use crate::base::ExtCtxt; use rustc_ast::ptr::P; use rustc_ast::{self as ast, AttrVec, BlockCheckMode, Expr, LocalKind, PatKind, UnOp}; use rustc_ast::{attr, token, util::literal}; use rustc_span::source_map::Spanned; use rustc_span::symbol::{kw, sym, Ident, Symbol}; use rustc_span::{Span, DUMMY_SP}; use thin_vec::{thin_vec, ThinVec}; impl<'a> ExtCtxt<'a> { pub fn path(&self, span: Span, strs: Vec) -> ast::Path { self.path_all(span, false, strs, vec![]) } pub fn path_ident(&self, span: Span, id: Ident) -> ast::Path { self.path(span, vec![id]) } pub fn path_global(&self, span: Span, strs: Vec) -> ast::Path { self.path_all(span, true, strs, vec![]) } pub fn path_all( &self, span: Span, global: bool, mut idents: Vec, args: Vec, ) -> ast::Path { assert!(!idents.is_empty()); let add_root = global && !idents[0].is_path_segment_keyword(); let mut segments = ThinVec::with_capacity(idents.len() + add_root as usize); if add_root { segments.push(ast::PathSegment::path_root(span)); } let last_ident = idents.pop().unwrap(); segments.extend( idents.into_iter().map(|ident| ast::PathSegment::from_ident(ident.with_span_pos(span))), ); let args = if !args.is_empty() { let args = args.into_iter().map(ast::AngleBracketedArg::Arg).collect(); Some(ast::AngleBracketedArgs { args, span }.into()) } else { None }; segments.push(ast::PathSegment { ident: last_ident.with_span_pos(span), id: ast::DUMMY_NODE_ID, args, }); ast::Path { span, segments, tokens: None } } pub fn ty_mt(&self, ty: P, mutbl: ast::Mutability) -> ast::MutTy { ast::MutTy { ty, mutbl } } pub fn ty(&self, span: Span, kind: ast::TyKind) -> P { P(ast::Ty { id: ast::DUMMY_NODE_ID, span, kind, tokens: None }) } pub fn ty_infer(&self, span: Span) -> P { self.ty(span, ast::TyKind::Infer) } pub fn ty_path(&self, path: ast::Path) -> P { self.ty(path.span, ast::TyKind::Path(None, path)) } // Might need to take bounds as an argument in the future, if you ever want // to generate a bounded existential trait type. pub fn ty_ident(&self, span: Span, ident: Ident) -> P { self.ty_path(self.path_ident(span, ident)) } pub fn anon_const(&self, span: Span, kind: ast::ExprKind) -> ast::AnonConst { ast::AnonConst { id: ast::DUMMY_NODE_ID, value: P(ast::Expr { id: ast::DUMMY_NODE_ID, kind, span, attrs: AttrVec::new(), tokens: None, }), } } pub fn const_ident(&self, span: Span, ident: Ident) -> ast::AnonConst { self.anon_const(span, ast::ExprKind::Path(None, self.path_ident(span, ident))) } pub fn ty_ref( &self, span: Span, ty: P, lifetime: Option, mutbl: ast::Mutability, ) -> P { self.ty(span, ast::TyKind::Ref(lifetime, self.ty_mt(ty, mutbl))) } pub fn ty_ptr(&self, span: Span, ty: P, mutbl: ast::Mutability) -> P { self.ty(span, ast::TyKind::Ptr(self.ty_mt(ty, mutbl))) } pub fn typaram( &self, span: Span, ident: Ident, bounds: ast::GenericBounds, default: Option>, ) -> ast::GenericParam { ast::GenericParam { ident: ident.with_span_pos(span), id: ast::DUMMY_NODE_ID, attrs: AttrVec::new(), bounds, kind: ast::GenericParamKind::Type { default }, is_placeholder: false, colon_span: None, } } pub fn trait_ref(&self, path: ast::Path) -> ast::TraitRef { ast::TraitRef { path, ref_id: ast::DUMMY_NODE_ID } } pub fn poly_trait_ref(&self, span: Span, path: ast::Path) -> ast::PolyTraitRef { ast::PolyTraitRef { bound_generic_params: ThinVec::new(), trait_ref: self.trait_ref(path), span, } } pub fn trait_bound(&self, path: ast::Path, is_const: bool) -> ast::GenericBound { ast::GenericBound::Trait( self.poly_trait_ref(path.span, path), if is_const { ast::TraitBoundModifier::MaybeConst(DUMMY_SP) } else { ast::TraitBoundModifier::None }, ) } pub fn lifetime(&self, span: Span, ident: Ident) -> ast::Lifetime { ast::Lifetime { id: ast::DUMMY_NODE_ID, ident: ident.with_span_pos(span) } } pub fn lifetime_static(&self, span: Span) -> ast::Lifetime { self.lifetime(span, Ident::new(kw::StaticLifetime, span)) } pub fn stmt_expr(&self, expr: P) -> ast::Stmt { ast::Stmt { id: ast::DUMMY_NODE_ID, span: expr.span, kind: ast::StmtKind::Expr(expr) } } pub fn stmt_let_pat(&self, sp: Span, pat: P, ex: P) -> ast::Stmt { let local = P(ast::Local { pat, ty: None, id: ast::DUMMY_NODE_ID, kind: LocalKind::Init(ex), span: sp, attrs: AttrVec::new(), tokens: None, }); self.stmt_local(local, sp) } pub fn stmt_let(&self, sp: Span, mutbl: bool, ident: Ident, ex: P) -> ast::Stmt { self.stmt_let_ty(sp, mutbl, ident, None, ex) } pub fn stmt_let_ty( &self, sp: Span, mutbl: bool, ident: Ident, ty: Option>, ex: P, ) -> ast::Stmt { let pat = if mutbl { self.pat_ident_binding_mode(sp, ident, ast::BindingAnnotation::MUT) } else { self.pat_ident(sp, ident) }; let local = P(ast::Local { pat, ty, id: ast::DUMMY_NODE_ID, kind: LocalKind::Init(ex), span: sp, attrs: AttrVec::new(), tokens: None, }); self.stmt_local(local, sp) } /// Generates `let _: Type;`, which is usually used for type assertions. pub fn stmt_let_type_only(&self, span: Span, ty: P) -> ast::Stmt { let local = P(ast::Local { pat: self.pat_wild(span), ty: Some(ty), id: ast::DUMMY_NODE_ID, kind: LocalKind::Decl, span, attrs: AttrVec::new(), tokens: None, }); self.stmt_local(local, span) } pub fn stmt_local(&self, local: P, span: Span) -> ast::Stmt { ast::Stmt { id: ast::DUMMY_NODE_ID, kind: ast::StmtKind::Local(local), span } } pub fn stmt_item(&self, sp: Span, item: P) -> ast::Stmt { ast::Stmt { id: ast::DUMMY_NODE_ID, kind: ast::StmtKind::Item(item), span: sp } } pub fn block_expr(&self, expr: P) -> P { self.block( expr.span, thin_vec![ast::Stmt { id: ast::DUMMY_NODE_ID, span: expr.span, kind: ast::StmtKind::Expr(expr), }], ) } pub fn block(&self, span: Span, stmts: ThinVec) -> P { P(ast::Block { stmts, id: ast::DUMMY_NODE_ID, rules: BlockCheckMode::Default, span, tokens: None, could_be_bare_literal: false, }) } pub fn expr(&self, span: Span, kind: ast::ExprKind) -> P { P(ast::Expr { id: ast::DUMMY_NODE_ID, kind, span, attrs: AttrVec::new(), tokens: None }) } pub fn expr_path(&self, path: ast::Path) -> P { self.expr(path.span, ast::ExprKind::Path(None, path)) } pub fn expr_ident(&self, span: Span, id: Ident) -> P { self.expr_path(self.path_ident(span, id)) } pub fn expr_self(&self, span: Span) -> P { self.expr_ident(span, Ident::with_dummy_span(kw::SelfLower)) } pub fn expr_field(&self, span: Span, expr: P, field: Ident) -> P { self.expr(span, ast::ExprKind::Field(expr, field)) } pub fn expr_binary( &self, sp: Span, op: ast::BinOpKind, lhs: P, rhs: P, ) -> P { self.expr(sp, ast::ExprKind::Binary(Spanned { node: op, span: sp }, lhs, rhs)) } pub fn expr_deref(&self, sp: Span, e: P) -> P { self.expr(sp, ast::ExprKind::Unary(UnOp::Deref, e)) } pub fn expr_addr_of(&self, sp: Span, e: P) -> P { self.expr(sp, ast::ExprKind::AddrOf(ast::BorrowKind::Ref, ast::Mutability::Not, e)) } pub fn expr_paren(&self, sp: Span, e: P) -> P { self.expr(sp, ast::ExprKind::Paren(e)) } pub fn expr_call( &self, span: Span, expr: P, args: ThinVec>, ) -> P { self.expr(span, ast::ExprKind::Call(expr, args)) } pub fn expr_call_ident( &self, span: Span, id: Ident, args: ThinVec>, ) -> P { self.expr(span, ast::ExprKind::Call(self.expr_ident(span, id), args)) } pub fn expr_call_global( &self, sp: Span, fn_path: Vec, args: ThinVec>, ) -> P { let pathexpr = self.expr_path(self.path_global(sp, fn_path)); self.expr_call(sp, pathexpr, args) } pub fn expr_block(&self, b: P) -> P { self.expr(b.span, ast::ExprKind::Block(b, None)) } pub fn field_imm(&self, span: Span, ident: Ident, e: P) -> ast::ExprField { ast::ExprField { ident: ident.with_span_pos(span), expr: e, span, is_shorthand: false, attrs: AttrVec::new(), id: ast::DUMMY_NODE_ID, is_placeholder: false, } } pub fn expr_struct( &self, span: Span, path: ast::Path, fields: ThinVec, ) -> P { self.expr( span, ast::ExprKind::Struct(P(ast::StructExpr { qself: None, path, fields, rest: ast::StructRest::None, })), ) } pub fn expr_struct_ident( &self, span: Span, id: Ident, fields: ThinVec, ) -> P { self.expr_struct(span, self.path_ident(span, id), fields) } pub fn expr_usize(&self, span: Span, n: usize) -> P { let suffix = Some(ast::UintTy::Usize.name()); let lit = token::Lit::new(token::Integer, sym::integer(n), suffix); self.expr(span, ast::ExprKind::Lit(lit)) } pub fn expr_u32(&self, span: Span, n: u32) -> P { let suffix = Some(ast::UintTy::U32.name()); let lit = token::Lit::new(token::Integer, sym::integer(n), suffix); self.expr(span, ast::ExprKind::Lit(lit)) } pub fn expr_bool(&self, span: Span, value: bool) -> P { let lit = token::Lit::new(token::Bool, if value { kw::True } else { kw::False }, None); self.expr(span, ast::ExprKind::Lit(lit)) } pub fn expr_str(&self, span: Span, s: Symbol) -> P { let lit = token::Lit::new(token::Str, literal::escape_string_symbol(s), None); self.expr(span, ast::ExprKind::Lit(lit)) } pub fn expr_char(&self, span: Span, ch: char) -> P { let lit = token::Lit::new(token::Char, literal::escape_char_symbol(ch), None); self.expr(span, ast::ExprKind::Lit(lit)) } pub fn expr_byte_str(&self, span: Span, bytes: Vec) -> P { let lit = token::Lit::new(token::ByteStr, literal::escape_byte_str_symbol(&bytes), None); self.expr(span, ast::ExprKind::Lit(lit)) } /// `[expr1, expr2, ...]` pub fn expr_array(&self, sp: Span, exprs: ThinVec>) -> P { self.expr(sp, ast::ExprKind::Array(exprs)) } /// `&[expr1, expr2, ...]` pub fn expr_array_ref(&self, sp: Span, exprs: ThinVec>) -> P { self.expr_addr_of(sp, self.expr_array(sp, exprs)) } pub fn expr_cast(&self, sp: Span, expr: P, ty: P) -> P { self.expr(sp, ast::ExprKind::Cast(expr, ty)) } pub fn expr_some(&self, sp: Span, expr: P) -> P { let some = self.std_path(&[sym::option, sym::Option, sym::Some]); self.expr_call_global(sp, some, thin_vec![expr]) } pub fn expr_none(&self, sp: Span) -> P { let none = self.std_path(&[sym::option, sym::Option, sym::None]); self.expr_path(self.path_global(sp, none)) } pub fn expr_tuple(&self, sp: Span, exprs: ThinVec>) -> P { self.expr(sp, ast::ExprKind::Tup(exprs)) } pub fn expr_fail(&self, span: Span, msg: Symbol) -> P { self.expr_call_global( span, [sym::std, sym::rt, sym::begin_panic].iter().map(|s| Ident::new(*s, span)).collect(), thin_vec![self.expr_str(span, msg)], ) } pub fn expr_unreachable(&self, span: Span) -> P { self.expr_fail(span, Symbol::intern("internal error: entered unreachable code")) } pub fn expr_ok(&self, sp: Span, expr: P) -> P { let ok = self.std_path(&[sym::result, sym::Result, sym::Ok]); self.expr_call_global(sp, ok, thin_vec![expr]) } pub fn expr_try(&self, sp: Span, head: P) -> P { let ok = self.std_path(&[sym::result, sym::Result, sym::Ok]); let ok_path = self.path_global(sp, ok); let err = self.std_path(&[sym::result, sym::Result, sym::Err]); let err_path = self.path_global(sp, err); let binding_variable = Ident::new(sym::__try_var, sp); let binding_pat = self.pat_ident(sp, binding_variable); let binding_expr = self.expr_ident(sp, binding_variable); // `Ok(__try_var)` pattern let ok_pat = self.pat_tuple_struct(sp, ok_path, thin_vec![binding_pat.clone()]); // `Err(__try_var)` (pattern and expression respectively) let err_pat = self.pat_tuple_struct(sp, err_path.clone(), thin_vec![binding_pat]); let err_inner_expr = self.expr_call(sp, self.expr_path(err_path), thin_vec![binding_expr.clone()]); // `return Err(__try_var)` let err_expr = self.expr(sp, ast::ExprKind::Ret(Some(err_inner_expr))); // `Ok(__try_var) => __try_var` let ok_arm = self.arm(sp, ok_pat, binding_expr); // `Err(__try_var) => return Err(__try_var)` let err_arm = self.arm(sp, err_pat, err_expr); // `match head { Ok() => ..., Err() => ... }` self.expr_match(sp, head, thin_vec![ok_arm, err_arm]) } pub fn pat(&self, span: Span, kind: PatKind) -> P { P(ast::Pat { id: ast::DUMMY_NODE_ID, kind, span, tokens: None }) } pub fn pat_wild(&self, span: Span) -> P { self.pat(span, PatKind::Wild) } pub fn pat_lit(&self, span: Span, expr: P) -> P { self.pat(span, PatKind::Lit(expr)) } pub fn pat_ident(&self, span: Span, ident: Ident) -> P { self.pat_ident_binding_mode(span, ident, ast::BindingAnnotation::NONE) } pub fn pat_ident_binding_mode( &self, span: Span, ident: Ident, ann: ast::BindingAnnotation, ) -> P { let pat = PatKind::Ident(ann, ident.with_span_pos(span), None); self.pat(span, pat) } pub fn pat_path(&self, span: Span, path: ast::Path) -> P { self.pat(span, PatKind::Path(None, path)) } pub fn pat_tuple_struct( &self, span: Span, path: ast::Path, subpats: ThinVec>, ) -> P { self.pat(span, PatKind::TupleStruct(None, path, subpats)) } pub fn pat_struct( &self, span: Span, path: ast::Path, field_pats: ThinVec, ) -> P { self.pat(span, PatKind::Struct(None, path, field_pats, false)) } pub fn pat_tuple(&self, span: Span, pats: ThinVec>) -> P { self.pat(span, PatKind::Tuple(pats)) } pub fn pat_some(&self, span: Span, pat: P) -> P { let some = self.std_path(&[sym::option, sym::Option, sym::Some]); let path = self.path_global(span, some); self.pat_tuple_struct(span, path, thin_vec![pat]) } pub fn arm(&self, span: Span, pat: P, expr: P) -> ast::Arm { ast::Arm { attrs: AttrVec::new(), pat, guard: None, body: Some(expr), span, id: ast::DUMMY_NODE_ID, is_placeholder: false, } } pub fn arm_unreachable(&self, span: Span) -> ast::Arm { self.arm(span, self.pat_wild(span), self.expr_unreachable(span)) } pub fn expr_match(&self, span: Span, arg: P, arms: ThinVec) -> P { self.expr(span, ast::ExprKind::Match(arg, arms)) } pub fn expr_if( &self, span: Span, cond: P, then: P, els: Option>, ) -> P { let els = els.map(|x| self.expr_block(self.block_expr(x))); self.expr(span, ast::ExprKind::If(cond, self.block_expr(then), els)) } pub fn lambda(&self, span: Span, ids: Vec, body: P) -> P { let fn_decl = self.fn_decl( ids.iter().map(|id| self.param(span, *id, self.ty(span, ast::TyKind::Infer))).collect(), ast::FnRetTy::Default(span), ); // FIXME -- We are using `span` as the span of the `|...|` // part of the lambda, but it probably (maybe?) corresponds to // the entire lambda body. Probably we should extend the API // here, but that's not entirely clear. self.expr( span, ast::ExprKind::Closure(Box::new(ast::Closure { binder: ast::ClosureBinder::NotPresent, capture_clause: ast::CaptureBy::Ref, constness: ast::Const::No, coroutine_kind: None, movability: ast::Movability::Movable, fn_decl, body, fn_decl_span: span, // FIXME(SarthakSingh31): This points to the start of the declaration block and // not the span of the argument block. fn_arg_span: span, })), ) } pub fn lambda0(&self, span: Span, body: P) -> P { self.lambda(span, Vec::new(), body) } pub fn lambda1(&self, span: Span, body: P, ident: Ident) -> P { self.lambda(span, vec![ident], body) } pub fn lambda_stmts_1( &self, span: Span, stmts: ThinVec, ident: Ident, ) -> P { self.lambda1(span, self.expr_block(self.block(span, stmts)), ident) } pub fn param(&self, span: Span, ident: Ident, ty: P) -> ast::Param { let arg_pat = self.pat_ident(span, ident); ast::Param { attrs: AttrVec::default(), id: ast::DUMMY_NODE_ID, pat: arg_pat, span, ty, is_placeholder: false, } } // `self` is unused but keep it as method for the convenience use. pub fn fn_decl(&self, inputs: ThinVec, output: ast::FnRetTy) -> P { P(ast::FnDecl { inputs, output }) } pub fn item( &self, span: Span, name: Ident, attrs: ast::AttrVec, kind: ast::ItemKind, ) -> P { P(ast::Item { ident: name, attrs, id: ast::DUMMY_NODE_ID, kind, vis: ast::Visibility { span: span.shrink_to_lo(), kind: ast::VisibilityKind::Inherited, tokens: None, }, span, tokens: None, }) } pub fn item_static( &self, span: Span, name: Ident, ty: P, mutability: ast::Mutability, expr: P, ) -> P { self.item( span, name, AttrVec::new(), ast::ItemKind::Static(ast::StaticItem { ty, mutability, expr: Some(expr) }.into()), ) } pub fn item_const( &self, span: Span, name: Ident, ty: P, expr: P, ) -> P { let defaultness = ast::Defaultness::Final; self.item( span, name, AttrVec::new(), ast::ItemKind::Const( ast::ConstItem { defaultness, // FIXME(generic_const_items): Pass the generics as a parameter. generics: ast::Generics::default(), ty, expr: Some(expr), } .into(), ), ) } // Builds `#[name]`. pub fn attr_word(&self, name: Symbol, span: Span) -> ast::Attribute { let g = &self.sess.parse_sess.attr_id_generator; attr::mk_attr_word(g, ast::AttrStyle::Outer, name, span) } // Builds `#[name = val]`. // // Note: `span` is used for both the identifier and the value. pub fn attr_name_value_str(&self, name: Symbol, val: Symbol, span: Span) -> ast::Attribute { let g = &self.sess.parse_sess.attr_id_generator; attr::mk_attr_name_value_str(g, ast::AttrStyle::Outer, name, val, span) } // Builds `#[outer(inner)]`. pub fn attr_nested_word(&self, outer: Symbol, inner: Symbol, span: Span) -> ast::Attribute { let g = &self.sess.parse_sess.attr_id_generator; attr::mk_attr_nested_word(g, ast::AttrStyle::Outer, outer, inner, span) } }