//! This file builds up the `ScopeTree`, which describes //! the parent links in the region hierarchy. //! //! For more information about how MIR-based region-checking works, //! see the [rustc dev guide]. //! //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/borrow_check.html use rustc_ast::walk_list; use rustc_data_structures::fx::FxHashSet; use rustc_hir as hir; use rustc_hir::def_id::DefId; use rustc_hir::intravisit::{self, Visitor}; use rustc_hir::{Arm, Block, Expr, Local, Pat, PatKind, Stmt}; use rustc_index::Idx; use rustc_middle::middle::region::*; use rustc_middle::ty::TyCtxt; use rustc_span::source_map; use rustc_span::Span; use std::mem; #[derive(Debug, Copy, Clone)] pub struct Context { /// The scope that contains any new variables declared, plus its depth in /// the scope tree. var_parent: Option<(Scope, ScopeDepth)>, /// Region parent of expressions, etc., plus its depth in the scope tree. parent: Option<(Scope, ScopeDepth)>, } struct RegionResolutionVisitor<'tcx> { tcx: TyCtxt<'tcx>, // The number of expressions and patterns visited in the current body. expr_and_pat_count: usize, // When this is `true`, we record the `Scopes` we encounter // when processing a Yield expression. This allows us to fix // up their indices. pessimistic_yield: bool, // Stores scopes when `pessimistic_yield` is `true`. fixup_scopes: Vec, // The generated scope tree. scope_tree: ScopeTree, cx: Context, /// `terminating_scopes` is a set containing the ids of each /// statement, or conditional/repeating expression. These scopes /// are calling "terminating scopes" because, when attempting to /// find the scope of a temporary, by default we search up the /// enclosing scopes until we encounter the terminating scope. A /// conditional/repeating expression is one which is not /// guaranteed to execute exactly once upon entering the parent /// scope. This could be because the expression only executes /// conditionally, such as the expression `b` in `a && b`, or /// because the expression may execute many times, such as a loop /// body. The reason that we distinguish such expressions is that, /// upon exiting the parent scope, we cannot statically know how /// many times the expression executed, and thus if the expression /// creates temporaries we cannot know statically how many such /// temporaries we would have to cleanup. Therefore, we ensure that /// the temporaries never outlast the conditional/repeating /// expression, preventing the need for dynamic checks and/or /// arbitrary amounts of stack space. Terminating scopes end /// up being contained in a DestructionScope that contains the /// destructor's execution. terminating_scopes: FxHashSet, } /// Records the lifetime of a local variable as `cx.var_parent` fn record_var_lifetime( visitor: &mut RegionResolutionVisitor<'_>, var_id: hir::ItemLocalId, _sp: Span, ) { match visitor.cx.var_parent { None => { // this can happen in extern fn declarations like // // extern fn isalnum(c: c_int) -> c_int } Some((parent_scope, _)) => visitor.scope_tree.record_var_scope(var_id, parent_scope), } } fn resolve_block<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, blk: &'tcx hir::Block<'tcx>) { debug!("resolve_block(blk.hir_id={:?})", blk.hir_id); let prev_cx = visitor.cx; // We treat the tail expression in the block (if any) somewhat // differently from the statements. The issue has to do with // temporary lifetimes. Consider the following: // // quux({ // let inner = ... (&bar()) ...; // // (... (&foo()) ...) // (the tail expression) // }, other_argument()); // // Each of the statements within the block is a terminating // scope, and thus a temporary (e.g., the result of calling // `bar()` in the initializer expression for `let inner = ...;`) // will be cleaned up immediately after its corresponding // statement (i.e., `let inner = ...;`) executes. // // On the other hand, temporaries associated with evaluating the // tail expression for the block are assigned lifetimes so that // they will be cleaned up as part of the terminating scope // *surrounding* the block expression. Here, the terminating // scope for the block expression is the `quux(..)` call; so // those temporaries will only be cleaned up *after* both // `other_argument()` has run and also the call to `quux(..)` // itself has returned. visitor.enter_node_scope_with_dtor(blk.hir_id.local_id); visitor.cx.var_parent = visitor.cx.parent; { // This block should be kept approximately in sync with // `intravisit::walk_block`. (We manually walk the block, rather // than call `walk_block`, in order to maintain precise // index information.) for (i, statement) in blk.stmts.iter().enumerate() { match statement.kind { hir::StmtKind::Local(hir::Local { els: Some(els), .. }) => { // Let-else has a special lexical structure for variables. // First we take a checkpoint of the current scope context here. let mut prev_cx = visitor.cx; visitor.enter_scope(Scope { id: blk.hir_id.local_id, data: ScopeData::Remainder(FirstStatementIndex::new(i)), }); visitor.cx.var_parent = visitor.cx.parent; visitor.visit_stmt(statement); // We need to back out temporarily to the last enclosing scope // for the `else` block, so that even the temporaries receiving // extended lifetime will be dropped inside this block. // We are visiting the `else` block in this order so that // the sequence of visits agree with the order in the default // `hir::intravisit` visitor. mem::swap(&mut prev_cx, &mut visitor.cx); visitor.terminating_scopes.insert(els.hir_id.local_id); visitor.visit_block(els); // From now on, we continue normally. visitor.cx = prev_cx; } hir::StmtKind::Local(..) => { // Each declaration introduces a subscope for bindings // introduced by the declaration; this subscope covers a // suffix of the block. Each subscope in a block has the // previous subscope in the block as a parent, except for // the first such subscope, which has the block itself as a // parent. visitor.enter_scope(Scope { id: blk.hir_id.local_id, data: ScopeData::Remainder(FirstStatementIndex::new(i)), }); visitor.cx.var_parent = visitor.cx.parent; visitor.visit_stmt(statement) } hir::StmtKind::Item(..) => { // Don't create scopes for items, since they won't be // lowered to THIR and MIR. } hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => visitor.visit_stmt(statement), } } walk_list!(visitor, visit_expr, &blk.expr); } visitor.cx = prev_cx; } fn resolve_arm<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, arm: &'tcx hir::Arm<'tcx>) { let prev_cx = visitor.cx; visitor.enter_scope(Scope { id: arm.hir_id.local_id, data: ScopeData::Node }); visitor.cx.var_parent = visitor.cx.parent; visitor.terminating_scopes.insert(arm.body.hir_id.local_id); if let Some(hir::Guard::If(expr)) = arm.guard { visitor.terminating_scopes.insert(expr.hir_id.local_id); } intravisit::walk_arm(visitor, arm); visitor.cx = prev_cx; } fn resolve_pat<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, pat: &'tcx hir::Pat<'tcx>) { visitor.record_child_scope(Scope { id: pat.hir_id.local_id, data: ScopeData::Node }); // If this is a binding then record the lifetime of that binding. if let PatKind::Binding(..) = pat.kind { record_var_lifetime(visitor, pat.hir_id.local_id, pat.span); } debug!("resolve_pat - pre-increment {} pat = {:?}", visitor.expr_and_pat_count, pat); intravisit::walk_pat(visitor, pat); visitor.expr_and_pat_count += 1; debug!("resolve_pat - post-increment {} pat = {:?}", visitor.expr_and_pat_count, pat); } fn resolve_stmt<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, stmt: &'tcx hir::Stmt<'tcx>) { let stmt_id = stmt.hir_id.local_id; debug!("resolve_stmt(stmt.id={:?})", stmt_id); // Every statement will clean up the temporaries created during // execution of that statement. Therefore each statement has an // associated destruction scope that represents the scope of the // statement plus its destructors, and thus the scope for which // regions referenced by the destructors need to survive. visitor.terminating_scopes.insert(stmt_id); let prev_parent = visitor.cx.parent; visitor.enter_node_scope_with_dtor(stmt_id); intravisit::walk_stmt(visitor, stmt); visitor.cx.parent = prev_parent; } fn resolve_expr<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, expr: &'tcx hir::Expr<'tcx>) { debug!("resolve_expr - pre-increment {} expr = {:?}", visitor.expr_and_pat_count, expr); let prev_cx = visitor.cx; visitor.enter_node_scope_with_dtor(expr.hir_id.local_id); { let terminating_scopes = &mut visitor.terminating_scopes; let mut terminating = |id: hir::ItemLocalId| { terminating_scopes.insert(id); }; match expr.kind { // Conditional or repeating scopes are always terminating // scopes, meaning that temporaries cannot outlive them. // This ensures fixed size stacks. hir::ExprKind::Binary( source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. }, l, r, ) => { // expr is a short circuiting operator (|| or &&). As its // functionality can't be overridden by traits, it always // processes bool sub-expressions. bools are Copy and thus we // can drop any temporaries in evaluation (read) order // (with the exception of potentially failing let expressions). // We achieve this by enclosing the operands in a terminating // scope, both the LHS and the RHS. // We optimize this a little in the presence of chains. // Chains like a && b && c get lowered to AND(AND(a, b), c). // In here, b and c are RHS, while a is the only LHS operand in // that chain. This holds true for longer chains as well: the // leading operand is always the only LHS operand that is not a // binop itself. Putting a binop like AND(a, b) into a // terminating scope is not useful, thus we only put the LHS // into a terminating scope if it is not a binop. let terminate_lhs = match l.kind { // let expressions can create temporaries that live on hir::ExprKind::Let(_) => false, // binops already drop their temporaries, so there is no // need to put them into a terminating scope. // This is purely an optimization to reduce the number of // terminating scopes. hir::ExprKind::Binary( source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. }, .., ) => false, // otherwise: mark it as terminating _ => true, }; if terminate_lhs { terminating(l.hir_id.local_id); } // `Let` expressions (in a let-chain) shouldn't be terminating, as their temporaries // should live beyond the immediate expression if !matches!(r.kind, hir::ExprKind::Let(_)) { terminating(r.hir_id.local_id); } } hir::ExprKind::If(_, then, Some(otherwise)) => { terminating(then.hir_id.local_id); terminating(otherwise.hir_id.local_id); } hir::ExprKind::If(_, then, None) => { terminating(then.hir_id.local_id); } hir::ExprKind::Loop(body, _, _, _) => { terminating(body.hir_id.local_id); } hir::ExprKind::DropTemps(expr) => { // `DropTemps(expr)` does not denote a conditional scope. // Rather, we want to achieve the same behavior as `{ let _t = expr; _t }`. terminating(expr.hir_id.local_id); } hir::ExprKind::AssignOp(..) | hir::ExprKind::Index(..) | hir::ExprKind::Unary(..) | hir::ExprKind::Call(..) | hir::ExprKind::MethodCall(..) => { // FIXME(https://github.com/rust-lang/rfcs/issues/811) Nested method calls // // The lifetimes for a call or method call look as follows: // // call.id // - arg0.id // - ... // - argN.id // - call.callee_id // // The idea is that call.callee_id represents *the time when // the invoked function is actually running* and call.id // represents *the time to prepare the arguments and make the // call*. See the section "Borrows in Calls" borrowck/README.md // for an extended explanation of why this distinction is // important. // // record_superlifetime(new_cx, expr.callee_id); } _ => {} } } let prev_pessimistic = visitor.pessimistic_yield; // Ordinarily, we can rely on the visit order of HIR intravisit // to correspond to the actual execution order of statements. // However, there's a weird corner case with compound assignment // operators (e.g. `a += b`). The evaluation order depends on whether // or not the operator is overloaded (e.g. whether or not a trait // like AddAssign is implemented). // For primitive types (which, despite having a trait impl, don't actually // end up calling it), the evaluation order is right-to-left. For example, // the following code snippet: // // let y = &mut 0; // *{println!("LHS!"); y} += {println!("RHS!"); 1}; // // will print: // // RHS! // LHS! // // However, if the operator is used on a non-primitive type, // the evaluation order will be left-to-right, since the operator // actually get desugared to a method call. For example, this // nearly identical code snippet: // // let y = &mut String::new(); // *{println!("LHS String"); y} += {println!("RHS String"); "hi"}; // // will print: // LHS String // RHS String // // To determine the actual execution order, we need to perform // trait resolution. Unfortunately, we need to be able to compute // yield_in_scope before type checking is even done, as it gets // used by AST borrowcheck. // // Fortunately, we don't need to know the actual execution order. // It suffices to know the 'worst case' order with respect to yields. // Specifically, we need to know the highest 'expr_and_pat_count' // that we could assign to the yield expression. To do this, // we pick the greater of the two values from the left-hand // and right-hand expressions. This makes us overly conservative // about what types could possibly live across yield points, // but we will never fail to detect that a type does actually // live across a yield point. The latter part is critical - // we're already overly conservative about what types will live // across yield points, as the generated MIR will determine // when things are actually live. However, for typecheck to work // properly, we can't miss any types. match expr.kind { // Manually recurse over closures and inline consts, because they are the only // case of nested bodies that share the parent environment. hir::ExprKind::Closure(&hir::Closure { body, .. }) | hir::ExprKind::ConstBlock(hir::ConstBlock { body, .. }) => { let body = visitor.tcx.hir().body(body); visitor.visit_body(body); } hir::ExprKind::AssignOp(_, left_expr, right_expr) => { debug!( "resolve_expr - enabling pessimistic_yield, was previously {}", prev_pessimistic ); let start_point = visitor.fixup_scopes.len(); visitor.pessimistic_yield = true; // If the actual execution order turns out to be right-to-left, // then we're fine. However, if the actual execution order is left-to-right, // then we'll assign too low a count to any `yield` expressions // we encounter in 'right_expression' - they should really occur after all of the // expressions in 'left_expression'. visitor.visit_expr(right_expr); visitor.pessimistic_yield = prev_pessimistic; debug!("resolve_expr - restoring pessimistic_yield to {}", prev_pessimistic); visitor.visit_expr(left_expr); debug!("resolve_expr - fixing up counts to {}", visitor.expr_and_pat_count); // Remove and process any scopes pushed by the visitor let target_scopes = visitor.fixup_scopes.drain(start_point..); for scope in target_scopes { let yield_data = visitor.scope_tree.yield_in_scope.get_mut(&scope).unwrap().last_mut().unwrap(); let count = yield_data.expr_and_pat_count; let span = yield_data.span; // expr_and_pat_count never decreases. Since we recorded counts in yield_in_scope // before walking the left-hand side, it should be impossible for the recorded // count to be greater than the left-hand side count. if count > visitor.expr_and_pat_count { bug!( "Encountered greater count {} at span {:?} - expected no greater than {}", count, span, visitor.expr_and_pat_count ); } let new_count = visitor.expr_and_pat_count; debug!( "resolve_expr - increasing count for scope {:?} from {} to {} at span {:?}", scope, count, new_count, span ); yield_data.expr_and_pat_count = new_count; } } hir::ExprKind::If(cond, then, Some(otherwise)) => { let expr_cx = visitor.cx; visitor.enter_scope(Scope { id: then.hir_id.local_id, data: ScopeData::IfThen }); visitor.cx.var_parent = visitor.cx.parent; visitor.visit_expr(cond); visitor.visit_expr(then); visitor.cx = expr_cx; visitor.visit_expr(otherwise); } hir::ExprKind::If(cond, then, None) => { let expr_cx = visitor.cx; visitor.enter_scope(Scope { id: then.hir_id.local_id, data: ScopeData::IfThen }); visitor.cx.var_parent = visitor.cx.parent; visitor.visit_expr(cond); visitor.visit_expr(then); visitor.cx = expr_cx; } _ => intravisit::walk_expr(visitor, expr), } visitor.expr_and_pat_count += 1; debug!("resolve_expr post-increment {}, expr = {:?}", visitor.expr_and_pat_count, expr); if let hir::ExprKind::Yield(_, source) = &expr.kind { // Mark this expr's scope and all parent scopes as containing `yield`. let mut scope = Scope { id: expr.hir_id.local_id, data: ScopeData::Node }; loop { let span = match expr.kind { hir::ExprKind::Yield(expr, hir::YieldSource::Await { .. }) => { expr.span.shrink_to_hi().to(expr.span) } _ => expr.span, }; let data = YieldData { span, expr_and_pat_count: visitor.expr_and_pat_count, source: *source }; match visitor.scope_tree.yield_in_scope.get_mut(&scope) { Some(yields) => yields.push(data), None => { visitor.scope_tree.yield_in_scope.insert(scope, vec![data]); } } if visitor.pessimistic_yield { debug!("resolve_expr in pessimistic_yield - marking scope {:?} for fixup", scope); visitor.fixup_scopes.push(scope); } // Keep traversing up while we can. match visitor.scope_tree.parent_map.get(&scope) { // Don't cross from closure bodies to their parent. Some(&(superscope, _)) => match superscope.data { ScopeData::CallSite => break, _ => scope = superscope, }, None => break, } } } visitor.cx = prev_cx; } fn resolve_local<'tcx>( visitor: &mut RegionResolutionVisitor<'tcx>, pat: Option<&'tcx hir::Pat<'tcx>>, init: Option<&'tcx hir::Expr<'tcx>>, ) { debug!("resolve_local(pat={:?}, init={:?})", pat, init); let blk_scope = visitor.cx.var_parent.map(|(p, _)| p); // As an exception to the normal rules governing temporary // lifetimes, initializers in a let have a temporary lifetime // of the enclosing block. This means that e.g., a program // like the following is legal: // // let ref x = HashMap::new(); // // Because the hash map will be freed in the enclosing block. // // We express the rules more formally based on 3 grammars (defined // fully in the helpers below that implement them): // // 1. `E&`, which matches expressions like `&` that // own a pointer into the stack. // // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref // y)` that produce ref bindings into the value they are // matched against or something (at least partially) owned by // the value they are matched against. (By partially owned, // I mean that creating a binding into a ref-counted or managed value // would still count.) // // 3. `ET`, which matches both rvalues like `foo()` as well as places // based on rvalues like `foo().x[2].y`. // // A subexpression `` that appears in a let initializer // `let pat [: ty] = expr` has an extended temporary lifetime if // any of the following conditions are met: // // A. `pat` matches `P&` and `expr` matches `ET` // (covers cases where `pat` creates ref bindings into an rvalue // produced by `expr`) // B. `ty` is a borrowed pointer and `expr` matches `ET` // (covers cases where coercion creates a borrow) // C. `expr` matches `E&` // (covers cases `expr` borrows an rvalue that is then assigned // to memory (at least partially) owned by the binding) // // Here are some examples hopefully giving an intuition where each // rule comes into play and why: // // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)` // would have an extended lifetime, but not `foo()`. // // Rule B. `let x = &foo().x`. The rvalue `foo()` would have extended // lifetime. // // In some cases, multiple rules may apply (though not to the same // rvalue). For example: // // let ref x = [&a(), &b()]; // // Here, the expression `[...]` has an extended lifetime due to rule // A, but the inner rvalues `a()` and `b()` have an extended lifetime // due to rule C. if let Some(expr) = init { record_rvalue_scope_if_borrow_expr(visitor, expr, blk_scope); if let Some(pat) = pat { if is_binding_pat(pat) { visitor.scope_tree.record_rvalue_candidate( expr.hir_id, RvalueCandidateType::Pattern { target: expr.hir_id.local_id, lifetime: blk_scope, }, ); } } } // Make sure we visit the initializer first, so expr_and_pat_count remains correct. // The correct order, as shared between coroutine_interior, drop_ranges and intravisitor, // is to walk initializer, followed by pattern bindings, finally followed by the `else` block. if let Some(expr) = init { visitor.visit_expr(expr); } if let Some(pat) = pat { visitor.visit_pat(pat); } /// Returns `true` if `pat` match the `P&` non-terminal. /// /// ```text /// P& = ref X /// | StructName { ..., P&, ... } /// | VariantName(..., P&, ...) /// | [ ..., P&, ... ] /// | ( ..., P&, ... ) /// | ... "|" P& "|" ... /// | box P& /// ``` fn is_binding_pat(pat: &hir::Pat<'_>) -> bool { // Note that the code below looks for *explicit* refs only, that is, it won't // know about *implicit* refs as introduced in #42640. // // This is not a problem. For example, consider // // let (ref x, ref y) = (Foo { .. }, Bar { .. }); // // Due to the explicit refs on the left hand side, the below code would signal // that the temporary value on the right hand side should live until the end of // the enclosing block (as opposed to being dropped after the let is complete). // // To create an implicit ref, however, you must have a borrowed value on the RHS // already, as in this example (which won't compile before #42640): // // let Foo { x, .. } = &Foo { x: ..., ... }; // // in place of // // let Foo { ref x, .. } = Foo { ... }; // // In the former case (the implicit ref version), the temporary is created by the // & expression, and its lifetime would be extended to the end of the block (due // to a different rule, not the below code). match pat.kind { PatKind::Binding(hir::BindingAnnotation(hir::ByRef::Yes, _), ..) => true, PatKind::Struct(_, field_pats, _) => field_pats.iter().any(|fp| is_binding_pat(fp.pat)), PatKind::Slice(pats1, pats2, pats3) => { pats1.iter().any(|p| is_binding_pat(p)) || pats2.iter().any(|p| is_binding_pat(p)) || pats3.iter().any(|p| is_binding_pat(p)) } PatKind::Or(subpats) | PatKind::TupleStruct(_, subpats, _) | PatKind::Tuple(subpats, _) => subpats.iter().any(|p| is_binding_pat(p)), PatKind::Box(subpat) => is_binding_pat(subpat), PatKind::Ref(_, _) | PatKind::Binding(hir::BindingAnnotation(hir::ByRef::No, _), ..) | PatKind::Wild | PatKind::Never | PatKind::Path(_) | PatKind::Lit(_) | PatKind::Range(_, _, _) => false, } } /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate: /// /// ```text /// E& = & ET /// | StructName { ..., f: E&, ... } /// | [ ..., E&, ... ] /// | ( ..., E&, ... ) /// | {...; E&} /// | box E& /// | E& as ... /// | ( E& ) /// ``` fn record_rvalue_scope_if_borrow_expr<'tcx>( visitor: &mut RegionResolutionVisitor<'tcx>, expr: &hir::Expr<'_>, blk_id: Option, ) { match expr.kind { hir::ExprKind::AddrOf(_, _, subexpr) => { record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id); visitor.scope_tree.record_rvalue_candidate( subexpr.hir_id, RvalueCandidateType::Borrow { target: subexpr.hir_id.local_id, lifetime: blk_id, }, ); } hir::ExprKind::Struct(_, fields, _) => { for field in fields { record_rvalue_scope_if_borrow_expr(visitor, field.expr, blk_id); } } hir::ExprKind::Array(subexprs) | hir::ExprKind::Tup(subexprs) => { for subexpr in subexprs { record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id); } } hir::ExprKind::Cast(subexpr, _) => { record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id) } hir::ExprKind::Block(block, _) => { if let Some(subexpr) = block.expr { record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id); } } hir::ExprKind::Call(..) | hir::ExprKind::MethodCall(..) => { // FIXME(@dingxiangfei2009): choose call arguments here // for candidacy for extended parameter rule application } hir::ExprKind::Index(..) => { // FIXME(@dingxiangfei2009): select the indices // as candidate for rvalue scope rules } _ => {} } } } impl<'tcx> RegionResolutionVisitor<'tcx> { /// Records the current parent (if any) as the parent of `child_scope`. /// Returns the depth of `child_scope`. fn record_child_scope(&mut self, child_scope: Scope) -> ScopeDepth { let parent = self.cx.parent; self.scope_tree.record_scope_parent(child_scope, parent); // If `child_scope` has no parent, it must be the root node, and so has // a depth of 1. Otherwise, its depth is one more than its parent's. parent.map_or(1, |(_p, d)| d + 1) } /// Records the current parent (if any) as the parent of `child_scope`, /// and sets `child_scope` as the new current parent. fn enter_scope(&mut self, child_scope: Scope) { let child_depth = self.record_child_scope(child_scope); self.cx.parent = Some((child_scope, child_depth)); } fn enter_node_scope_with_dtor(&mut self, id: hir::ItemLocalId) { // If node was previously marked as a terminating scope during the // recursive visit of its parent node in the AST, then we need to // account for the destruction scope representing the scope of // the destructors that run immediately after it completes. if self.terminating_scopes.contains(&id) { self.enter_scope(Scope { id, data: ScopeData::Destruction }); } self.enter_scope(Scope { id, data: ScopeData::Node }); } } impl<'tcx> Visitor<'tcx> for RegionResolutionVisitor<'tcx> { fn visit_block(&mut self, b: &'tcx Block<'tcx>) { resolve_block(self, b); } fn visit_body(&mut self, body: &'tcx hir::Body<'tcx>) { let body_id = body.id(); let owner_id = self.tcx.hir().body_owner_def_id(body_id); debug!( "visit_body(id={:?}, span={:?}, body.id={:?}, cx.parent={:?})", owner_id, self.tcx.sess.source_map().span_to_diagnostic_string(body.value.span), body_id, self.cx.parent ); // Save all state that is specific to the outer function // body. These will be restored once down below, once we've // visited the body. let outer_ec = mem::replace(&mut self.expr_and_pat_count, 0); let outer_cx = self.cx; let outer_ts = mem::take(&mut self.terminating_scopes); // The 'pessimistic yield' flag is set to true when we are // processing a `+=` statement and have to make pessimistic // control flow assumptions. This doesn't apply to nested // bodies within the `+=` statements. See #69307. let outer_pessimistic_yield = mem::replace(&mut self.pessimistic_yield, false); self.terminating_scopes.insert(body.value.hir_id.local_id); self.enter_scope(Scope { id: body.value.hir_id.local_id, data: ScopeData::CallSite }); self.enter_scope(Scope { id: body.value.hir_id.local_id, data: ScopeData::Arguments }); // The arguments and `self` are parented to the fn. self.cx.var_parent = self.cx.parent.take(); for param in body.params { self.visit_pat(param.pat); } // The body of the every fn is a root scope. self.cx.parent = self.cx.var_parent; if self.tcx.hir().body_owner_kind(owner_id).is_fn_or_closure() { self.visit_expr(body.value) } else { // Only functions have an outer terminating (drop) scope, while // temporaries in constant initializers may be 'static, but only // according to rvalue lifetime semantics, using the same // syntactical rules used for let initializers. // // e.g., in `let x = &f();`, the temporary holding the result from // the `f()` call lives for the entirety of the surrounding block. // // Similarly, `const X: ... = &f();` would have the result of `f()` // live for `'static`, implying (if Drop restrictions on constants // ever get lifted) that the value *could* have a destructor, but // it'd get leaked instead of the destructor running during the // evaluation of `X` (if at all allowed by CTFE). // // However, `const Y: ... = g(&f());`, like `let y = g(&f());`, // would *not* let the `f()` temporary escape into an outer scope // (i.e., `'static`), which means that after `g` returns, it drops, // and all the associated destruction scope rules apply. self.cx.var_parent = None; resolve_local(self, None, Some(body.value)); } if body.coroutine_kind.is_some() { self.scope_tree.body_expr_count.insert(body_id, self.expr_and_pat_count); } // Restore context we had at the start. self.expr_and_pat_count = outer_ec; self.cx = outer_cx; self.terminating_scopes = outer_ts; self.pessimistic_yield = outer_pessimistic_yield; } fn visit_arm(&mut self, a: &'tcx Arm<'tcx>) { resolve_arm(self, a); } fn visit_pat(&mut self, p: &'tcx Pat<'tcx>) { resolve_pat(self, p); } fn visit_stmt(&mut self, s: &'tcx Stmt<'tcx>) { resolve_stmt(self, s); } fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) { resolve_expr(self, ex); } fn visit_local(&mut self, l: &'tcx Local<'tcx>) { resolve_local(self, Some(l.pat), l.init) } } /// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body; /// in the case of closures, this will be redirected to the enclosing function. /// /// Performance: This is a query rather than a simple function to enable /// re-use in incremental scenarios. We may sometimes need to rerun the /// type checker even when the HIR hasn't changed, and in those cases /// we can avoid reconstructing the region scope tree. pub fn region_scope_tree(tcx: TyCtxt<'_>, def_id: DefId) -> &ScopeTree { let typeck_root_def_id = tcx.typeck_root_def_id(def_id); if typeck_root_def_id != def_id { return tcx.region_scope_tree(typeck_root_def_id); } let scope_tree = if let Some(body_id) = tcx.hir().maybe_body_owned_by(def_id.expect_local()) { let mut visitor = RegionResolutionVisitor { tcx, scope_tree: ScopeTree::default(), expr_and_pat_count: 0, cx: Context { parent: None, var_parent: None }, terminating_scopes: Default::default(), pessimistic_yield: false, fixup_scopes: vec![], }; let body = tcx.hir().body(body_id); visitor.scope_tree.root_body = Some(body.value.hir_id); visitor.visit_body(body); visitor.scope_tree } else { ScopeTree::default() }; tcx.arena.alloc(scope_tree) }