use crate::fx::{FxHashMap, FxHasher}; #[cfg(parallel_compiler)] use crate::sync::{is_dyn_thread_safe, CacheAligned}; use crate::sync::{Lock, LockGuard, Mode}; #[cfg(parallel_compiler)] use itertools::Either; use std::borrow::Borrow; use std::collections::hash_map::RawEntryMut; use std::hash::{Hash, Hasher}; use std::iter; use std::mem; // 32 shards is sufficient to reduce contention on an 8-core Ryzen 7 1700, // but this should be tested on higher core count CPUs. How the `Sharded` type gets used // may also affect the ideal number of shards. const SHARD_BITS: usize = 5; #[cfg(parallel_compiler)] const SHARDS: usize = 1 << SHARD_BITS; /// An array of cache-line aligned inner locked structures with convenience methods. /// A single field is used when the compiler uses only one thread. pub enum Sharded { Single(Lock), #[cfg(parallel_compiler)] Shards(Box<[CacheAligned>; SHARDS]>), } impl Default for Sharded { #[inline] fn default() -> Self { Self::new(T::default) } } impl Sharded { #[inline] pub fn new(mut value: impl FnMut() -> T) -> Self { #[cfg(parallel_compiler)] if is_dyn_thread_safe() { return Sharded::Shards(Box::new( [(); SHARDS].map(|()| CacheAligned(Lock::new(value()))), )); } Sharded::Single(Lock::new(value())) } /// The shard is selected by hashing `val` with `FxHasher`. #[inline] pub fn get_shard_by_value(&self, _val: &K) -> &Lock { match self { Self::Single(single) => &single, #[cfg(parallel_compiler)] Self::Shards(..) => self.get_shard_by_hash(make_hash(_val)), } } #[inline] pub fn get_shard_by_hash(&self, hash: u64) -> &Lock { self.get_shard_by_index(get_shard_hash(hash)) } #[inline] pub fn get_shard_by_index(&self, _i: usize) -> &Lock { match self { Self::Single(single) => &single, #[cfg(parallel_compiler)] Self::Shards(shards) => { // SAFETY: The index gets ANDed with the shard mask, ensuring it is always inbounds. unsafe { &shards.get_unchecked(_i & (SHARDS - 1)).0 } } } } /// The shard is selected by hashing `val` with `FxHasher`. #[inline] #[track_caller] pub fn lock_shard_by_value(&self, _val: &K) -> LockGuard<'_, T> { match self { Self::Single(single) => { // Syncronization is disabled so use the `lock_assume_no_sync` method optimized // for that case. // SAFETY: We know `is_dyn_thread_safe` was false when creating the lock thus // `might_be_dyn_thread_safe` was also false. unsafe { single.lock_assume(Mode::NoSync) } } #[cfg(parallel_compiler)] Self::Shards(..) => self.lock_shard_by_hash(make_hash(_val)), } } #[inline] #[track_caller] pub fn lock_shard_by_hash(&self, hash: u64) -> LockGuard<'_, T> { self.lock_shard_by_index(get_shard_hash(hash)) } #[inline] #[track_caller] pub fn lock_shard_by_index(&self, _i: usize) -> LockGuard<'_, T> { match self { Self::Single(single) => { // Syncronization is disabled so use the `lock_assume_no_sync` method optimized // for that case. // SAFETY: We know `is_dyn_thread_safe` was false when creating the lock thus // `might_be_dyn_thread_safe` was also false. unsafe { single.lock_assume(Mode::NoSync) } } #[cfg(parallel_compiler)] Self::Shards(shards) => { // Syncronization is enabled so use the `lock_assume_sync` method optimized // for that case. // SAFETY (get_unchecked): The index gets ANDed with the shard mask, ensuring it is // always inbounds. // SAFETY (lock_assume_sync): We know `is_dyn_thread_safe` was true when creating // the lock thus `might_be_dyn_thread_safe` was also true. unsafe { shards.get_unchecked(_i & (SHARDS - 1)).0.lock_assume(Mode::Sync) } } } } #[inline] pub fn lock_shards(&self) -> impl Iterator> { match self { #[cfg(not(parallel_compiler))] Self::Single(single) => iter::once(single.lock()), #[cfg(parallel_compiler)] Self::Single(single) => Either::Left(iter::once(single.lock())), #[cfg(parallel_compiler)] Self::Shards(shards) => Either::Right(shards.iter().map(|shard| shard.0.lock())), } } #[inline] pub fn try_lock_shards(&self) -> impl Iterator>> { match self { #[cfg(not(parallel_compiler))] Self::Single(single) => iter::once(single.try_lock()), #[cfg(parallel_compiler)] Self::Single(single) => Either::Left(iter::once(single.try_lock())), #[cfg(parallel_compiler)] Self::Shards(shards) => Either::Right(shards.iter().map(|shard| shard.0.try_lock())), } } } #[inline] pub fn shards() -> usize { #[cfg(parallel_compiler)] if is_dyn_thread_safe() { return SHARDS; } 1 } pub type ShardedHashMap = Sharded>; impl ShardedHashMap { pub fn len(&self) -> usize { self.lock_shards().map(|shard| shard.len()).sum() } } impl ShardedHashMap { #[inline] pub fn intern_ref(&self, value: &Q, make: impl FnOnce() -> K) -> K where K: Borrow, Q: Hash + Eq, { let hash = make_hash(value); let mut shard = self.lock_shard_by_hash(hash); let entry = shard.raw_entry_mut().from_key_hashed_nocheck(hash, value); match entry { RawEntryMut::Occupied(e) => *e.key(), RawEntryMut::Vacant(e) => { let v = make(); e.insert_hashed_nocheck(hash, v, ()); v } } } #[inline] pub fn intern(&self, value: Q, make: impl FnOnce(Q) -> K) -> K where K: Borrow, Q: Hash + Eq, { let hash = make_hash(&value); let mut shard = self.lock_shard_by_hash(hash); let entry = shard.raw_entry_mut().from_key_hashed_nocheck(hash, &value); match entry { RawEntryMut::Occupied(e) => *e.key(), RawEntryMut::Vacant(e) => { let v = make(value); e.insert_hashed_nocheck(hash, v, ()); v } } } } pub trait IntoPointer { /// Returns a pointer which outlives `self`. fn into_pointer(&self) -> *const (); } impl ShardedHashMap { pub fn contains_pointer_to(&self, value: &T) -> bool { let hash = make_hash(&value); let shard = self.lock_shard_by_hash(hash); let value = value.into_pointer(); shard.raw_entry().from_hash(hash, |entry| entry.into_pointer() == value).is_some() } } #[inline] pub fn make_hash(val: &K) -> u64 { let mut state = FxHasher::default(); val.hash(&mut state); state.finish() } /// Get a shard with a pre-computed hash value. If `get_shard_by_value` is /// ever used in combination with `get_shard_by_hash` on a single `Sharded` /// instance, then `hash` must be computed with `FxHasher`. Otherwise, /// `hash` can be computed with any hasher, so long as that hasher is used /// consistently for each `Sharded` instance. #[inline] fn get_shard_hash(hash: u64) -> usize { let hash_len = mem::size_of::(); // Ignore the top 7 bits as hashbrown uses these and get the next SHARD_BITS highest bits. // hashbrown also uses the lowest bits, so we can't use those (hash >> (hash_len * 8 - 7 - SHARD_BITS)) as usize }