use crate::def::{CtorKind, DefKind, Res}; use crate::def_id::DefId; pub(crate) use crate::hir_id::{HirId, ItemLocalId, OwnerId}; use crate::intravisit::FnKind; use crate::LangItem; use rustc_ast as ast; use rustc_ast::util::parser::ExprPrecedence; use rustc_ast::{Attribute, FloatTy, IntTy, Label, LitKind, TraitObjectSyntax, UintTy}; pub use rustc_ast::{BindingAnnotation, BorrowKind, ByRef, ImplPolarity, IsAuto}; pub use rustc_ast::{CaptureBy, Movability, Mutability}; use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece}; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::sorted_map::SortedMap; use rustc_error_messages::MultiSpan; use rustc_index::vec::IndexVec; use rustc_macros::HashStable_Generic; use rustc_span::hygiene::MacroKind; use rustc_span::source_map::Spanned; use rustc_span::symbol::{kw, sym, Ident, Symbol}; use rustc_span::{def_id::LocalDefId, BytePos, Span, DUMMY_SP}; use rustc_target::asm::InlineAsmRegOrRegClass; use rustc_target::spec::abi::Abi; use smallvec::SmallVec; use std::fmt; #[derive(Debug, Copy, Clone, Encodable, HashStable_Generic)] pub struct Lifetime { pub hir_id: HirId, /// Either "`'a`", referring to a named lifetime definition, /// `'_` referring to an anonymous lifetime (either explicitly `'_` or `&type`), /// or "``" (i.e., `kw::Empty`) when appearing in path. /// /// See `Lifetime::suggestion_position` for practical use. pub ident: Ident, /// Semantics of this lifetime. pub res: LifetimeName, } #[derive(Debug, Clone, PartialEq, Eq, Encodable, Hash, Copy)] #[derive(HashStable_Generic)] pub enum ParamName { /// Some user-given name like `T` or `'x`. Plain(Ident), /// Synthetic name generated when user elided a lifetime in an impl header. /// /// E.g., the lifetimes in cases like these: /// ```ignore (fragment) /// impl Foo for &u32 /// impl Foo<'_> for u32 /// ``` /// in that case, we rewrite to /// ```ignore (fragment) /// impl<'f> Foo for &'f u32 /// impl<'f> Foo<'f> for u32 /// ``` /// where `'f` is something like `Fresh(0)`. The indices are /// unique per impl, but not necessarily continuous. Fresh, /// Indicates an illegal name was given and an error has been /// reported (so we should squelch other derived errors). Occurs /// when, e.g., `'_` is used in the wrong place. Error, } impl ParamName { pub fn ident(&self) -> Ident { match *self { ParamName::Plain(ident) => ident, ParamName::Fresh | ParamName::Error => Ident::with_dummy_span(kw::UnderscoreLifetime), } } pub fn normalize_to_macros_2_0(&self) -> ParamName { match *self { ParamName::Plain(ident) => ParamName::Plain(ident.normalize_to_macros_2_0()), param_name => param_name, } } } #[derive(Debug, Clone, PartialEq, Eq, Encodable, Hash, Copy)] #[derive(HashStable_Generic)] pub enum LifetimeName { /// User-given names or fresh (synthetic) names. Param(LocalDefId), /// Implicit lifetime in a context like `dyn Foo`. This is /// distinguished from implicit lifetimes elsewhere because the /// lifetime that they default to must appear elsewhere within the /// enclosing type. This means that, in an `impl Trait` context, we /// don't have to create a parameter for them. That is, `impl /// Trait` expands to an opaque type like `type /// Foo<'a> = impl Trait`, but `impl Trait` expands to `type Foo = impl Trait`. The latter uses `ImplicitObjectLifetimeDefault` so /// that surrounding code knows not to create a lifetime /// parameter. ImplicitObjectLifetimeDefault, /// Indicates an error during lowering (usually `'_` in wrong place) /// that was already reported. Error, /// User wrote an anonymous lifetime, either `'_` or nothing. /// The semantics of this lifetime should be inferred by typechecking code. Infer, /// User wrote `'static`. Static, } impl LifetimeName { pub fn is_elided(&self) -> bool { match self { LifetimeName::ImplicitObjectLifetimeDefault | LifetimeName::Infer => true, // It might seem surprising that `Fresh` counts as not *elided* // -- but this is because, as far as the code in the compiler is // concerned -- `Fresh` variants act equivalently to "some fresh name". // They correspond to early-bound regions on an impl, in other words. LifetimeName::Error | LifetimeName::Param(..) | LifetimeName::Static => false, } } } impl fmt::Display for Lifetime { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if self.ident.name != kw::Empty { self.ident.name.fmt(f) } else { "'_".fmt(f) } } } pub enum LifetimeSuggestionPosition { /// The user wrote `'a` or `'_`. Normal, /// The user wrote `&type` or `&mut type`. Ampersand, /// The user wrote `Path` and omitted the `<'_>`. ElidedPath, /// The user wrote `Path`, and omitted the `'_,`. ElidedPathArgument, /// The user wrote `dyn Trait` and omitted the `+ '_`. ObjectDefault, } impl Lifetime { pub fn is_elided(&self) -> bool { self.res.is_elided() } pub fn is_anonymous(&self) -> bool { self.ident.name == kw::Empty || self.ident.name == kw::UnderscoreLifetime } pub fn suggestion_position(&self) -> (LifetimeSuggestionPosition, Span) { if self.ident.name == kw::Empty { if self.ident.span.is_empty() { (LifetimeSuggestionPosition::ElidedPathArgument, self.ident.span) } else { (LifetimeSuggestionPosition::ElidedPath, self.ident.span.shrink_to_hi()) } } else if self.res == LifetimeName::ImplicitObjectLifetimeDefault { (LifetimeSuggestionPosition::ObjectDefault, self.ident.span) } else if self.ident.span.is_empty() { (LifetimeSuggestionPosition::Ampersand, self.ident.span) } else { (LifetimeSuggestionPosition::Normal, self.ident.span) } } pub fn is_static(&self) -> bool { self.res == LifetimeName::Static } } /// A `Path` is essentially Rust's notion of a name; for instance, /// `std::cmp::PartialEq`. It's represented as a sequence of identifiers, /// along with a bunch of supporting information. #[derive(Debug, HashStable_Generic)] pub struct Path<'hir, R = Res> { pub span: Span, /// The resolution for the path. pub res: R, /// The segments in the path: the things separated by `::`. pub segments: &'hir [PathSegment<'hir>], } /// Up to three resolutions for type, value and macro namespaces. pub type UsePath<'hir> = Path<'hir, SmallVec<[Res; 3]>>; impl Path<'_> { pub fn is_global(&self) -> bool { !self.segments.is_empty() && self.segments[0].ident.name == kw::PathRoot } } /// A segment of a path: an identifier, an optional lifetime, and a set of /// types. #[derive(Debug, HashStable_Generic)] pub struct PathSegment<'hir> { /// The identifier portion of this path segment. pub ident: Ident, pub hir_id: HirId, pub res: Res, /// Type/lifetime parameters attached to this path. They come in /// two flavors: `Path` and `Path(A,B) -> C`. Note that /// this is more than just simple syntactic sugar; the use of /// parens affects the region binding rules, so we preserve the /// distinction. pub args: Option<&'hir GenericArgs<'hir>>, /// Whether to infer remaining type parameters, if any. /// This only applies to expression and pattern paths, and /// out of those only the segments with no type parameters /// to begin with, e.g., `Vec::new` is `>::new::<..>`. pub infer_args: bool, } impl<'hir> PathSegment<'hir> { /// Converts an identifier to the corresponding segment. pub fn new(ident: Ident, hir_id: HirId, res: Res) -> PathSegment<'hir> { PathSegment { ident, hir_id, res, infer_args: true, args: None } } pub fn invalid() -> Self { Self::new(Ident::empty(), HirId::INVALID, Res::Err) } pub fn args(&self) -> &GenericArgs<'hir> { if let Some(ref args) = self.args { args } else { const DUMMY: &GenericArgs<'_> = &GenericArgs::none(); DUMMY } } } #[derive(Encodable, Debug, HashStable_Generic)] pub struct ConstArg { pub value: AnonConst, pub span: Span, } #[derive(Encodable, Debug, HashStable_Generic)] pub struct InferArg { pub hir_id: HirId, pub span: Span, } impl InferArg { pub fn to_ty(&self) -> Ty<'_> { Ty { kind: TyKind::Infer, span: self.span, hir_id: self.hir_id } } } #[derive(Debug, HashStable_Generic)] pub enum GenericArg<'hir> { Lifetime(&'hir Lifetime), Type(&'hir Ty<'hir>), Const(ConstArg), Infer(InferArg), } impl GenericArg<'_> { pub fn span(&self) -> Span { match self { GenericArg::Lifetime(l) => l.ident.span, GenericArg::Type(t) => t.span, GenericArg::Const(c) => c.span, GenericArg::Infer(i) => i.span, } } pub fn hir_id(&self) -> HirId { match self { GenericArg::Lifetime(l) => l.hir_id, GenericArg::Type(t) => t.hir_id, GenericArg::Const(c) => c.value.hir_id, GenericArg::Infer(i) => i.hir_id, } } pub fn is_synthetic(&self) -> bool { matches!(self, GenericArg::Lifetime(lifetime) if lifetime.ident == Ident::empty()) } pub fn descr(&self) -> &'static str { match self { GenericArg::Lifetime(_) => "lifetime", GenericArg::Type(_) => "type", GenericArg::Const(_) => "constant", GenericArg::Infer(_) => "inferred", } } pub fn to_ord(&self) -> ast::ParamKindOrd { match self { GenericArg::Lifetime(_) => ast::ParamKindOrd::Lifetime, GenericArg::Type(_) | GenericArg::Const(_) | GenericArg::Infer(_) => { ast::ParamKindOrd::TypeOrConst } } } pub fn is_ty_or_const(&self) -> bool { match self { GenericArg::Lifetime(_) => false, GenericArg::Type(_) | GenericArg::Const(_) | GenericArg::Infer(_) => true, } } } #[derive(Debug, HashStable_Generic)] pub struct GenericArgs<'hir> { /// The generic arguments for this path segment. pub args: &'hir [GenericArg<'hir>], /// Bindings (equality constraints) on associated types, if present. /// E.g., `Foo`. pub bindings: &'hir [TypeBinding<'hir>], /// Were arguments written in parenthesized form `Fn(T) -> U`? /// This is required mostly for pretty-printing and diagnostics, /// but also for changing lifetime elision rules to be "function-like". pub parenthesized: GenericArgsParentheses, /// The span encompassing arguments and the surrounding brackets `<>` or `()` /// Foo Fn(T, U, V) -> W /// ^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^ /// Note that this may be: /// - empty, if there are no generic brackets (but there may be hidden lifetimes) /// - dummy, if this was generated while desugaring pub span_ext: Span, } impl<'hir> GenericArgs<'hir> { pub const fn none() -> Self { Self { args: &[], bindings: &[], parenthesized: GenericArgsParentheses::No, span_ext: DUMMY_SP, } } pub fn inputs(&self) -> &[Ty<'hir>] { if self.parenthesized == GenericArgsParentheses::ParenSugar { for arg in self.args { match arg { GenericArg::Lifetime(_) => {} GenericArg::Type(ref ty) => { if let TyKind::Tup(ref tys) = ty.kind { return tys; } break; } GenericArg::Const(_) => {} GenericArg::Infer(_) => {} } } } panic!("GenericArgs::inputs: not a `Fn(T) -> U`"); } #[inline] pub fn has_type_params(&self) -> bool { self.args.iter().any(|arg| matches!(arg, GenericArg::Type(_))) } pub fn has_err(&self) -> bool { self.args.iter().any(|arg| match arg { GenericArg::Type(ty) => matches!(ty.kind, TyKind::Err(_)), _ => false, }) || self.bindings.iter().any(|arg| match arg.kind { TypeBindingKind::Equality { term: Term::Ty(ty) } => matches!(ty.kind, TyKind::Err(_)), _ => false, }) } #[inline] pub fn num_type_params(&self) -> usize { self.args.iter().filter(|arg| matches!(arg, GenericArg::Type(_))).count() } #[inline] pub fn num_lifetime_params(&self) -> usize { self.args.iter().filter(|arg| matches!(arg, GenericArg::Lifetime(_))).count() } #[inline] pub fn has_lifetime_params(&self) -> bool { self.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_))) } #[inline] /// This function returns the number of type and const generic params. /// It should only be used for diagnostics. pub fn num_generic_params(&self) -> usize { self.args.iter().filter(|arg| !matches!(arg, GenericArg::Lifetime(_))).count() } /// The span encompassing the text inside the surrounding brackets. /// It will also include bindings if they aren't in the form `-> Ret` /// Returns `None` if the span is empty (e.g. no brackets) or dummy pub fn span(&self) -> Option { let span_ext = self.span_ext()?; Some(span_ext.with_lo(span_ext.lo() + BytePos(1)).with_hi(span_ext.hi() - BytePos(1))) } /// Returns span encompassing arguments and their surrounding `<>` or `()` pub fn span_ext(&self) -> Option { Some(self.span_ext).filter(|span| !span.is_empty()) } pub fn is_empty(&self) -> bool { self.args.is_empty() } } #[derive(Copy, Clone, PartialEq, Eq, Encodable, Hash, Debug)] #[derive(HashStable_Generic)] pub enum GenericArgsParentheses { No, /// Bounds for `feature(return_type_notation)`, like `T: Trait`, /// where the args are explicitly elided with `..` ReturnTypeNotation, /// parenthesized function-family traits, like `T: Fn(u32) -> i32` ParenSugar, } /// A modifier on a bound, currently this is only used for `?Sized`, where the /// modifier is `Maybe`. Negative bounds should also be handled here. #[derive(Copy, Clone, PartialEq, Eq, Encodable, Hash, Debug)] #[derive(HashStable_Generic)] pub enum TraitBoundModifier { None, Maybe, MaybeConst, } /// The AST represents all type param bounds as types. /// `typeck::collect::compute_bounds` matches these against /// the "special" built-in traits (see `middle::lang_items`) and /// detects `Copy`, `Send` and `Sync`. #[derive(Clone, Debug, HashStable_Generic)] pub enum GenericBound<'hir> { Trait(PolyTraitRef<'hir>, TraitBoundModifier), // FIXME(davidtwco): Introduce `PolyTraitRef::LangItem` LangItemTrait(LangItem, Span, HirId, &'hir GenericArgs<'hir>), Outlives(&'hir Lifetime), } impl GenericBound<'_> { pub fn trait_ref(&self) -> Option<&TraitRef<'_>> { match self { GenericBound::Trait(data, _) => Some(&data.trait_ref), _ => None, } } pub fn span(&self) -> Span { match self { GenericBound::Trait(t, ..) => t.span, GenericBound::LangItemTrait(_, span, ..) => *span, GenericBound::Outlives(l) => l.ident.span, } } } pub type GenericBounds<'hir> = &'hir [GenericBound<'hir>]; #[derive(Copy, Clone, PartialEq, Eq, Encodable, Debug, HashStable_Generic)] pub enum LifetimeParamKind { // Indicates that the lifetime definition was explicitly declared (e.g., in // `fn foo<'a>(x: &'a u8) -> &'a u8 { x }`). Explicit, // Indication that the lifetime was elided (e.g., in both cases in // `fn foo(x: &u8) -> &'_ u8 { x }`). Elided, // Indication that the lifetime name was somehow in error. Error, } #[derive(Debug, HashStable_Generic)] pub enum GenericParamKind<'hir> { /// A lifetime definition (e.g., `'a: 'b + 'c + 'd`). Lifetime { kind: LifetimeParamKind, }, Type { default: Option<&'hir Ty<'hir>>, synthetic: bool, }, Const { ty: &'hir Ty<'hir>, /// Optional default value for the const generic param default: Option, }, } #[derive(Debug, HashStable_Generic)] pub struct GenericParam<'hir> { pub hir_id: HirId, pub def_id: LocalDefId, pub name: ParamName, pub span: Span, pub pure_wrt_drop: bool, pub kind: GenericParamKind<'hir>, pub colon_span: Option, pub source: GenericParamSource, } impl<'hir> GenericParam<'hir> { /// Synthetic type-parameters are inserted after normal ones. /// In order for normal parameters to be able to refer to synthetic ones, /// scans them first. pub fn is_impl_trait(&self) -> bool { matches!(self.kind, GenericParamKind::Type { synthetic: true, .. }) } /// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`. /// /// See `lifetime_to_generic_param` in `rustc_ast_lowering` for more information. pub fn is_elided_lifetime(&self) -> bool { matches!(self.kind, GenericParamKind::Lifetime { kind: LifetimeParamKind::Elided }) } } /// Records where the generic parameter originated from. /// /// This can either be from an item's generics, in which case it's typically /// early-bound (but can be a late-bound lifetime in functions, for example), /// or from a `for<...>` binder, in which case it's late-bound (and notably, /// does not show up in the parent item's generics). #[derive(Debug, HashStable_Generic, PartialEq, Eq, Copy, Clone)] pub enum GenericParamSource { // Early or late-bound parameters defined on an item Generics, // Late-bound parameters defined via a `for<...>` Binder, } #[derive(Default)] pub struct GenericParamCount { pub lifetimes: usize, pub types: usize, pub consts: usize, pub infer: usize, } /// Represents lifetimes and type parameters attached to a declaration /// of a function, enum, trait, etc. #[derive(Debug, HashStable_Generic)] pub struct Generics<'hir> { pub params: &'hir [GenericParam<'hir>], pub predicates: &'hir [WherePredicate<'hir>], pub has_where_clause_predicates: bool, pub where_clause_span: Span, pub span: Span, } impl<'hir> Generics<'hir> { pub const fn empty() -> &'hir Generics<'hir> { const NOPE: Generics<'_> = Generics { params: &[], predicates: &[], has_where_clause_predicates: false, where_clause_span: DUMMY_SP, span: DUMMY_SP, }; &NOPE } pub fn get_named(&self, name: Symbol) -> Option<&GenericParam<'hir>> { self.params.iter().find(|¶m| name == param.name.ident().name) } pub fn spans(&self) -> MultiSpan { if self.params.is_empty() { self.span.into() } else { self.params.iter().map(|p| p.span).collect::>().into() } } /// If there are generic parameters, return where to introduce a new one. pub fn span_for_lifetime_suggestion(&self) -> Option { if let Some(first) = self.params.first() && self.span.contains(first.span) { // `fn foo(t: impl Trait)` // ^ suggest `'a, ` here Some(first.span.shrink_to_lo()) } else { None } } /// If there are generic parameters, return where to introduce a new one. pub fn span_for_param_suggestion(&self) -> Option { self.params.iter().any(|p| self.span.contains(p.span)).then(|| { // `fn foo(t: impl Trait)` // ^ suggest `, T: Trait` here self.span.with_lo(self.span.hi() - BytePos(1)).shrink_to_lo() }) } /// `Span` where further predicates would be suggested, accounting for trailing commas, like /// in `fn foo(t: T) where T: Foo,` so we don't suggest two trailing commas. pub fn tail_span_for_predicate_suggestion(&self) -> Span { let end = self.where_clause_span.shrink_to_hi(); if self.has_where_clause_predicates { self.predicates .iter() .rfind(|&p| p.in_where_clause()) .map_or(end, |p| p.span()) .shrink_to_hi() .to(end) } else { end } } pub fn add_where_or_trailing_comma(&self) -> &'static str { if self.has_where_clause_predicates { "," } else if self.where_clause_span.is_empty() { " where" } else { // No where clause predicates, but we have `where` token "" } } pub fn bounds_for_param( &self, param_def_id: LocalDefId, ) -> impl Iterator> { self.predicates.iter().filter_map(move |pred| match pred { WherePredicate::BoundPredicate(bp) if bp.is_param_bound(param_def_id.to_def_id()) => { Some(bp) } _ => None, }) } pub fn outlives_for_param( &self, param_def_id: LocalDefId, ) -> impl Iterator> { self.predicates.iter().filter_map(move |pred| match pred { WherePredicate::RegionPredicate(rp) if rp.is_param_bound(param_def_id) => Some(rp), _ => None, }) } pub fn bounds_span_for_suggestions(&self, param_def_id: LocalDefId) -> Option { self.bounds_for_param(param_def_id).flat_map(|bp| bp.bounds.iter().rev()).find_map( |bound| { // We include bounds that come from a `#[derive(_)]` but point at the user's code, // as we use this method to get a span appropriate for suggestions. let bs = bound.span(); bs.can_be_used_for_suggestions().then(|| bs.shrink_to_hi()) }, ) } pub fn span_for_predicate_removal(&self, pos: usize) -> Span { let predicate = &self.predicates[pos]; let span = predicate.span(); if !predicate.in_where_clause() { // // ^^^^^^^^ return span; } // We need to find out which comma to remove. if pos < self.predicates.len() - 1 { let next_pred = &self.predicates[pos + 1]; if next_pred.in_where_clause() { // where T: ?Sized, Foo: Bar, // ^^^^^^^^^^^ return span.until(next_pred.span()); } } if pos > 0 { let prev_pred = &self.predicates[pos - 1]; if prev_pred.in_where_clause() { // where Foo: Bar, T: ?Sized, // ^^^^^^^^^^^ return prev_pred.span().shrink_to_hi().to(span); } } // This is the only predicate in the where clause. // where T: ?Sized // ^^^^^^^^^^^^^^^ self.where_clause_span } pub fn span_for_bound_removal(&self, predicate_pos: usize, bound_pos: usize) -> Span { let predicate = &self.predicates[predicate_pos]; let bounds = predicate.bounds(); if bounds.len() == 1 { return self.span_for_predicate_removal(predicate_pos); } let span = bounds[bound_pos].span(); if bound_pos == 0 { // where T: ?Sized + Bar, Foo: Bar, // ^^^^^^^^^ span.to(bounds[1].span().shrink_to_lo()) } else { // where T: Bar + ?Sized, Foo: Bar, // ^^^^^^^^^ bounds[bound_pos - 1].span().shrink_to_hi().to(span) } } } /// A single predicate in a where-clause. #[derive(Debug, HashStable_Generic)] pub enum WherePredicate<'hir> { /// A type binding (e.g., `for<'c> Foo: Send + Clone + 'c`). BoundPredicate(WhereBoundPredicate<'hir>), /// A lifetime predicate (e.g., `'a: 'b + 'c`). RegionPredicate(WhereRegionPredicate<'hir>), /// An equality predicate (unsupported). EqPredicate(WhereEqPredicate<'hir>), } impl<'hir> WherePredicate<'hir> { pub fn span(&self) -> Span { match self { WherePredicate::BoundPredicate(p) => p.span, WherePredicate::RegionPredicate(p) => p.span, WherePredicate::EqPredicate(p) => p.span, } } pub fn in_where_clause(&self) -> bool { match self { WherePredicate::BoundPredicate(p) => p.origin == PredicateOrigin::WhereClause, WherePredicate::RegionPredicate(p) => p.in_where_clause, WherePredicate::EqPredicate(_) => false, } } pub fn bounds(&self) -> GenericBounds<'hir> { match self { WherePredicate::BoundPredicate(p) => p.bounds, WherePredicate::RegionPredicate(p) => p.bounds, WherePredicate::EqPredicate(_) => &[], } } } #[derive(Copy, Clone, Debug, HashStable_Generic, PartialEq, Eq)] pub enum PredicateOrigin { WhereClause, GenericParam, ImplTrait, } /// A type bound (e.g., `for<'c> Foo: Send + Clone + 'c`). #[derive(Debug, HashStable_Generic)] pub struct WhereBoundPredicate<'hir> { pub hir_id: HirId, pub span: Span, /// Origin of the predicate. pub origin: PredicateOrigin, /// Any generics from a `for` binding. pub bound_generic_params: &'hir [GenericParam<'hir>], /// The type being bounded. pub bounded_ty: &'hir Ty<'hir>, /// Trait and lifetime bounds (e.g., `Clone + Send + 'static`). pub bounds: GenericBounds<'hir>, } impl<'hir> WhereBoundPredicate<'hir> { /// Returns `true` if `param_def_id` matches the `bounded_ty` of this predicate. pub fn is_param_bound(&self, param_def_id: DefId) -> bool { self.bounded_ty.as_generic_param().map_or(false, |(def_id, _)| def_id == param_def_id) } } /// A lifetime predicate (e.g., `'a: 'b + 'c`). #[derive(Debug, HashStable_Generic)] pub struct WhereRegionPredicate<'hir> { pub span: Span, pub in_where_clause: bool, pub lifetime: &'hir Lifetime, pub bounds: GenericBounds<'hir>, } impl<'hir> WhereRegionPredicate<'hir> { /// Returns `true` if `param_def_id` matches the `lifetime` of this predicate. pub fn is_param_bound(&self, param_def_id: LocalDefId) -> bool { self.lifetime.res == LifetimeName::Param(param_def_id) } } /// An equality predicate (e.g., `T = int`); currently unsupported. #[derive(Debug, HashStable_Generic)] pub struct WhereEqPredicate<'hir> { pub span: Span, pub lhs_ty: &'hir Ty<'hir>, pub rhs_ty: &'hir Ty<'hir>, } /// HIR node coupled with its parent's id in the same HIR owner. /// /// The parent is trash when the node is a HIR owner. #[derive(Clone, Debug)] pub struct ParentedNode<'tcx> { pub parent: ItemLocalId, pub node: Node<'tcx>, } /// Attributes owned by a HIR owner. #[derive(Debug)] pub struct AttributeMap<'tcx> { pub map: SortedMap, // Only present when the crate hash is needed. pub opt_hash: Option, } impl<'tcx> AttributeMap<'tcx> { pub const EMPTY: &'static AttributeMap<'static> = &AttributeMap { map: SortedMap::new(), opt_hash: Some(Fingerprint::ZERO) }; #[inline] pub fn get(&self, id: ItemLocalId) -> &'tcx [Attribute] { self.map.get(&id).copied().unwrap_or(&[]) } } /// Map of all HIR nodes inside the current owner. /// These nodes are mapped by `ItemLocalId` alongside the index of their parent node. /// The HIR tree, including bodies, is pre-hashed. pub struct OwnerNodes<'tcx> { /// Pre-computed hash of the full HIR. Used in the crate hash. Only present /// when incr. comp. is enabled. pub opt_hash_including_bodies: Option, /// Full HIR for the current owner. // The zeroth node's parent should never be accessed: the owner's parent is computed by the // hir_owner_parent query. It is set to `ItemLocalId::INVALID` to force an ICE if accidentally // used. pub nodes: IndexVec>>, /// Content of local bodies. pub bodies: SortedMap>, } impl<'tcx> OwnerNodes<'tcx> { pub fn node(&self) -> OwnerNode<'tcx> { use rustc_index::vec::Idx; let node = self.nodes[ItemLocalId::new(0)].as_ref().unwrap().node; let node = node.as_owner().unwrap(); // Indexing must ensure it is an OwnerNode. node } } impl fmt::Debug for OwnerNodes<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("OwnerNodes") // Do not print all the pointers to all the nodes, as it would be unreadable. .field("node", &self.nodes[ItemLocalId::from_u32(0)]) .field( "parents", &self .nodes .iter_enumerated() .map(|(id, parented_node)| { let parented_node = parented_node.as_ref().map(|node| node.parent); debug_fn(move |f| write!(f, "({id:?}, {parented_node:?})")) }) .collect::>(), ) .field("bodies", &self.bodies) .field("opt_hash_including_bodies", &self.opt_hash_including_bodies) .finish() } } /// Full information resulting from lowering an AST node. #[derive(Debug, HashStable_Generic)] pub struct OwnerInfo<'hir> { /// Contents of the HIR. pub nodes: OwnerNodes<'hir>, /// Map from each nested owner to its parent's local id. pub parenting: FxHashMap, /// Collected attributes of the HIR nodes. pub attrs: AttributeMap<'hir>, /// Map indicating what traits are in scope for places where this /// is relevant; generated by resolve. pub trait_map: FxHashMap>, } impl<'tcx> OwnerInfo<'tcx> { #[inline] pub fn node(&self) -> OwnerNode<'tcx> { self.nodes.node() } } #[derive(Copy, Clone, Debug, HashStable_Generic)] pub enum MaybeOwner { Owner(T), NonOwner(HirId), /// Used as a placeholder for unused LocalDefId. Phantom, } impl MaybeOwner { pub fn as_owner(self) -> Option { match self { MaybeOwner::Owner(i) => Some(i), MaybeOwner::NonOwner(_) | MaybeOwner::Phantom => None, } } pub fn map(self, f: impl FnOnce(T) -> U) -> MaybeOwner { match self { MaybeOwner::Owner(i) => MaybeOwner::Owner(f(i)), MaybeOwner::NonOwner(hir_id) => MaybeOwner::NonOwner(hir_id), MaybeOwner::Phantom => MaybeOwner::Phantom, } } pub fn unwrap(self) -> T { match self { MaybeOwner::Owner(i) => i, MaybeOwner::NonOwner(_) | MaybeOwner::Phantom => panic!("Not a HIR owner"), } } } /// The top-level data structure that stores the entire contents of /// the crate currently being compiled. /// /// For more details, see the [rustc dev guide]. /// /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/hir.html #[derive(Debug)] pub struct Crate<'hir> { pub owners: IndexVec>>, // Only present when incr. comp. is enabled. pub opt_hir_hash: Option, } #[derive(Debug, HashStable_Generic)] pub struct Closure<'hir> { pub def_id: LocalDefId, pub binder: ClosureBinder, pub constness: Constness, pub capture_clause: CaptureBy, pub bound_generic_params: &'hir [GenericParam<'hir>], pub fn_decl: &'hir FnDecl<'hir>, pub body: BodyId, /// The span of the declaration block: 'move |...| -> ...' pub fn_decl_span: Span, /// The span of the argument block `|...|` pub fn_arg_span: Option, pub movability: Option, } /// A block of statements `{ .. }`, which may have a label (in this case the /// `targeted_by_break` field will be `true`) and may be `unsafe` by means of /// the `rules` being anything but `DefaultBlock`. #[derive(Debug, HashStable_Generic)] pub struct Block<'hir> { /// Statements in a block. pub stmts: &'hir [Stmt<'hir>], /// An expression at the end of the block /// without a semicolon, if any. pub expr: Option<&'hir Expr<'hir>>, #[stable_hasher(ignore)] pub hir_id: HirId, /// Distinguishes between `unsafe { ... }` and `{ ... }`. pub rules: BlockCheckMode, pub span: Span, /// If true, then there may exist `break 'a` values that aim to /// break out of this block early. /// Used by `'label: {}` blocks and by `try {}` blocks. pub targeted_by_break: bool, } impl<'hir> Block<'hir> { pub fn innermost_block(&self) -> &Block<'hir> { let mut block = self; while let Some(Expr { kind: ExprKind::Block(inner_block, _), .. }) = block.expr { block = inner_block; } block } } #[derive(Debug, HashStable_Generic)] pub struct Pat<'hir> { #[stable_hasher(ignore)] pub hir_id: HirId, pub kind: PatKind<'hir>, pub span: Span, /// Whether to use default binding modes. /// At present, this is false only for destructuring assignment. pub default_binding_modes: bool, } impl<'hir> Pat<'hir> { fn walk_short_(&self, it: &mut impl FnMut(&Pat<'hir>) -> bool) -> bool { if !it(self) { return false; } use PatKind::*; match self.kind { Wild | Lit(_) | Range(..) | Binding(.., None) | Path(_) => true, Box(s) | Ref(s, _) | Binding(.., Some(s)) => s.walk_short_(it), Struct(_, fields, _) => fields.iter().all(|field| field.pat.walk_short_(it)), TupleStruct(_, s, _) | Tuple(s, _) | Or(s) => s.iter().all(|p| p.walk_short_(it)), Slice(before, slice, after) => { before.iter().chain(slice).chain(after.iter()).all(|p| p.walk_short_(it)) } } } /// Walk the pattern in left-to-right order, /// short circuiting (with `.all(..)`) if `false` is returned. /// /// Note that when visiting e.g. `Tuple(ps)`, /// if visiting `ps[0]` returns `false`, /// then `ps[1]` will not be visited. pub fn walk_short(&self, mut it: impl FnMut(&Pat<'hir>) -> bool) -> bool { self.walk_short_(&mut it) } fn walk_(&self, it: &mut impl FnMut(&Pat<'hir>) -> bool) { if !it(self) { return; } use PatKind::*; match self.kind { Wild | Lit(_) | Range(..) | Binding(.., None) | Path(_) => {} Box(s) | Ref(s, _) | Binding(.., Some(s)) => s.walk_(it), Struct(_, fields, _) => fields.iter().for_each(|field| field.pat.walk_(it)), TupleStruct(_, s, _) | Tuple(s, _) | Or(s) => s.iter().for_each(|p| p.walk_(it)), Slice(before, slice, after) => { before.iter().chain(slice).chain(after.iter()).for_each(|p| p.walk_(it)) } } } /// Walk the pattern in left-to-right order. /// /// If `it(pat)` returns `false`, the children are not visited. pub fn walk(&self, mut it: impl FnMut(&Pat<'hir>) -> bool) { self.walk_(&mut it) } /// Walk the pattern in left-to-right order. /// /// If you always want to recurse, prefer this method over `walk`. pub fn walk_always(&self, mut it: impl FnMut(&Pat<'_>)) { self.walk(|p| { it(p); true }) } } /// A single field in a struct pattern. /// /// Patterns like the fields of Foo `{ x, ref y, ref mut z }` /// are treated the same as` x: x, y: ref y, z: ref mut z`, /// except `is_shorthand` is true. #[derive(Debug, HashStable_Generic)] pub struct PatField<'hir> { #[stable_hasher(ignore)] pub hir_id: HirId, /// The identifier for the field. pub ident: Ident, /// The pattern the field is destructured to. pub pat: &'hir Pat<'hir>, pub is_shorthand: bool, pub span: Span, } #[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)] pub enum RangeEnd { Included, Excluded, } impl fmt::Display for RangeEnd { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str(match self { RangeEnd::Included => "..=", RangeEnd::Excluded => "..", }) } } // Equivalent to `Option`. That type takes up 16 bytes on 64-bit, but // this type only takes up 4 bytes, at the cost of being restricted to a // maximum value of `u32::MAX - 1`. In practice, this is more than enough. #[derive(Clone, Copy, PartialEq, Eq, Hash, HashStable_Generic)] pub struct DotDotPos(u32); impl DotDotPos { /// Panics if n >= u32::MAX. pub fn new(n: Option) -> Self { match n { Some(n) => { assert!(n < u32::MAX as usize); Self(n as u32) } None => Self(u32::MAX), } } pub fn as_opt_usize(&self) -> Option { if self.0 == u32::MAX { None } else { Some(self.0 as usize) } } } impl fmt::Debug for DotDotPos { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.as_opt_usize().fmt(f) } } #[derive(Debug, HashStable_Generic)] pub enum PatKind<'hir> { /// Represents a wildcard pattern (i.e., `_`). Wild, /// A fresh binding `ref mut binding @ OPT_SUBPATTERN`. /// The `HirId` is the canonical ID for the variable being bound, /// (e.g., in `Ok(x) | Err(x)`, both `x` use the same canonical ID), /// which is the pattern ID of the first `x`. Binding(BindingAnnotation, HirId, Ident, Option<&'hir Pat<'hir>>), /// A struct or struct variant pattern (e.g., `Variant {x, y, ..}`). /// The `bool` is `true` in the presence of a `..`. Struct(QPath<'hir>, &'hir [PatField<'hir>], bool), /// A tuple struct/variant pattern `Variant(x, y, .., z)`. /// If the `..` pattern fragment is present, then `DotDotPos` denotes its position. /// `0 <= position <= subpats.len()` TupleStruct(QPath<'hir>, &'hir [Pat<'hir>], DotDotPos), /// An or-pattern `A | B | C`. /// Invariant: `pats.len() >= 2`. Or(&'hir [Pat<'hir>]), /// A path pattern for a unit struct/variant or a (maybe-associated) constant. Path(QPath<'hir>), /// A tuple pattern (e.g., `(a, b)`). /// If the `..` pattern fragment is present, then `Option` denotes its position. /// `0 <= position <= subpats.len()` Tuple(&'hir [Pat<'hir>], DotDotPos), /// A `box` pattern. Box(&'hir Pat<'hir>), /// A reference pattern (e.g., `&mut (a, b)`). Ref(&'hir Pat<'hir>, Mutability), /// A literal. Lit(&'hir Expr<'hir>), /// A range pattern (e.g., `1..=2` or `1..2`). Range(Option<&'hir Expr<'hir>>, Option<&'hir Expr<'hir>>, RangeEnd), /// A slice pattern, `[before_0, ..., before_n, (slice, after_0, ..., after_n)?]`. /// /// Here, `slice` is lowered from the syntax `($binding_mode $ident @)? ..`. /// If `slice` exists, then `after` can be non-empty. /// /// The representation for e.g., `[a, b, .., c, d]` is: /// ```ignore (illustrative) /// PatKind::Slice([Binding(a), Binding(b)], Some(Wild), [Binding(c), Binding(d)]) /// ``` Slice(&'hir [Pat<'hir>], Option<&'hir Pat<'hir>>, &'hir [Pat<'hir>]), } #[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)] pub enum BinOpKind { /// The `+` operator (addition). Add, /// The `-` operator (subtraction). Sub, /// The `*` operator (multiplication). Mul, /// The `/` operator (division). Div, /// The `%` operator (modulus). Rem, /// The `&&` operator (logical and). And, /// The `||` operator (logical or). Or, /// The `^` operator (bitwise xor). BitXor, /// The `&` operator (bitwise and). BitAnd, /// The `|` operator (bitwise or). BitOr, /// The `<<` operator (shift left). Shl, /// The `>>` operator (shift right). Shr, /// The `==` operator (equality). Eq, /// The `<` operator (less than). Lt, /// The `<=` operator (less than or equal to). Le, /// The `!=` operator (not equal to). Ne, /// The `>=` operator (greater than or equal to). Ge, /// The `>` operator (greater than). Gt, } impl BinOpKind { pub fn as_str(self) -> &'static str { match self { BinOpKind::Add => "+", BinOpKind::Sub => "-", BinOpKind::Mul => "*", BinOpKind::Div => "/", BinOpKind::Rem => "%", BinOpKind::And => "&&", BinOpKind::Or => "||", BinOpKind::BitXor => "^", BinOpKind::BitAnd => "&", BinOpKind::BitOr => "|", BinOpKind::Shl => "<<", BinOpKind::Shr => ">>", BinOpKind::Eq => "==", BinOpKind::Lt => "<", BinOpKind::Le => "<=", BinOpKind::Ne => "!=", BinOpKind::Ge => ">=", BinOpKind::Gt => ">", } } pub fn is_lazy(self) -> bool { matches!(self, BinOpKind::And | BinOpKind::Or) } pub fn is_shift(self) -> bool { matches!(self, BinOpKind::Shl | BinOpKind::Shr) } pub fn is_comparison(self) -> bool { match self { BinOpKind::Eq | BinOpKind::Lt | BinOpKind::Le | BinOpKind::Ne | BinOpKind::Gt | BinOpKind::Ge => true, BinOpKind::And | BinOpKind::Or | BinOpKind::Add | BinOpKind::Sub | BinOpKind::Mul | BinOpKind::Div | BinOpKind::Rem | BinOpKind::BitXor | BinOpKind::BitAnd | BinOpKind::BitOr | BinOpKind::Shl | BinOpKind::Shr => false, } } /// Returns `true` if the binary operator takes its arguments by value. pub fn is_by_value(self) -> bool { !self.is_comparison() } } impl Into for BinOpKind { fn into(self) -> ast::BinOpKind { match self { BinOpKind::Add => ast::BinOpKind::Add, BinOpKind::Sub => ast::BinOpKind::Sub, BinOpKind::Mul => ast::BinOpKind::Mul, BinOpKind::Div => ast::BinOpKind::Div, BinOpKind::Rem => ast::BinOpKind::Rem, BinOpKind::And => ast::BinOpKind::And, BinOpKind::Or => ast::BinOpKind::Or, BinOpKind::BitXor => ast::BinOpKind::BitXor, BinOpKind::BitAnd => ast::BinOpKind::BitAnd, BinOpKind::BitOr => ast::BinOpKind::BitOr, BinOpKind::Shl => ast::BinOpKind::Shl, BinOpKind::Shr => ast::BinOpKind::Shr, BinOpKind::Eq => ast::BinOpKind::Eq, BinOpKind::Lt => ast::BinOpKind::Lt, BinOpKind::Le => ast::BinOpKind::Le, BinOpKind::Ne => ast::BinOpKind::Ne, BinOpKind::Ge => ast::BinOpKind::Ge, BinOpKind::Gt => ast::BinOpKind::Gt, } } } pub type BinOp = Spanned; #[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)] pub enum UnOp { /// The `*` operator (dereferencing). Deref, /// The `!` operator (logical negation). Not, /// The `-` operator (negation). Neg, } impl UnOp { pub fn as_str(self) -> &'static str { match self { Self::Deref => "*", Self::Not => "!", Self::Neg => "-", } } /// Returns `true` if the unary operator takes its argument by value. pub fn is_by_value(self) -> bool { matches!(self, Self::Neg | Self::Not) } } /// A statement. #[derive(Debug, HashStable_Generic)] pub struct Stmt<'hir> { pub hir_id: HirId, pub kind: StmtKind<'hir>, pub span: Span, } /// The contents of a statement. #[derive(Debug, HashStable_Generic)] pub enum StmtKind<'hir> { /// A local (`let`) binding. Local(&'hir Local<'hir>), /// An item binding. Item(ItemId), /// An expression without a trailing semi-colon (must have unit type). Expr(&'hir Expr<'hir>), /// An expression with a trailing semi-colon (may have any type). Semi(&'hir Expr<'hir>), } /// Represents a `let` statement (i.e., `let : = ;`). #[derive(Debug, HashStable_Generic)] pub struct Local<'hir> { pub pat: &'hir Pat<'hir>, /// Type annotation, if any (otherwise the type will be inferred). pub ty: Option<&'hir Ty<'hir>>, /// Initializer expression to set the value, if any. pub init: Option<&'hir Expr<'hir>>, /// Else block for a `let...else` binding. pub els: Option<&'hir Block<'hir>>, pub hir_id: HirId, pub span: Span, /// Can be `ForLoopDesugar` if the `let` statement is part of a `for` loop /// desugaring. Otherwise will be `Normal`. pub source: LocalSource, } /// Represents a single arm of a `match` expression, e.g. /// ` (if ) => `. #[derive(Debug, HashStable_Generic)] pub struct Arm<'hir> { #[stable_hasher(ignore)] pub hir_id: HirId, pub span: Span, /// If this pattern and the optional guard matches, then `body` is evaluated. pub pat: &'hir Pat<'hir>, /// Optional guard clause. pub guard: Option>, /// The expression the arm evaluates to if this arm matches. pub body: &'hir Expr<'hir>, } /// Represents a `let [: ] = ` expression (not a Local), occurring in an `if-let` or /// `let-else`, evaluating to a boolean. Typically the pattern is refutable. /// /// In an if-let, imagine it as `if (let = ) { ... }`; in a let-else, it is part of the /// desugaring to if-let. Only let-else supports the type annotation at present. #[derive(Debug, HashStable_Generic)] pub struct Let<'hir> { pub hir_id: HirId, pub span: Span, pub pat: &'hir Pat<'hir>, pub ty: Option<&'hir Ty<'hir>>, pub init: &'hir Expr<'hir>, } #[derive(Debug, HashStable_Generic)] pub enum Guard<'hir> { If(&'hir Expr<'hir>), IfLet(&'hir Let<'hir>), } impl<'hir> Guard<'hir> { /// Returns the body of the guard /// /// In other words, returns the e in either of the following: /// /// - `if e` /// - `if let x = e` pub fn body(&self) -> &'hir Expr<'hir> { match self { Guard::If(e) | Guard::IfLet(Let { init: e, .. }) => e, } } } #[derive(Debug, HashStable_Generic)] pub struct ExprField<'hir> { #[stable_hasher(ignore)] pub hir_id: HirId, pub ident: Ident, pub expr: &'hir Expr<'hir>, pub span: Span, pub is_shorthand: bool, } #[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)] pub enum BlockCheckMode { DefaultBlock, UnsafeBlock(UnsafeSource), } #[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)] pub enum UnsafeSource { CompilerGenerated, UserProvided, } #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Hash, Debug)] pub struct BodyId { pub hir_id: HirId, } /// The body of a function, closure, or constant value. In the case of /// a function, the body contains not only the function body itself /// (which is an expression), but also the argument patterns, since /// those are something that the caller doesn't really care about. /// /// # Examples /// /// ``` /// fn foo((x, y): (u32, u32)) -> u32 { /// x + y /// } /// ``` /// /// Here, the `Body` associated with `foo()` would contain: /// /// - an `params` array containing the `(x, y)` pattern /// - a `value` containing the `x + y` expression (maybe wrapped in a block) /// - `generator_kind` would be `None` /// /// All bodies have an **owner**, which can be accessed via the HIR /// map using `body_owner_def_id()`. #[derive(Debug, HashStable_Generic)] pub struct Body<'hir> { pub params: &'hir [Param<'hir>], pub value: &'hir Expr<'hir>, pub generator_kind: Option, } impl<'hir> Body<'hir> { pub fn id(&self) -> BodyId { BodyId { hir_id: self.value.hir_id } } pub fn generator_kind(&self) -> Option { self.generator_kind } } /// The type of source expression that caused this generator to be created. #[derive(Clone, PartialEq, PartialOrd, Eq, Hash, Debug, Copy)] #[derive(HashStable_Generic, Encodable, Decodable)] pub enum GeneratorKind { /// An explicit `async` block or the body of an async function. Async(AsyncGeneratorKind), /// A generator literal created via a `yield` inside a closure. Gen, } impl fmt::Display for GeneratorKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { GeneratorKind::Async(k) => fmt::Display::fmt(k, f), GeneratorKind::Gen => f.write_str("generator"), } } } impl GeneratorKind { pub fn descr(&self) -> &'static str { match self { GeneratorKind::Async(ask) => ask.descr(), GeneratorKind::Gen => "generator", } } } /// In the case of a generator created as part of an async construct, /// which kind of async construct caused it to be created? /// /// This helps error messages but is also used to drive coercions in /// type-checking (see #60424). #[derive(Clone, PartialEq, PartialOrd, Eq, Hash, Debug, Copy)] #[derive(HashStable_Generic, Encodable, Decodable)] pub enum AsyncGeneratorKind { /// An explicit `async` block written by the user. Block, /// An explicit `async` closure written by the user. Closure, /// The `async` block generated as the body of an async function. Fn, } impl fmt::Display for AsyncGeneratorKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str(match self { AsyncGeneratorKind::Block => "async block", AsyncGeneratorKind::Closure => "async closure body", AsyncGeneratorKind::Fn => "async fn body", }) } } impl AsyncGeneratorKind { pub fn descr(&self) -> &'static str { match self { AsyncGeneratorKind::Block => "`async` block", AsyncGeneratorKind::Closure => "`async` closure body", AsyncGeneratorKind::Fn => "`async fn` body", } } } #[derive(Copy, Clone, Debug)] pub enum BodyOwnerKind { /// Functions and methods. Fn, /// Closures Closure, /// Constants and associated constants. Const, /// Initializer of a `static` item. Static(Mutability), } impl BodyOwnerKind { pub fn is_fn_or_closure(self) -> bool { match self { BodyOwnerKind::Fn | BodyOwnerKind::Closure => true, BodyOwnerKind::Const | BodyOwnerKind::Static(_) => false, } } } /// The kind of an item that requires const-checking. #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum ConstContext { /// A `const fn`. ConstFn, /// A `static` or `static mut`. Static(Mutability), /// A `const`, associated `const`, or other const context. /// /// Other contexts include: /// - Array length expressions /// - Enum discriminants /// - Const generics /// /// For the most part, other contexts are treated just like a regular `const`, so they are /// lumped into the same category. Const, } impl ConstContext { /// A description of this const context that can appear between backticks in an error message. /// /// E.g. `const` or `static mut`. pub fn keyword_name(self) -> &'static str { match self { Self::Const => "const", Self::Static(Mutability::Not) => "static", Self::Static(Mutability::Mut) => "static mut", Self::ConstFn => "const fn", } } } /// A colloquial, trivially pluralizable description of this const context for use in error /// messages. impl fmt::Display for ConstContext { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { Self::Const => write!(f, "constant"), Self::Static(_) => write!(f, "static"), Self::ConstFn => write!(f, "constant function"), } } } // NOTE: `IntoDiagnosticArg` impl for `ConstContext` lives in `rustc_errors` // due to a cyclical dependency between hir that crate. /// A literal. pub type Lit = Spanned; #[derive(Copy, Clone, PartialEq, Eq, Encodable, Debug, HashStable_Generic)] pub enum ArrayLen { Infer(HirId, Span), Body(AnonConst), } impl ArrayLen { pub fn hir_id(&self) -> HirId { match self { &ArrayLen::Infer(hir_id, _) | &ArrayLen::Body(AnonConst { hir_id, .. }) => hir_id, } } } /// A constant (expression) that's not an item or associated item, /// but needs its own `DefId` for type-checking, const-eval, etc. /// These are usually found nested inside types (e.g., array lengths) /// or expressions (e.g., repeat counts), and also used to define /// explicit discriminant values for enum variants. /// /// You can check if this anon const is a default in a const param /// `const N: usize = { ... }` with `tcx.hir().opt_const_param_default_param_def_id(..)` #[derive(Copy, Clone, PartialEq, Eq, Encodable, Debug, HashStable_Generic)] pub struct AnonConst { pub hir_id: HirId, pub def_id: LocalDefId, pub body: BodyId, } /// An expression. #[derive(Debug, HashStable_Generic)] pub struct Expr<'hir> { pub hir_id: HirId, pub kind: ExprKind<'hir>, pub span: Span, } impl Expr<'_> { pub fn precedence(&self) -> ExprPrecedence { match self.kind { ExprKind::ConstBlock(_) => ExprPrecedence::ConstBlock, ExprKind::Array(_) => ExprPrecedence::Array, ExprKind::Call(..) => ExprPrecedence::Call, ExprKind::MethodCall(..) => ExprPrecedence::MethodCall, ExprKind::Tup(_) => ExprPrecedence::Tup, ExprKind::Binary(op, ..) => ExprPrecedence::Binary(op.node.into()), ExprKind::Unary(..) => ExprPrecedence::Unary, ExprKind::Lit(_) => ExprPrecedence::Lit, ExprKind::Type(..) | ExprKind::Cast(..) => ExprPrecedence::Cast, ExprKind::DropTemps(ref expr, ..) => expr.precedence(), ExprKind::If(..) => ExprPrecedence::If, ExprKind::Let(..) => ExprPrecedence::Let, ExprKind::Loop(..) => ExprPrecedence::Loop, ExprKind::Match(..) => ExprPrecedence::Match, ExprKind::Closure { .. } => ExprPrecedence::Closure, ExprKind::Block(..) => ExprPrecedence::Block, ExprKind::Assign(..) => ExprPrecedence::Assign, ExprKind::AssignOp(..) => ExprPrecedence::AssignOp, ExprKind::Field(..) => ExprPrecedence::Field, ExprKind::Index(..) => ExprPrecedence::Index, ExprKind::Path(..) => ExprPrecedence::Path, ExprKind::AddrOf(..) => ExprPrecedence::AddrOf, ExprKind::Break(..) => ExprPrecedence::Break, ExprKind::Continue(..) => ExprPrecedence::Continue, ExprKind::Ret(..) => ExprPrecedence::Ret, ExprKind::InlineAsm(..) => ExprPrecedence::InlineAsm, ExprKind::Struct(..) => ExprPrecedence::Struct, ExprKind::Repeat(..) => ExprPrecedence::Repeat, ExprKind::Yield(..) => ExprPrecedence::Yield, ExprKind::Err(_) => ExprPrecedence::Err, } } /// Whether this looks like a place expr, without checking for deref /// adjustments. /// This will return `true` in some potentially surprising cases such as /// `CONSTANT.field`. pub fn is_syntactic_place_expr(&self) -> bool { self.is_place_expr(|_| true) } /// Whether this is a place expression. /// /// `allow_projections_from` should return `true` if indexing a field or index expression based /// on the given expression should be considered a place expression. pub fn is_place_expr(&self, mut allow_projections_from: impl FnMut(&Self) -> bool) -> bool { match self.kind { ExprKind::Path(QPath::Resolved(_, ref path)) => { matches!(path.res, Res::Local(..) | Res::Def(DefKind::Static(_), _) | Res::Err) } // Type ascription inherits its place expression kind from its // operand. See: // https://github.com/rust-lang/rfcs/blob/master/text/0803-type-ascription.md#type-ascription-and-temporaries ExprKind::Type(ref e, _) => e.is_place_expr(allow_projections_from), ExprKind::Unary(UnOp::Deref, _) => true, ExprKind::Field(ref base, _) | ExprKind::Index(ref base, _) => { allow_projections_from(base) || base.is_place_expr(allow_projections_from) } // Lang item paths cannot currently be local variables or statics. ExprKind::Path(QPath::LangItem(..)) => false, // Partially qualified paths in expressions can only legally // refer to associated items which are always rvalues. ExprKind::Path(QPath::TypeRelative(..)) | ExprKind::Call(..) | ExprKind::MethodCall(..) | ExprKind::Struct(..) | ExprKind::Tup(..) | ExprKind::If(..) | ExprKind::Match(..) | ExprKind::Closure { .. } | ExprKind::Block(..) | ExprKind::Repeat(..) | ExprKind::Array(..) | ExprKind::Break(..) | ExprKind::Continue(..) | ExprKind::Ret(..) | ExprKind::Let(..) | ExprKind::Loop(..) | ExprKind::Assign(..) | ExprKind::InlineAsm(..) | ExprKind::AssignOp(..) | ExprKind::Lit(_) | ExprKind::ConstBlock(..) | ExprKind::Unary(..) | ExprKind::AddrOf(..) | ExprKind::Binary(..) | ExprKind::Yield(..) | ExprKind::Cast(..) | ExprKind::DropTemps(..) | ExprKind::Err(_) => false, } } /// If `Self.kind` is `ExprKind::DropTemps(expr)`, drill down until we get a non-`DropTemps` /// `Expr`. This is used in suggestions to ignore this `ExprKind` as it is semantically /// silent, only signaling the ownership system. By doing this, suggestions that check the /// `ExprKind` of any given `Expr` for presentation don't have to care about `DropTemps` /// beyond remembering to call this function before doing analysis on it. pub fn peel_drop_temps(&self) -> &Self { let mut expr = self; while let ExprKind::DropTemps(inner) = &expr.kind { expr = inner; } expr } pub fn peel_blocks(&self) -> &Self { let mut expr = self; while let ExprKind::Block(Block { expr: Some(inner), .. }, _) = &expr.kind { expr = inner; } expr } pub fn peel_borrows(&self) -> &Self { let mut expr = self; while let ExprKind::AddrOf(.., inner) = &expr.kind { expr = inner; } expr } pub fn can_have_side_effects(&self) -> bool { match self.peel_drop_temps().kind { ExprKind::Path(_) | ExprKind::Lit(_) => false, ExprKind::Type(base, _) | ExprKind::Unary(_, base) | ExprKind::Field(base, _) | ExprKind::Index(base, _) | ExprKind::AddrOf(.., base) | ExprKind::Cast(base, _) => { // This isn't exactly true for `Index` and all `Unary`, but we are using this // method exclusively for diagnostics and there's a *cultural* pressure against // them being used only for its side-effects. base.can_have_side_effects() } ExprKind::Struct(_, fields, init) => fields .iter() .map(|field| field.expr) .chain(init.into_iter()) .all(|e| e.can_have_side_effects()), ExprKind::Array(args) | ExprKind::Tup(args) | ExprKind::Call( Expr { kind: ExprKind::Path(QPath::Resolved( None, Path { res: Res::Def(DefKind::Ctor(_, CtorKind::Fn), _), .. }, )), .. }, args, ) => args.iter().all(|arg| arg.can_have_side_effects()), ExprKind::If(..) | ExprKind::Match(..) | ExprKind::MethodCall(..) | ExprKind::Call(..) | ExprKind::Closure { .. } | ExprKind::Block(..) | ExprKind::Repeat(..) | ExprKind::Break(..) | ExprKind::Continue(..) | ExprKind::Ret(..) | ExprKind::Let(..) | ExprKind::Loop(..) | ExprKind::Assign(..) | ExprKind::InlineAsm(..) | ExprKind::AssignOp(..) | ExprKind::ConstBlock(..) | ExprKind::Binary(..) | ExprKind::Yield(..) | ExprKind::DropTemps(..) | ExprKind::Err(_) => true, } } /// To a first-order approximation, is this a pattern? pub fn is_approximately_pattern(&self) -> bool { match &self.kind { ExprKind::Array(_) | ExprKind::Call(..) | ExprKind::Tup(_) | ExprKind::Lit(_) | ExprKind::Path(_) | ExprKind::Struct(..) => true, _ => false, } } pub fn method_ident(&self) -> Option { match self.kind { ExprKind::MethodCall(receiver_method, ..) => Some(receiver_method.ident), ExprKind::Unary(_, expr) | ExprKind::AddrOf(.., expr) => expr.method_ident(), _ => None, } } } /// Checks if the specified expression is a built-in range literal. /// (See: `LoweringContext::lower_expr()`). pub fn is_range_literal(expr: &Expr<'_>) -> bool { match expr.kind { // All built-in range literals but `..=` and `..` desugar to `Struct`s. ExprKind::Struct(ref qpath, _, _) => matches!( **qpath, QPath::LangItem( LangItem::Range | LangItem::RangeTo | LangItem::RangeFrom | LangItem::RangeFull | LangItem::RangeToInclusive, .. ) ), // `..=` desugars into `::std::ops::RangeInclusive::new(...)`. ExprKind::Call(ref func, _) => { matches!(func.kind, ExprKind::Path(QPath::LangItem(LangItem::RangeInclusiveNew, ..))) } _ => false, } } #[derive(Debug, HashStable_Generic)] pub enum ExprKind<'hir> { /// Allow anonymous constants from an inline `const` block ConstBlock(AnonConst), /// An array (e.g., `[a, b, c, d]`). Array(&'hir [Expr<'hir>]), /// A function call. /// /// The first field resolves to the function itself (usually an `ExprKind::Path`), /// and the second field is the list of arguments. /// This also represents calling the constructor of /// tuple-like ADTs such as tuple structs and enum variants. Call(&'hir Expr<'hir>, &'hir [Expr<'hir>]), /// A method call (e.g., `x.foo::<'static, Bar, Baz>(a, b, c, d)`). /// /// The `PathSegment` represents the method name and its generic arguments /// (within the angle brackets). /// The `&Expr` is the expression that evaluates /// to the object on which the method is being called on (the receiver), /// and the `&[Expr]` is the rest of the arguments. /// Thus, `x.foo::(a, b, c, d)` is represented as /// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, x, [a, b, c, d], span)`. /// The final `Span` represents the span of the function and arguments /// (e.g. `foo::(a, b, c, d)` in `x.foo::(a, b, c, d)` /// /// To resolve the called method to a `DefId`, call [`type_dependent_def_id`] with /// the `hir_id` of the `MethodCall` node itself. /// /// [`type_dependent_def_id`]: ../../rustc_middle/ty/struct.TypeckResults.html#method.type_dependent_def_id MethodCall(&'hir PathSegment<'hir>, &'hir Expr<'hir>, &'hir [Expr<'hir>], Span), /// A tuple (e.g., `(a, b, c, d)`). Tup(&'hir [Expr<'hir>]), /// A binary operation (e.g., `a + b`, `a * b`). Binary(BinOp, &'hir Expr<'hir>, &'hir Expr<'hir>), /// A unary operation (e.g., `!x`, `*x`). Unary(UnOp, &'hir Expr<'hir>), /// A literal (e.g., `1`, `"foo"`). Lit(Lit), /// A cast (e.g., `foo as f64`). Cast(&'hir Expr<'hir>, &'hir Ty<'hir>), /// A type reference (e.g., `Foo`). Type(&'hir Expr<'hir>, &'hir Ty<'hir>), /// Wraps the expression in a terminating scope. /// This makes it semantically equivalent to `{ let _t = expr; _t }`. /// /// This construct only exists to tweak the drop order in HIR lowering. /// An example of that is the desugaring of `for` loops. DropTemps(&'hir Expr<'hir>), /// A `let $pat = $expr` expression. /// /// These are not `Local` and only occur as expressions. /// The `let Some(x) = foo()` in `if let Some(x) = foo()` is an example of `Let(..)`. Let(&'hir Let<'hir>), /// An `if` block, with an optional else block. /// /// I.e., `if { } else { }`. If(&'hir Expr<'hir>, &'hir Expr<'hir>, Option<&'hir Expr<'hir>>), /// A conditionless loop (can be exited with `break`, `continue`, or `return`). /// /// I.e., `'label: loop { }`. /// /// The `Span` is the loop header (`for x in y`/`while let pat = expr`). Loop(&'hir Block<'hir>, Option, D}`. Enum(EnumDef<'hir>, &'hir Generics<'hir>), /// A struct definition, e.g., `struct Foo {x: A}`. Struct(VariantData<'hir>, &'hir Generics<'hir>), /// A union definition, e.g., `union Foo {x: A, y: B}`. Union(VariantData<'hir>, &'hir Generics<'hir>), /// A trait definition. Trait(IsAuto, Unsafety, &'hir Generics<'hir>, GenericBounds<'hir>, &'hir [TraitItemRef]), /// A trait alias. TraitAlias(&'hir Generics<'hir>, GenericBounds<'hir>), /// An implementation, e.g., `impl Trait for Foo { .. }`. Impl(&'hir Impl<'hir>), } #[derive(Debug, HashStable_Generic)] pub struct Impl<'hir> { pub unsafety: Unsafety, pub polarity: ImplPolarity, pub defaultness: Defaultness, // We do not put a `Span` in `Defaultness` because it breaks foreign crate metadata // decoding as `Span`s cannot be decoded when a `Session` is not available. pub defaultness_span: Option, pub constness: Constness, pub generics: &'hir Generics<'hir>, /// The trait being implemented, if any. pub of_trait: Option>, pub self_ty: &'hir Ty<'hir>, pub items: &'hir [ImplItemRef], } impl ItemKind<'_> { pub fn generics(&self) -> Option<&Generics<'_>> { Some(match *self { ItemKind::Fn(_, ref generics, _) | ItemKind::TyAlias(_, ref generics) | ItemKind::OpaqueTy(OpaqueTy { ref generics, .. }) | ItemKind::Enum(_, ref generics) | ItemKind::Struct(_, ref generics) | ItemKind::Union(_, ref generics) | ItemKind::Trait(_, _, ref generics, _, _) | ItemKind::TraitAlias(ref generics, _) | ItemKind::Impl(Impl { ref generics, .. }) => generics, _ => return None, }) } pub fn descr(&self) -> &'static str { match self { ItemKind::ExternCrate(..) => "extern crate", ItemKind::Use(..) => "`use` import", ItemKind::Static(..) => "static item", ItemKind::Const(..) => "constant item", ItemKind::Fn(..) => "function", ItemKind::Macro(..) => "macro", ItemKind::Mod(..) => "module", ItemKind::ForeignMod { .. } => "extern block", ItemKind::GlobalAsm(..) => "global asm item", ItemKind::TyAlias(..) => "type alias", ItemKind::OpaqueTy(..) => "opaque type", ItemKind::Enum(..) => "enum", ItemKind::Struct(..) => "struct", ItemKind::Union(..) => "union", ItemKind::Trait(..) => "trait", ItemKind::TraitAlias(..) => "trait alias", ItemKind::Impl(..) => "implementation", } } } /// A reference from an trait to one of its associated items. This /// contains the item's id, naturally, but also the item's name and /// some other high-level details (like whether it is an associated /// type or method, and whether it is public). This allows other /// passes to find the impl they want without loading the ID (which /// means fewer edges in the incremental compilation graph). #[derive(Encodable, Debug, HashStable_Generic)] pub struct TraitItemRef { pub id: TraitItemId, pub ident: Ident, pub kind: AssocItemKind, pub span: Span, } /// A reference from an impl to one of its associated items. This /// contains the item's ID, naturally, but also the item's name and /// some other high-level details (like whether it is an associated /// type or method, and whether it is public). This allows other /// passes to find the impl they want without loading the ID (which /// means fewer edges in the incremental compilation graph). #[derive(Debug, HashStable_Generic)] pub struct ImplItemRef { pub id: ImplItemId, pub ident: Ident, pub kind: AssocItemKind, pub span: Span, /// When we are in a trait impl, link to the trait-item's id. pub trait_item_def_id: Option, } #[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)] pub enum AssocItemKind { Const, Fn { has_self: bool }, Type, } // The bodies for items are stored "out of line", in a separate // hashmap in the `Crate`. Here we just record the hir-id of the item // so it can fetched later. #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)] pub struct ForeignItemId { pub owner_id: OwnerId, } impl ForeignItemId { #[inline] pub fn hir_id(&self) -> HirId { // Items are always HIR owners. HirId::make_owner(self.owner_id.def_id) } } /// A reference from a foreign block to one of its items. This /// contains the item's ID, naturally, but also the item's name and /// some other high-level details (like whether it is an associated /// type or method, and whether it is public). This allows other /// passes to find the impl they want without loading the ID (which /// means fewer edges in the incremental compilation graph). #[derive(Debug, HashStable_Generic)] pub struct ForeignItemRef { pub id: ForeignItemId, pub ident: Ident, pub span: Span, } #[derive(Debug, HashStable_Generic)] pub struct ForeignItem<'hir> { pub ident: Ident, pub kind: ForeignItemKind<'hir>, pub owner_id: OwnerId, pub span: Span, pub vis_span: Span, } impl ForeignItem<'_> { #[inline] pub fn hir_id(&self) -> HirId { // Items are always HIR owners. HirId::make_owner(self.owner_id.def_id) } pub fn foreign_item_id(&self) -> ForeignItemId { ForeignItemId { owner_id: self.owner_id } } } /// An item within an `extern` block. #[derive(Debug, HashStable_Generic)] pub enum ForeignItemKind<'hir> { /// A foreign function. Fn(&'hir FnDecl<'hir>, &'hir [Ident], &'hir Generics<'hir>), /// A foreign static item (`static ext: u8`). Static(&'hir Ty<'hir>, Mutability), /// A foreign type. Type, } /// A variable captured by a closure. #[derive(Debug, Copy, Clone, Encodable, HashStable_Generic)] pub struct Upvar { /// First span where it is accessed (there can be multiple). pub span: Span, } // The TraitCandidate's import_ids is empty if the trait is defined in the same module, and // has length > 0 if the trait is found through an chain of imports, starting with the // import/use statement in the scope where the trait is used. #[derive(Encodable, Decodable, Debug, HashStable_Generic)] pub struct TraitCandidate { pub def_id: DefId, pub import_ids: SmallVec<[LocalDefId; 1]>, } #[derive(Copy, Clone, Debug, HashStable_Generic)] pub enum OwnerNode<'hir> { Item(&'hir Item<'hir>), ForeignItem(&'hir ForeignItem<'hir>), TraitItem(&'hir TraitItem<'hir>), ImplItem(&'hir ImplItem<'hir>), Crate(&'hir Mod<'hir>), } impl<'hir> OwnerNode<'hir> { pub fn ident(&self) -> Option { match self { OwnerNode::Item(Item { ident, .. }) | OwnerNode::ForeignItem(ForeignItem { ident, .. }) | OwnerNode::ImplItem(ImplItem { ident, .. }) | OwnerNode::TraitItem(TraitItem { ident, .. }) => Some(*ident), OwnerNode::Crate(..) => None, } } pub fn span(&self) -> Span { match self { OwnerNode::Item(Item { span, .. }) | OwnerNode::ForeignItem(ForeignItem { span, .. }) | OwnerNode::ImplItem(ImplItem { span, .. }) | OwnerNode::TraitItem(TraitItem { span, .. }) => *span, OwnerNode::Crate(Mod { spans: ModSpans { inner_span, .. }, .. }) => *inner_span, } } pub fn fn_decl(self) -> Option<&'hir FnDecl<'hir>> { match self { OwnerNode::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. }) | OwnerNode::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. }) | OwnerNode::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig.decl), OwnerNode::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => Some(fn_decl), _ => None, } } pub fn body_id(&self) -> Option { match self { OwnerNode::TraitItem(TraitItem { kind: TraitItemKind::Fn(_, TraitFn::Provided(body_id)), .. }) | OwnerNode::ImplItem(ImplItem { kind: ImplItemKind::Fn(_, body_id), .. }) | OwnerNode::Item(Item { kind: ItemKind::Fn(.., body_id), .. }) => Some(*body_id), _ => None, } } pub fn generics(self) -> Option<&'hir Generics<'hir>> { Node::generics(self.into()) } pub fn def_id(self) -> OwnerId { match self { OwnerNode::Item(Item { owner_id, .. }) | OwnerNode::TraitItem(TraitItem { owner_id, .. }) | OwnerNode::ImplItem(ImplItem { owner_id, .. }) | OwnerNode::ForeignItem(ForeignItem { owner_id, .. }) => *owner_id, OwnerNode::Crate(..) => crate::CRATE_HIR_ID.owner, } } pub fn expect_item(self) -> &'hir Item<'hir> { match self { OwnerNode::Item(n) => n, _ => panic!(), } } pub fn expect_foreign_item(self) -> &'hir ForeignItem<'hir> { match self { OwnerNode::ForeignItem(n) => n, _ => panic!(), } } pub fn expect_impl_item(self) -> &'hir ImplItem<'hir> { match self { OwnerNode::ImplItem(n) => n, _ => panic!(), } } pub fn expect_trait_item(self) -> &'hir TraitItem<'hir> { match self { OwnerNode::TraitItem(n) => n, _ => panic!(), } } } impl<'hir> Into> for &'hir Item<'hir> { fn into(self) -> OwnerNode<'hir> { OwnerNode::Item(self) } } impl<'hir> Into> for &'hir ForeignItem<'hir> { fn into(self) -> OwnerNode<'hir> { OwnerNode::ForeignItem(self) } } impl<'hir> Into> for &'hir ImplItem<'hir> { fn into(self) -> OwnerNode<'hir> { OwnerNode::ImplItem(self) } } impl<'hir> Into> for &'hir TraitItem<'hir> { fn into(self) -> OwnerNode<'hir> { OwnerNode::TraitItem(self) } } impl<'hir> Into> for OwnerNode<'hir> { fn into(self) -> Node<'hir> { match self { OwnerNode::Item(n) => Node::Item(n), OwnerNode::ForeignItem(n) => Node::ForeignItem(n), OwnerNode::ImplItem(n) => Node::ImplItem(n), OwnerNode::TraitItem(n) => Node::TraitItem(n), OwnerNode::Crate(n) => Node::Crate(n), } } } #[derive(Copy, Clone, Debug, HashStable_Generic)] pub enum Node<'hir> { Param(&'hir Param<'hir>), Item(&'hir Item<'hir>), ForeignItem(&'hir ForeignItem<'hir>), TraitItem(&'hir TraitItem<'hir>), ImplItem(&'hir ImplItem<'hir>), Variant(&'hir Variant<'hir>), Field(&'hir FieldDef<'hir>), AnonConst(&'hir AnonConst), Expr(&'hir Expr<'hir>), ExprField(&'hir ExprField<'hir>), Stmt(&'hir Stmt<'hir>), PathSegment(&'hir PathSegment<'hir>), Ty(&'hir Ty<'hir>), TypeBinding(&'hir TypeBinding<'hir>), TraitRef(&'hir TraitRef<'hir>), Pat(&'hir Pat<'hir>), PatField(&'hir PatField<'hir>), Arm(&'hir Arm<'hir>), Block(&'hir Block<'hir>), Local(&'hir Local<'hir>), /// `Ctor` refers to the constructor of an enum variant or struct. Only tuple or unit variants /// with synthesized constructors. Ctor(&'hir VariantData<'hir>), Lifetime(&'hir Lifetime), GenericParam(&'hir GenericParam<'hir>), Crate(&'hir Mod<'hir>), Infer(&'hir InferArg), } impl<'hir> Node<'hir> { /// Get the identifier of this `Node`, if applicable. /// /// # Edge cases /// /// Calling `.ident()` on a [`Node::Ctor`] will return `None` /// because `Ctor`s do not have identifiers themselves. /// Instead, call `.ident()` on the parent struct/variant, like so: /// /// ```ignore (illustrative) /// ctor /// .ctor_hir_id() /// .and_then(|ctor_id| tcx.hir().find_parent(ctor_id)) /// .and_then(|parent| parent.ident()) /// ``` pub fn ident(&self) -> Option { match self { Node::TraitItem(TraitItem { ident, .. }) | Node::ImplItem(ImplItem { ident, .. }) | Node::ForeignItem(ForeignItem { ident, .. }) | Node::Field(FieldDef { ident, .. }) | Node::Variant(Variant { ident, .. }) | Node::Item(Item { ident, .. }) | Node::PathSegment(PathSegment { ident, .. }) => Some(*ident), Node::Lifetime(lt) => Some(lt.ident), Node::GenericParam(p) => Some(p.name.ident()), Node::TypeBinding(b) => Some(b.ident), Node::Param(..) | Node::AnonConst(..) | Node::Expr(..) | Node::Stmt(..) | Node::Block(..) | Node::Ctor(..) | Node::Pat(..) | Node::PatField(..) | Node::ExprField(..) | Node::Arm(..) | Node::Local(..) | Node::Crate(..) | Node::Ty(..) | Node::TraitRef(..) | Node::Infer(..) => None, } } pub fn fn_decl(self) -> Option<&'hir FnDecl<'hir>> { match self { Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. }) | Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. }) | Node::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig.decl), Node::Expr(Expr { kind: ExprKind::Closure(Closure { fn_decl, .. }), .. }) | Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => { Some(fn_decl) } _ => None, } } pub fn fn_sig(self) -> Option<&'hir FnSig<'hir>> { match self { Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. }) | Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. }) | Node::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig), _ => None, } } pub fn alias_ty(self) -> Option<&'hir Ty<'hir>> { match self { Node::Item(Item { kind: ItemKind::TyAlias(ty, ..), .. }) => Some(ty), _ => None, } } pub fn body_id(&self) -> Option { match self { Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(_, TraitFn::Provided(body_id)), .. }) | Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(_, body_id), .. }) | Node::Item(Item { kind: ItemKind::Fn(.., body_id), .. }) => Some(*body_id), _ => None, } } pub fn generics(self) -> Option<&'hir Generics<'hir>> { match self { Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(_, _, generics), .. }) | Node::TraitItem(TraitItem { generics, .. }) | Node::ImplItem(ImplItem { generics, .. }) => Some(generics), Node::Item(item) => item.kind.generics(), _ => None, } } pub fn as_owner(self) -> Option> { match self { Node::Item(i) => Some(OwnerNode::Item(i)), Node::ForeignItem(i) => Some(OwnerNode::ForeignItem(i)), Node::TraitItem(i) => Some(OwnerNode::TraitItem(i)), Node::ImplItem(i) => Some(OwnerNode::ImplItem(i)), Node::Crate(i) => Some(OwnerNode::Crate(i)), _ => None, } } pub fn fn_kind(self) -> Option> { match self { Node::Item(i) => match i.kind { ItemKind::Fn(ref sig, ref generics, _) => { Some(FnKind::ItemFn(i.ident, generics, sig.header)) } _ => None, }, Node::TraitItem(ti) => match ti.kind { TraitItemKind::Fn(ref sig, TraitFn::Provided(_)) => { Some(FnKind::Method(ti.ident, sig)) } _ => None, }, Node::ImplItem(ii) => match ii.kind { ImplItemKind::Fn(ref sig, _) => Some(FnKind::Method(ii.ident, sig)), _ => None, }, Node::Expr(e) => match e.kind { ExprKind::Closure { .. } => Some(FnKind::Closure), _ => None, }, _ => None, } } /// Get the fields for the tuple-constructor, /// if this node is a tuple constructor, otherwise None pub fn tuple_fields(&self) -> Option<&'hir [FieldDef<'hir>]> { if let Node::Ctor(&VariantData::Tuple(fields, _, _)) = self { Some(fields) } else { None } } /// Expect a [`Node::Param`] or panic. #[track_caller] pub fn expect_param(self) -> &'hir Param<'hir> { let Node::Param(this) = self else { self.expect_failed("a parameter") }; this } /// Expect a [`Node::Item`] or panic. #[track_caller] pub fn expect_item(self) -> &'hir Item<'hir> { let Node::Item(this) = self else { self.expect_failed("a item") }; this } /// Expect a [`Node::ForeignItem`] or panic. #[track_caller] pub fn expect_foreign_item(self) -> &'hir ForeignItem<'hir> { let Node::ForeignItem(this) = self else { self.expect_failed("a foreign item") }; this } /// Expect a [`Node::TraitItem`] or panic. #[track_caller] pub fn expect_trait_item(self) -> &'hir TraitItem<'hir> { let Node::TraitItem(this) = self else { self.expect_failed("a trait item") }; this } /// Expect a [`Node::ImplItem`] or panic. #[track_caller] pub fn expect_impl_item(self) -> &'hir ImplItem<'hir> { let Node::ImplItem(this) = self else { self.expect_failed("an implementation item") }; this } /// Expect a [`Node::Variant`] or panic. #[track_caller] pub fn expect_variant(self) -> &'hir Variant<'hir> { let Node::Variant(this) = self else { self.expect_failed("a variant") }; this } /// Expect a [`Node::Field`] or panic. #[track_caller] pub fn expect_field(self) -> &'hir FieldDef<'hir> { let Node::Field(this) = self else { self.expect_failed("a field definition") }; this } /// Expect a [`Node::AnonConst`] or panic. #[track_caller] pub fn expect_anon_const(self) -> &'hir AnonConst { let Node::AnonConst(this) = self else { self.expect_failed("an anonymous constant") }; this } /// Expect a [`Node::Expr`] or panic. #[track_caller] pub fn expect_expr(self) -> &'hir Expr<'hir> { let Node::Expr(this) = self else { self.expect_failed("an expression") }; this } /// Expect a [`Node::ExprField`] or panic. #[track_caller] pub fn expect_expr_field(self) -> &'hir ExprField<'hir> { let Node::ExprField(this) = self else { self.expect_failed("an expression field") }; this } /// Expect a [`Node::Stmt`] or panic. #[track_caller] pub fn expect_stmt(self) -> &'hir Stmt<'hir> { let Node::Stmt(this) = self else { self.expect_failed("a statement") }; this } /// Expect a [`Node::PathSegment`] or panic. #[track_caller] pub fn expect_path_segment(self) -> &'hir PathSegment<'hir> { let Node::PathSegment(this) = self else { self.expect_failed("a path segment") }; this } /// Expect a [`Node::Ty`] or panic. #[track_caller] pub fn expect_ty(self) -> &'hir Ty<'hir> { let Node::Ty(this) = self else { self.expect_failed("a type") }; this } /// Expect a [`Node::TypeBinding`] or panic. #[track_caller] pub fn expect_type_binding(self) -> &'hir TypeBinding<'hir> { let Node::TypeBinding(this) = self else { self.expect_failed("a type binding") }; this } /// Expect a [`Node::TraitRef`] or panic. #[track_caller] pub fn expect_trait_ref(self) -> &'hir TraitRef<'hir> { let Node::TraitRef(this) = self else { self.expect_failed("a trait reference") }; this } /// Expect a [`Node::Pat`] or panic. #[track_caller] pub fn expect_pat(self) -> &'hir Pat<'hir> { let Node::Pat(this) = self else { self.expect_failed("a pattern") }; this } /// Expect a [`Node::PatField`] or panic. #[track_caller] pub fn expect_pat_field(self) -> &'hir PatField<'hir> { let Node::PatField(this) = self else { self.expect_failed("a pattern field") }; this } /// Expect a [`Node::Arm`] or panic. #[track_caller] pub fn expect_arm(self) -> &'hir Arm<'hir> { let Node::Arm(this) = self else { self.expect_failed("an arm") }; this } /// Expect a [`Node::Block`] or panic. #[track_caller] pub fn expect_block(self) -> &'hir Block<'hir> { let Node::Block(this) = self else { self.expect_failed("a block") }; this } /// Expect a [`Node::Local`] or panic. #[track_caller] pub fn expect_local(self) -> &'hir Local<'hir> { let Node::Local(this) = self else { self.expect_failed("a local") }; this } /// Expect a [`Node::Ctor`] or panic. #[track_caller] pub fn expect_ctor(self) -> &'hir VariantData<'hir> { let Node::Ctor(this) = self else { self.expect_failed("a constructor") }; this } /// Expect a [`Node::Lifetime`] or panic. #[track_caller] pub fn expect_lifetime(self) -> &'hir Lifetime { let Node::Lifetime(this) = self else { self.expect_failed("a lifetime") }; this } /// Expect a [`Node::GenericParam`] or panic. #[track_caller] pub fn expect_generic_param(self) -> &'hir GenericParam<'hir> { let Node::GenericParam(this) = self else { self.expect_failed("a generic parameter") }; this } /// Expect a [`Node::Crate`] or panic. #[track_caller] pub fn expect_crate(self) -> &'hir Mod<'hir> { let Node::Crate(this) = self else { self.expect_failed("a crate") }; this } /// Expect a [`Node::Infer`] or panic. #[track_caller] pub fn expect_infer(self) -> &'hir InferArg { let Node::Infer(this) = self else { self.expect_failed("an infer") }; this } #[track_caller] fn expect_failed(&self, expected: &'static str) -> ! { panic!("expected {expected} node, found {self:?}") } } // Some nodes are used a lot. Make sure they don't unintentionally get bigger. #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] mod size_asserts { use super::*; // tidy-alphabetical-start static_assert_size!(Block<'_>, 48); static_assert_size!(Body<'_>, 32); static_assert_size!(Expr<'_>, 64); static_assert_size!(ExprKind<'_>, 48); static_assert_size!(FnDecl<'_>, 40); static_assert_size!(ForeignItem<'_>, 72); static_assert_size!(ForeignItemKind<'_>, 40); static_assert_size!(GenericArg<'_>, 32); static_assert_size!(GenericBound<'_>, 48); static_assert_size!(Generics<'_>, 56); static_assert_size!(Impl<'_>, 80); static_assert_size!(ImplItem<'_>, 80); static_assert_size!(ImplItemKind<'_>, 32); static_assert_size!(Item<'_>, 80); static_assert_size!(ItemKind<'_>, 48); static_assert_size!(Local<'_>, 64); static_assert_size!(Param<'_>, 32); static_assert_size!(Pat<'_>, 72); static_assert_size!(Path<'_>, 40); static_assert_size!(PathSegment<'_>, 48); static_assert_size!(PatKind<'_>, 48); static_assert_size!(QPath<'_>, 24); static_assert_size!(Res, 12); static_assert_size!(Stmt<'_>, 32); static_assert_size!(StmtKind<'_>, 16); static_assert_size!(TraitItem<'_>, 80); static_assert_size!(TraitItemKind<'_>, 40); static_assert_size!(Ty<'_>, 48); static_assert_size!(TyKind<'_>, 32); // tidy-alphabetical-end } fn debug_fn(f: impl Fn(&mut fmt::Formatter<'_>) -> fmt::Result) -> impl fmt::Debug { struct DebugFn(F); impl) -> fmt::Result> fmt::Debug for DebugFn { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { (self.0)(fmt) } } DebugFn(f) }