use crate::stable_hasher; use rustc_serialize::{Decodable, Decoder, Encodable, Encoder}; use std::convert::TryInto; use std::hash::{Hash, Hasher}; #[cfg(test)] mod tests; #[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone, Copy)] #[repr(C)] pub struct Fingerprint(u64, u64); impl Fingerprint { pub const ZERO: Fingerprint = Fingerprint(0, 0); #[inline] pub fn new(_0: u64, _1: u64) -> Fingerprint { Fingerprint(_0, _1) } #[inline] pub fn from_smaller_hash(hash: u64) -> Fingerprint { Fingerprint(hash, hash) } #[inline] pub fn to_smaller_hash(&self) -> u64 { // Even though both halves of the fingerprint are expected to be good // quality hash values, let's still combine the two values because the // Fingerprints in DefPathHash have the StableCrateId portion which is // the same for all DefPathHashes from the same crate. Combining the // two halves makes sure we get a good quality hash in such cases too. self.0.wrapping_mul(3).wrapping_add(self.1) } #[inline] pub fn as_value(&self) -> (u64, u64) { (self.0, self.1) } #[inline] pub fn combine(self, other: Fingerprint) -> Fingerprint { // See https://stackoverflow.com/a/27952689 on why this function is // implemented this way. Fingerprint( self.0.wrapping_mul(3).wrapping_add(other.0), self.1.wrapping_mul(3).wrapping_add(other.1), ) } // Combines two hashes in an order independent way. Make sure this is what // you want. #[inline] pub fn combine_commutative(self, other: Fingerprint) -> Fingerprint { let a = u128::from(self.1) << 64 | u128::from(self.0); let b = u128::from(other.1) << 64 | u128::from(other.0); let c = a.wrapping_add(b); Fingerprint(c as u64, (c >> 64) as u64) } pub fn to_hex(&self) -> String { format!("{:x}{:x}", self.0, self.1) } #[inline] pub fn to_le_bytes(&self) -> [u8; 16] { // This seems to optimize to the same machine code as // `unsafe { mem::transmute(*k) }`. Well done, LLVM! :) let mut result = [0u8; 16]; let first_half: &mut [u8; 8] = (&mut result[0..8]).try_into().unwrap(); *first_half = self.0.to_le_bytes(); let second_half: &mut [u8; 8] = (&mut result[8..16]).try_into().unwrap(); *second_half = self.1.to_le_bytes(); result } #[inline] pub fn from_le_bytes(bytes: [u8; 16]) -> Fingerprint { Fingerprint( u64::from_le_bytes(bytes[0..8].try_into().unwrap()), u64::from_le_bytes(bytes[8..16].try_into().unwrap()), ) } } impl std::fmt::Display for Fingerprint { fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(formatter, "{:x}-{:x}", self.0, self.1) } } impl Hash for Fingerprint { #[inline] fn hash(&self, state: &mut H) { state.write_fingerprint(self); } } trait FingerprintHasher { fn write_fingerprint(&mut self, fingerprint: &Fingerprint); } impl FingerprintHasher for H { #[inline] default fn write_fingerprint(&mut self, fingerprint: &Fingerprint) { self.write_u64(fingerprint.0); self.write_u64(fingerprint.1); } } impl FingerprintHasher for crate::unhash::Unhasher { #[inline] fn write_fingerprint(&mut self, fingerprint: &Fingerprint) { // Even though both halves of the fingerprint are expected to be good // quality hash values, let's still combine the two values because the // Fingerprints in DefPathHash have the StableCrateId portion which is // the same for all DefPathHashes from the same crate. Combining the // two halves makes sure we get a good quality hash in such cases too. // // Since `Unhasher` is used only in the context of HashMaps, it is OK // to combine the two components in an order-independent way (which is // cheaper than the more robust Fingerprint::to_smaller_hash()). For // HashMaps we don't really care if Fingerprint(x,y) and // Fingerprint(y, x) result in the same hash value. Collision // probability will still be much better than with FxHash. self.write_u64(fingerprint.0.wrapping_add(fingerprint.1)); } } impl stable_hasher::StableHasherResult for Fingerprint { #[inline] fn finish(hasher: stable_hasher::StableHasher) -> Self { let (_0, _1) = hasher.finalize(); Fingerprint(_0, _1) } } impl_stable_traits_for_trivial_type!(Fingerprint); impl Encodable for Fingerprint { #[inline] fn encode(&self, s: &mut E) { s.emit_raw_bytes(&self.to_le_bytes()); } } impl Decodable for Fingerprint { #[inline] fn decode(d: &mut D) -> Self { Fingerprint::from_le_bytes(d.read_raw_bytes(16).try_into().unwrap()) } } // `PackedFingerprint` wraps a `Fingerprint`. Its purpose is to, on certain // architectures, behave like a `Fingerprint` without alignment requirements. // This behavior is only enabled on x86 and x86_64, where the impact of // unaligned accesses is tolerable in small doses. // // This may be preferable to use in large collections of structs containing // fingerprints, as it can reduce memory consumption by preventing the padding // that the more strictly-aligned `Fingerprint` can introduce. An application of // this is in the query dependency graph, which contains a large collection of // `DepNode`s. As of this writing, the size of a `DepNode` decreases by ~30% // (from 24 bytes to 17) by using the packed representation here, which // noticeably decreases total memory usage when compiling large crates. // // The wrapped `Fingerprint` is private to reduce the chance of a client // invoking undefined behavior by taking a reference to the packed field. #[cfg_attr(any(target_arch = "x86", target_arch = "x86_64"), repr(packed))] #[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone, Copy, Hash)] pub struct PackedFingerprint(Fingerprint); impl std::fmt::Display for PackedFingerprint { #[inline] fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { // Copy to avoid taking reference to packed field. let copy = self.0; copy.fmt(formatter) } } impl Encodable for PackedFingerprint { #[inline] fn encode(&self, s: &mut E) { // Copy to avoid taking reference to packed field. let copy = self.0; copy.encode(s); } } impl Decodable for PackedFingerprint { #[inline] fn decode(d: &mut D) -> Self { Self(Fingerprint::decode(d)) } } impl From for PackedFingerprint { #[inline] fn from(f: Fingerprint) -> PackedFingerprint { PackedFingerprint(f) } } impl From for Fingerprint { #[inline] fn from(f: PackedFingerprint) -> Fingerprint { f.0 } }