use rustc_middle::ty::layout::{LayoutCx, LayoutOf, TyAndLayout}; use rustc_middle::ty::{ParamEnv, TyCtxt}; use rustc_session::Limit; use rustc_target::abi::{Abi, FieldsShape, InitKind, Scalar, Variants}; use crate::const_eval::{CheckAlignment, CompileTimeInterpreter}; use crate::interpret::{InterpCx, MemoryKind, OpTy}; /// Determines if this type permits "raw" initialization by just transmuting some memory into an /// instance of `T`. /// /// `init_kind` indicates if the memory is zero-initialized or left uninitialized. We assume /// uninitialized memory is mitigated by filling it with 0x01, which reduces the chance of causing /// LLVM UB. /// /// By default we check whether that operation would cause *LLVM UB*, i.e., whether the LLVM IR we /// generate has UB or not. This is a mitigation strategy, which is why we are okay with accepting /// Rust UB as long as there is no risk of miscompilations. The `strict_init_checks` can be set to /// do a full check against Rust UB instead (in which case we will also ignore the 0x01-filling and /// to the full uninit check). pub fn might_permit_raw_init<'tcx>( tcx: TyCtxt<'tcx>, ty: TyAndLayout<'tcx>, kind: InitKind, ) -> bool { if tcx.sess.opts.unstable_opts.strict_init_checks { might_permit_raw_init_strict(ty, tcx, kind) } else { let layout_cx = LayoutCx { tcx, param_env: ParamEnv::reveal_all() }; might_permit_raw_init_lax(ty, &layout_cx, kind) } } /// Implements the 'strict' version of the `might_permit_raw_init` checks; see that function for /// details. fn might_permit_raw_init_strict<'tcx>( ty: TyAndLayout<'tcx>, tcx: TyCtxt<'tcx>, kind: InitKind, ) -> bool { let machine = CompileTimeInterpreter::new( Limit::new(0), /*can_access_statics:*/ false, CheckAlignment::Error, ); let mut cx = InterpCx::new(tcx, rustc_span::DUMMY_SP, ParamEnv::reveal_all(), machine); let allocated = cx .allocate(ty, MemoryKind::Machine(crate::const_eval::MemoryKind::Heap)) .expect("OOM: failed to allocate for uninit check"); if kind == InitKind::Zero { cx.write_bytes_ptr( allocated.ptr, std::iter::repeat(0_u8).take(ty.layout.size().bytes_usize()), ) .expect("failed to write bytes for zero valid check"); } let ot: OpTy<'_, _> = allocated.into(); // Assume that if it failed, it's a validation failure. // This does *not* actually check that references are dereferenceable, but since all types that // require dereferenceability also require non-null, we don't actually get any false negatives // due to this. cx.validate_operand(&ot).is_ok() } /// Implements the 'lax' (default) version of the `might_permit_raw_init` checks; see that function for /// details. fn might_permit_raw_init_lax<'tcx>( this: TyAndLayout<'tcx>, cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, init_kind: InitKind, ) -> bool { let scalar_allows_raw_init = move |s: Scalar| -> bool { match init_kind { InitKind::Zero => { // The range must contain 0. s.valid_range(cx).contains(0) } InitKind::UninitMitigated0x01Fill => { // The range must include an 0x01-filled buffer. let mut val: u128 = 0x01; for _ in 1..s.size(cx).bytes() { // For sizes >1, repeat the 0x01. val = (val << 8) | 0x01; } s.valid_range(cx).contains(val) } } }; // Check the ABI. let valid = match this.abi { Abi::Uninhabited => false, // definitely UB Abi::Scalar(s) => scalar_allows_raw_init(s), Abi::ScalarPair(s1, s2) => scalar_allows_raw_init(s1) && scalar_allows_raw_init(s2), Abi::Vector { element: s, count } => count == 0 || scalar_allows_raw_init(s), Abi::Aggregate { .. } => true, // Fields are checked below. }; if !valid { // This is definitely not okay. return false; } // Special magic check for references and boxes (i.e., special pointer types). if let Some(pointee) = this.ty.builtin_deref(false) { let pointee = cx.layout_of(pointee.ty).expect("need to be able to compute layouts"); // We need to ensure that the LLVM attributes `aligned` and `dereferenceable(size)` are satisfied. if pointee.align.abi.bytes() > 1 { // 0x01-filling is not aligned. return false; } if pointee.size.bytes() > 0 { // A 'fake' integer pointer is not sufficiently dereferenceable. return false; } } // If we have not found an error yet, we need to recursively descend into fields. match &this.fields { FieldsShape::Primitive | FieldsShape::Union { .. } => {} FieldsShape::Array { .. } => { // Arrays never have scalar layout in LLVM, so if the array is not actually // accessed, there is no LLVM UB -- therefore we can skip this. } FieldsShape::Arbitrary { offsets, .. } => { for idx in 0..offsets.len() { if !might_permit_raw_init_lax(this.field(cx, idx), cx, init_kind) { // We found a field that is unhappy with this kind of initialization. return false; } } } } match &this.variants { Variants::Single { .. } => { // All fields of this single variant have already been checked above, there is nothing // else to do. } Variants::Multiple { .. } => { // We cannot tell LLVM anything about the details of this multi-variant layout, so // invalid values "hidden" inside the variant cannot cause LLVM trouble. } } true }