// Coherence phase // // The job of the coherence phase of typechecking is to ensure that // each trait has at most one implementation for each type. This is // done by the orphan and overlap modules. Then we build up various // mappings. That mapping code resides here. use rustc_errors::{error_code, struct_span_err}; use rustc_hir::def_id::{DefId, LocalDefId}; use rustc_middle::ty::query::Providers; use rustc_middle::ty::{self, TyCtxt, TypeVisitable}; use rustc_span::sym; use rustc_trait_selection::traits; mod builtin; mod inherent_impls; mod inherent_impls_overlap; mod orphan; mod unsafety; fn check_impl(tcx: TyCtxt<'_>, impl_def_id: LocalDefId, trait_ref: ty::TraitRef<'_>) { debug!( "(checking implementation) adding impl for trait '{:?}', item '{}'", trait_ref, tcx.def_path_str(impl_def_id.to_def_id()) ); // Skip impls where one of the self type is an error type. // This occurs with e.g., resolve failures (#30589). if trait_ref.references_error() { return; } enforce_trait_manually_implementable(tcx, impl_def_id, trait_ref.def_id); enforce_empty_impls_for_marker_traits(tcx, impl_def_id, trait_ref.def_id); } fn enforce_trait_manually_implementable( tcx: TyCtxt<'_>, impl_def_id: LocalDefId, trait_def_id: DefId, ) { let impl_header_span = tcx.def_span(impl_def_id); // Disallow *all* explicit impls of traits marked `#[rustc_deny_explicit_impl]` if tcx.has_attr(trait_def_id, sym::rustc_deny_explicit_impl) { let trait_name = tcx.item_name(trait_def_id); let mut err = struct_span_err!( tcx.sess, impl_header_span, E0322, "explicit impls for the `{trait_name}` trait are not permitted" ); err.span_label(impl_header_span, format!("impl of `{trait_name}` not allowed")); // Maintain explicit error code for `Unsize`, since it has a useful // explanation about using `CoerceUnsized` instead. if Some(trait_def_id) == tcx.lang_items().unsize_trait() { err.code(error_code!(E0328)); } err.emit(); return; } if let ty::trait_def::TraitSpecializationKind::AlwaysApplicable = tcx.trait_def(trait_def_id).specialization_kind { if !tcx.features().specialization && !tcx.features().min_specialization { tcx.sess .struct_span_err( impl_header_span, "implementing `rustc_specialization_trait` traits is unstable", ) .help("add `#![feature(min_specialization)]` to the crate attributes to enable") .emit(); return; } } } /// We allow impls of marker traits to overlap, so they can't override impls /// as that could make it ambiguous which associated item to use. fn enforce_empty_impls_for_marker_traits( tcx: TyCtxt<'_>, impl_def_id: LocalDefId, trait_def_id: DefId, ) { if !tcx.trait_def(trait_def_id).is_marker { return; } if tcx.associated_item_def_ids(trait_def_id).is_empty() { return; } struct_span_err!( tcx.sess, tcx.def_span(impl_def_id), E0715, "impls for marker traits cannot contain items" ) .emit(); } pub fn provide(providers: &mut Providers) { use self::builtin::coerce_unsized_info; use self::inherent_impls::{crate_incoherent_impls, crate_inherent_impls, inherent_impls}; use self::inherent_impls_overlap::crate_inherent_impls_overlap_check; use self::orphan::orphan_check_impl; *providers = Providers { coherent_trait, crate_inherent_impls, crate_incoherent_impls, inherent_impls, crate_inherent_impls_overlap_check, coerce_unsized_info, orphan_check_impl, ..*providers }; } fn coherent_trait(tcx: TyCtxt<'_>, def_id: DefId) { // Trigger building the specialization graph for the trait. This will detect and report any // overlap errors. tcx.ensure().specialization_graph_of(def_id); let impls = tcx.hir().trait_impls(def_id); for &impl_def_id in impls { let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().subst_identity(); check_impl(tcx, impl_def_id, trait_ref); check_object_overlap(tcx, impl_def_id, trait_ref); tcx.sess.time("unsafety_checking", || unsafety::check_item(tcx, impl_def_id)); tcx.sess.time("orphan_checking", || tcx.ensure().orphan_check_impl(impl_def_id)); } builtin::check_trait(tcx, def_id); } /// Checks whether an impl overlaps with the automatic `impl Trait for dyn Trait`. fn check_object_overlap<'tcx>( tcx: TyCtxt<'tcx>, impl_def_id: LocalDefId, trait_ref: ty::TraitRef<'tcx>, ) { let trait_def_id = trait_ref.def_id; if trait_ref.references_error() { debug!("coherence: skipping impl {:?} with error {:?}", impl_def_id, trait_ref); return; } // check for overlap with the automatic `impl Trait for dyn Trait` if let ty::Dynamic(data, ..) = trait_ref.self_ty().kind() { // This is something like impl Trait1 for Trait2. Illegal // if Trait1 is a supertrait of Trait2 or Trait2 is not object safe. let component_def_ids = data.iter().flat_map(|predicate| { match predicate.skip_binder() { ty::ExistentialPredicate::Trait(tr) => Some(tr.def_id), ty::ExistentialPredicate::AutoTrait(def_id) => Some(def_id), // An associated type projection necessarily comes with // an additional `Trait` requirement. ty::ExistentialPredicate::Projection(..) => None, } }); for component_def_id in component_def_ids { if !tcx.is_object_safe(component_def_id) { // Without the 'object_safe_for_dispatch' feature this is an error // which will be reported by wfcheck. Ignore it here. // This is tested by `coherence-impl-trait-for-trait-object-safe.rs`. // With the feature enabled, the trait is not implemented automatically, // so this is valid. } else { let mut supertrait_def_ids = traits::supertrait_def_ids(tcx, component_def_id); if supertrait_def_ids.any(|d| d == trait_def_id) { let span = tcx.def_span(impl_def_id); struct_span_err!( tcx.sess, span, E0371, "the object type `{}` automatically implements the trait `{}`", trait_ref.self_ty(), tcx.def_path_str(trait_def_id) ) .span_label( span, format!( "`{}` automatically implements trait `{}`", trait_ref.self_ty(), tcx.def_path_str(trait_def_id) ), ) .emit(); } } } } }