp::Mul | BinOp::BitXor | BinOp::BitAnd | BinOp::BitOr | BinOp::Shl | BinOp::Shr => {} } self.validate_operand(lhs)?; self.validate_operand(rhs)?; } Rvalue::AddressOf(_, place) => { // We accept `&raw *`, i.e., raw reborrows -- creating a raw pointer is // no problem, only using it is. if let Some((place_base, ProjectionElem::Deref)) = place.as_ref().last_projection() { let base_ty = place_base.ty(self.body, self.tcx).ty; if let ty::Ref(..) = base_ty.kind() { return self.validate_place(place_base); } } return Err(Unpromotable); } Rvalue::Ref(_, kind, place) => { // Special-case reborrows to be more like a copy of the reference. let mut place_simplified = place.as_ref(); if let Some((place_base, ProjectionElem::Deref)) = place_simplified.last_projection() { let base_ty = place_base.ty(self.body, self.tcx).ty; if let ty::Ref(..) = base_ty.kind() { place_simplified = place_base; } } self.validate_place(place_simplified)?; // Check that the reference is fine (using the original place!). // (Needs to come after `validate_place` to avoid ICEs.) self.validate_ref(*kind, place)?; } Rvalue::Aggregate(_, operands) => { for o in operands { self.validate_operand(o)?; } } } Ok(()) } fn validate_call( &mut self, callee: &Operand<'tcx>, args: &[Operand<'tcx>], ) -> Result<(), Unpromotable> { let fn_ty = callee.ty(self.body, self.tcx); // Inside const/static items, we promote all (eligible) function calls. // Everywhere else, we require `#[rustc_promotable]` on the callee. let promote_all_const_fn = matches!( self.const_kind, Some(hir::ConstContext::Static(_) | hir::ConstContext::Const) ); if !promote_all_const_fn { if let ty::FnDef(def_id, _) = *fn_ty.kind() { // Never promote runtime `const fn` calls of // functions without `#[rustc_promotable]`. if !self.tcx.is_promotable_const_fn(def_id) { return Err(Unpromotable); } } } let is_const_fn = match *fn_ty.kind() { ty::FnDef(def_id, _) => self.tcx.is_const_fn_raw(def_id), _ => false, }; if !is_const_fn { return Err(Unpromotable); } self.validate_operand(callee)?; for arg in args { self.validate_operand(arg)?; } Ok(()) } } // FIXME(eddyb) remove the differences for promotability in `static`, `const`, `const fn`. pub fn validate_candidates( ccx: &ConstCx<'_, '_>, temps: &mut IndexVec, candidates: &[Candidate], ) -> Vec { let mut validator = Validator { ccx, temps }; candidates .iter() .copied() .filter(|&candidate| validator.validate_candidate(candidate).is_ok()) .collect() } struct Promoter<'a, 'tcx> { tcx: TyCtxt<'tcx>, source: &'a mut Body<'tcx>, promoted: Body<'tcx>, temps: &'a mut IndexVec, extra_statements: &'a mut Vec<(Location, Statement<'tcx>)>, /// If true, all nested temps are also kept in the /// source MIR, not moved to the promoted MIR. keep_original: bool, } impl<'a, 'tcx> Promoter<'a, 'tcx> { fn new_block(&mut self) -> BasicBlock { let span = self.promoted.span; self.promoted.basic_blocks_mut().push(BasicBlockData { statements: vec![], terminator: Some(Terminator { source_info: SourceInfo::outermost(span), kind: TerminatorKind::Return, }), is_cleanup: false, }) } fn assign(&mut self, dest: Local, rvalue: Rvalue<'tcx>, span: Span) { let last = self.promoted.basic_blocks.last().unwrap(); let data = &mut self.promoted[last]; data.statements.push(Statement { source_info: SourceInfo::outermost(span), kind: StatementKind::Assign(Box::new((Place::from(dest), rvalue))), }); } fn is_temp_kind(&self, local: Local) -> bool { self.source.local_kind(local) == LocalKind::Temp } /// Copies the initialization of this temp to the /// promoted MIR, recursing through temps. fn promote_temp(&mut self, temp: Local) -> Local { let old_keep_original = self.keep_original; let loc = match self.temps[temp] { TempState::Defined { location, uses, .. } if uses > 0 => { if uses > 1 { self.keep_original = true; } location } state => { span_bug!(self.promoted.span, "{:?} not promotable: {:?}", temp, state); } }; if !self.keep_original { self.temps[temp] = TempState::PromotedOut; } let num_stmts = self.source[loc.block].statements.len(); let new_temp = self.promoted.local_decls.push(LocalDecl::new( self.source.local_decls[temp].ty, self.source.local_decls[temp].source_info.span, )); debug!("promote({:?} @ {:?}/{:?}, {:?})", temp, loc, num_stmts, self.keep_original); // First, take the Rvalue or Call out of the source MIR, // or duplicate it, depending on keep_original. if loc.statement_index < num_stmts { let (mut rvalue, source_info) = { let statement = &mut self.source[loc.block].statements[loc.statement_index]; let StatementKind::Assign(box (_, rhs)) = &mut statement.kind else { span_bug!( statement.source_info.span, "{:?} is not an assignment", statement ); }; ( if self.keep_original { rhs.clone() } else { let unit = Rvalue::Use(Operand::Constant(Box::new(Constant { span: statement.source_info.span, user_ty: None, literal: ConstantKind::zero_sized(self.tcx.types.unit), }))); mem::replace(rhs, unit) }, statement.source_info, ) }; self.visit_rvalue(&mut rvalue, loc); self.assign(new_temp, rvalue, source_info.span); } else { let terminator = if self.keep_original { self.source[loc.block].terminator().clone() } else { let terminator = self.source[loc.block].terminator_mut(); let target = match &terminator.kind { TerminatorKind::Call { target: Some(target), .. } => *target, kind => { span_bug!(terminator.source_info.span, "{:?} not promotable", kind); } }; Terminator { source_info: terminator.source_info, kind: mem::replace(&mut terminator.kind, TerminatorKind::Goto { target }), } }; match terminator.kind { TerminatorKind::Call { mut func, mut args, from_hir_call, fn_span, .. } => { self.visit_operand(&mut func, loc); for arg in &mut args { self.visit_operand(arg, loc); } let last = self.promoted.basic_blocks.last().unwrap(); let new_target = self.new_block(); *self.promoted[last].terminator_mut() = Terminator { kind: TerminatorKind::Call { func, args, cleanup: None, destination: Place::from(new_temp), target: Some(new_target), from_hir_call, fn_span, }, source_info: SourceInfo::outermost(terminator.source_info.span), ..terminator }; } kind => { span_bug!(terminator.source_info.span, "{:?} not promotable", kind); } }; }; self.keep_original = old_keep_original; new_temp } fn promote_candidate(mut self, candidate: Candidate, next_promoted_id: usize) -> Body<'tcx> { let def = self.source.source.with_opt_param(); let mut rvalue = { let promoted = &mut self.promoted; let promoted_id = Promoted::new(next_promoted_id); let tcx = self.tcx; let mut promoted_operand = |ty, span| { promoted.span = span; promoted.local_decls[RETURN_PLACE] = LocalDecl::new(ty, span); let substs = tcx.erase_regions(InternalSubsts::identity_for_item(tcx, def.did)); let uneval = mir::UnevaluatedConst { def, substs, promoted: Some(promoted_id) }; Operand::Constant(Box::new(Constant { span, user_ty: None, literal: ConstantKind::Unevaluated(uneval, ty), })) }; let blocks = self.source.basic_blocks.as_mut(); let local_decls = &mut self.source.local_decls; let loc = candidate.location; let statement = &mut blocks[loc.block].statements[loc.statement_index]; let StatementKind::Assign(box (_, Rvalue::Ref(region, borrow_kind, place))) = &mut statement.kind else { bug!() }; // Use the underlying local for this (necessarily interior) borrow. let ty = local_decls[place.local].ty; let span = statement.source_info.span; let ref_ty = tcx.mk_ref( tcx.lifetimes.re_erased, ty::TypeAndMut { ty, mutbl: borrow_kind.to_mutbl_lossy() }, ); *region = tcx.lifetimes.re_erased; let mut projection = vec![PlaceElem::Deref]; projection.extend(place.projection); place.projection = tcx.mk_place_elems(&projection); // Create a temp to hold the promoted reference. // This is because `*r` requires `r` to be a local, // otherwise we would use the `promoted` directly. let mut promoted_ref = LocalDecl::new(ref_ty, span); promoted_ref.source_info = statement.source_info; let promoted_ref = local_decls.push(promoted_ref); assert_eq!(self.temps.push(TempState::Unpromotable), promoted_ref); let promoted_ref_statement = Statement { source_info: statement.source_info, kind: StatementKind::Assign(Box::new(( Place::from(promoted_ref), Rvalue::Use(promoted_operand(ref_ty, span)), ))), }; self.extra_statements.push((loc, promoted_ref_statement)); Rvalue::Ref( tcx.lifetimes.re_erased, *borrow_kind, Place { local: mem::replace(&mut place.local, promoted_ref), projection: List::empty(), }, ) }; assert_eq!(self.new_block(), START_BLOCK); self.visit_rvalue( &mut rvalue, Location { block: START_BLOCK, statement_index: usize::MAX }, ); let span = self.promoted.span; self.assign(RETURN_PLACE, rvalue, span); self.promoted } } /// Replaces all temporaries with their promoted counterparts. impl<'a, 'tcx> MutVisitor<'tcx> for Promoter<'a, 'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) { if self.is_temp_kind(*local) { *local = self.promote_temp(*local); } } } pub fn promote_candidates<'tcx>( body: &mut Body<'tcx>, tcx: TyCtxt<'tcx>, mut temps: IndexVec, candidates: Vec, ) -> IndexVec> { // Visit candidates in reverse, in case they're nested. debug!("promote_candidates({:?})", candidates); let mut promotions = IndexVec::new(); let mut extra_statements = vec![]; for candidate in candidates.into_iter().rev() { let Location { block, statement_index } = candidate.location; if let StatementKind::Assign(box (place, _)) = &body[block].statements[statement_index].kind { if let Some(local) = place.as_local() { if temps[local] == TempState::PromotedOut { // Already promoted. continue; } } } // Declare return place local so that `mir::Body::new` doesn't complain. let initial_locals = iter::once(LocalDecl::new(tcx.types.never, body.span)).collect(); let mut scope = body.source_scopes[body.source_info(candidate.location).scope].clone(); scope.parent_scope = None; let mut promoted = Body::new( body.source, // `promoted` gets filled in below IndexVec::new(), IndexVec::from_elem_n(scope, 1), initial_locals, IndexVec::new(), 0, vec![], body.span, body.generator_kind(), body.tainted_by_errors, ); promoted.phase = MirPhase::Analysis(AnalysisPhase::Initial); let promoter = Promoter { promoted, tcx, source: body, temps: &mut temps, extra_statements: &mut extra_statements, keep_original: false, }; let mut promoted = promoter.promote_candidate(candidate, promotions.len()); promoted.source.promoted = Some(promotions.next_index()); promotions.push(promoted); } // Insert each of `extra_statements` before its indicated location, which // has to be done in reverse location order, to not invalidate the rest. extra_statements.sort_by_key(|&(loc, _)| cmp::Reverse(loc)); for (loc, statement) in extra_statements { body[loc.block].statements.insert(loc.statement_index, statement); } // Eliminate assignments to, and drops of promoted temps. let promoted = |index: Local| temps[index] == TempState::PromotedOut; for block in body.basic_blocks_mut() { block.statements.retain(|statement| match &statement.kind { StatementKind::Assign(box (place, _)) => { if let Some(index) = place.as_local() { !promoted(index) } else { true } } StatementKind::StorageLive(index) | StatementKind::StorageDead(index) => { !promoted(*index) } _ => true, }); let terminator = block.terminator_mut(); if let TerminatorKind::Drop { place, target, .. } = &terminator.kind { if let Some(index) = place.as_local() { if promoted(index) { terminator.kind = TerminatorKind::Goto { target: *target }; } } } } promotions } /// This function returns `true` if the function being called in the array /// repeat expression is a `const` function. pub fn is_const_fn_in_array_repeat_expression<'tcx>( ccx: &ConstCx<'_, 'tcx>, place: &Place<'tcx>, body: &Body<'tcx>, ) -> bool { match place.as_local() { // rule out cases such as: `let my_var = some_fn(); [my_var; N]` Some(local) if body.local_decls[local].is_user_variable() => return false, None => return false, _ => {} } for block in body.basic_blocks.iter() { if let Some(Terminator { kind: TerminatorKind::Call { func, destination, .. }, .. }) = &block.terminator { if let Operand::Constant(box Constant { literal, .. }) = func { if let ty::FnDef(def_id, _) = *literal.ty().kind() { if destination == place { if ccx.tcx.is_const_fn(def_id) { return true; } } } } } } false }