use crate::middle::resolve_bound_vars as rbv; use hir::{ intravisit::{self, Visitor}, GenericParamKind, HirId, Node, }; use rustc_hir as hir; use rustc_hir::def::DefKind; use rustc_hir::def_id::DefId; use rustc_middle::ty::{self, TyCtxt}; use rustc_session::lint; use rustc_span::symbol::{kw, Symbol}; use rustc_span::Span; pub(super) fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics { use rustc_hir::*; let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local()); let node = tcx.hir().get(hir_id); let parent_def_id = match node { Node::ImplItem(_) | Node::TraitItem(_) | Node::Variant(_) | Node::Ctor(..) | Node::Field(_) => { let parent_id = tcx.hir().get_parent_item(hir_id); Some(parent_id.to_def_id()) } // FIXME(#43408) always enable this once `lazy_normalization` is // stable enough and does not need a feature gate anymore. Node::AnonConst(_) => { let parent_def_id = tcx.hir().get_parent_item(hir_id); let mut in_param_ty = false; for (_parent, node) in tcx.hir().parent_iter(hir_id) { if let Some(generics) = node.generics() { let mut visitor = AnonConstInParamTyDetector { in_param_ty: false, found_anon_const_in_param_ty: false, ct: hir_id, }; visitor.visit_generics(generics); in_param_ty = visitor.found_anon_const_in_param_ty; break; } } if in_param_ty { // We do not allow generic parameters in anon consts if we are inside // of a const parameter type, e.g. `struct Foo` is not allowed. None } else if tcx.lazy_normalization() { if let Some(param_id) = tcx.hir().opt_const_param_default_param_def_id(hir_id) { // If the def_id we are calling generics_of on is an anon ct default i.e: // // struct Foo; // ^^^ ^ ^^^^^^ def id of this anon const // ^ ^ param_id // ^ parent_def_id // // then we only want to return generics for params to the left of `N`. If we don't do that we // end up with that const looking like: `ty::ConstKind::Unevaluated(def_id, substs: [N#0])`. // // This causes ICEs (#86580) when building the substs for Foo in `fn foo() -> Foo { .. }` as // we substitute the defaults with the partially built substs when we build the substs. Subst'ing // the `N#0` on the unevaluated const indexes into the empty substs we're in the process of building. // // We fix this by having this function return the parent's generics ourselves and truncating the // generics to only include non-forward declared params (with the exception of the `Self` ty) // // For the above code example that means we want `substs: []` // For the following struct def we want `substs: [N#0]` when generics_of is called on // the def id of the `{ N + 1 }` anon const // struct Foo; // // This has some implications for how we get the predicates available to the anon const // see `explicit_predicates_of` for more information on this let generics = tcx.generics_of(parent_def_id.to_def_id()); let param_def_idx = generics.param_def_id_to_index[¶m_id.to_def_id()]; // In the above example this would be .params[..N#0] let params = generics.params_to(param_def_idx as usize, tcx).to_owned(); let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect(); return ty::Generics { // we set the parent of these generics to be our parent's parent so that we // dont end up with substs: [N, M, N] for the const default on a struct like this: // struct Foo; parent: generics.parent, parent_count: generics.parent_count, params, param_def_id_to_index, has_self: generics.has_self, has_late_bound_regions: generics.has_late_bound_regions, }; } // HACK(eddyb) this provides the correct generics when // `feature(generic_const_expressions)` is enabled, so that const expressions // used with const generics, e.g. `Foo<{N+1}>`, can work at all. // // Note that we do not supply the parent generics when using // `min_const_generics`. Some(parent_def_id.to_def_id()) } else { let parent_node = tcx.hir().get_parent(hir_id); match parent_node { // HACK(eddyb) this provides the correct generics for repeat // expressions' count (i.e. `N` in `[x; N]`), and explicit // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`), // as they shouldn't be able to cause query cycle errors. Node::Expr(Expr { kind: ExprKind::Repeat(_, constant), .. }) if constant.hir_id() == hir_id => { Some(parent_def_id.to_def_id()) } Node::Variant(Variant { disr_expr: Some(constant), .. }) if constant.hir_id == hir_id => { Some(parent_def_id.to_def_id()) } Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) => { Some(tcx.typeck_root_def_id(def_id)) } // Exclude `GlobalAsm` here which cannot have generics. Node::Expr(&Expr { kind: ExprKind::InlineAsm(asm), .. }) if asm.operands.iter().any(|(op, _op_sp)| match op { hir::InlineAsmOperand::Const { anon_const } | hir::InlineAsmOperand::SymFn { anon_const } => { anon_const.hir_id == hir_id } _ => false, }) => { Some(parent_def_id.to_def_id()) } _ => None, } } } Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => { Some(tcx.typeck_root_def_id(def_id)) } Node::Item(item) => match item.kind { ItemKind::OpaqueTy(hir::OpaqueTy { origin: hir::OpaqueTyOrigin::FnReturn(fn_def_id) | hir::OpaqueTyOrigin::AsyncFn(fn_def_id), in_trait, .. }) => { if in_trait { assert!(matches!(tcx.def_kind(fn_def_id), DefKind::AssocFn)) } else { assert!(matches!(tcx.def_kind(fn_def_id), DefKind::AssocFn | DefKind::Fn)) } Some(fn_def_id.to_def_id()) } ItemKind::OpaqueTy(hir::OpaqueTy { origin: hir::OpaqueTyOrigin::TyAlias, .. }) => { let parent_id = tcx.hir().get_parent_item(hir_id); assert_ne!(parent_id, hir::CRATE_OWNER_ID); debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id); // Opaque types are always nested within another item, and // inherit the generics of the item. Some(parent_id.to_def_id()) } _ => None, }, _ => None, }; enum Defaults { Allowed, // See #36887 FutureCompatDisallowed, Deny, } let no_generics = hir::Generics::empty(); let ast_generics = node.generics().unwrap_or(&no_generics); let (opt_self, allow_defaults) = match node { Node::Item(item) => { match item.kind { ItemKind::Trait(..) | ItemKind::TraitAlias(..) => { // Add in the self type parameter. // // Something of a hack: use the node id for the trait, also as // the node id for the Self type parameter. let opt_self = Some(ty::GenericParamDef { index: 0, name: kw::SelfUpper, def_id, pure_wrt_drop: false, kind: ty::GenericParamDefKind::Type { has_default: false, synthetic: false, }, }); (opt_self, Defaults::Allowed) } ItemKind::TyAlias(..) | ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::OpaqueTy(..) | ItemKind::Union(..) => (None, Defaults::Allowed), _ => (None, Defaults::FutureCompatDisallowed), } } // GATs Node::TraitItem(item) if matches!(item.kind, TraitItemKind::Type(..)) => { (None, Defaults::Deny) } Node::ImplItem(item) if matches!(item.kind, ImplItemKind::Type(..)) => { (None, Defaults::Deny) } _ => (None, Defaults::FutureCompatDisallowed), }; let has_self = opt_self.is_some(); let mut parent_has_self = false; let mut own_start = has_self as u32; let parent_count = parent_def_id.map_or(0, |def_id| { let generics = tcx.generics_of(def_id); assert!(!has_self); parent_has_self = generics.has_self; own_start = generics.count() as u32; generics.parent_count + generics.params.len() }); let mut params: Vec<_> = Vec::with_capacity(ast_generics.params.len() + has_self as usize); if let Some(opt_self) = opt_self { params.push(opt_self); } let early_lifetimes = super::early_bound_lifetimes_from_generics(tcx, ast_generics); params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef { name: param.name.ident().name, index: own_start + i as u32, def_id: param.def_id.to_def_id(), pure_wrt_drop: param.pure_wrt_drop, kind: ty::GenericParamDefKind::Lifetime, })); // Now create the real type and const parameters. let type_start = own_start - has_self as u32 + params.len() as u32; let mut i = 0; let mut next_index = || { let prev = i; i += 1; prev as u32 + type_start }; const TYPE_DEFAULT_NOT_ALLOWED: &'static str = "defaults for type parameters are only allowed in \ `struct`, `enum`, `type`, or `trait` definitions"; params.extend(ast_generics.params.iter().filter_map(|param| match param.kind { GenericParamKind::Lifetime { .. } => None, GenericParamKind::Type { default, synthetic, .. } => { if default.is_some() { match allow_defaults { Defaults::Allowed => {} Defaults::FutureCompatDisallowed if tcx.features().default_type_parameter_fallback => {} Defaults::FutureCompatDisallowed => { tcx.struct_span_lint_hir( lint::builtin::INVALID_TYPE_PARAM_DEFAULT, param.hir_id, param.span, TYPE_DEFAULT_NOT_ALLOWED, |lint| lint, ); } Defaults::Deny => { tcx.sess.span_err(param.span, TYPE_DEFAULT_NOT_ALLOWED); } } } let kind = ty::GenericParamDefKind::Type { has_default: default.is_some(), synthetic }; Some(ty::GenericParamDef { index: next_index(), name: param.name.ident().name, def_id: param.def_id.to_def_id(), pure_wrt_drop: param.pure_wrt_drop, kind, }) } GenericParamKind::Const { default, .. } => { if !matches!(allow_defaults, Defaults::Allowed) && default.is_some() { tcx.sess.span_err( param.span, "defaults for const parameters are only allowed in \ `struct`, `enum`, `type`, or `trait` definitions", ); } Some(ty::GenericParamDef { index: next_index(), name: param.name.ident().name, def_id: param.def_id.to_def_id(), pure_wrt_drop: param.pure_wrt_drop, kind: ty::GenericParamDefKind::Const { has_default: default.is_some() }, }) } })); // provide junk type parameter defs - the only place that // cares about anything but the length is instantiation, // and we don't do that for closures. if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(hir::Closure { movability: gen, .. }), .. }) = node { let dummy_args = if gen.is_some() { &["", "", "", "", ""][..] } else { &["", "", ""][..] }; params.extend(dummy_args.iter().map(|&arg| ty::GenericParamDef { index: next_index(), name: Symbol::intern(arg), def_id, pure_wrt_drop: false, kind: ty::GenericParamDefKind::Type { has_default: false, synthetic: false }, })); } // provide junk type parameter defs for const blocks. if let Node::AnonConst(_) = node { let parent_node = tcx.hir().get_parent(hir_id); if let Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) = parent_node { params.push(ty::GenericParamDef { index: next_index(), name: Symbol::intern(""), def_id, pure_wrt_drop: false, kind: ty::GenericParamDefKind::Type { has_default: false, synthetic: false }, }); } } let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect(); ty::Generics { parent: parent_def_id, parent_count, params, param_def_id_to_index, has_self: has_self || parent_has_self, has_late_bound_regions: has_late_bound_regions(tcx, node), } } fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option { struct LateBoundRegionsDetector<'tcx> { tcx: TyCtxt<'tcx>, outer_index: ty::DebruijnIndex, has_late_bound_regions: Option, } impl<'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'tcx> { fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) { if self.has_late_bound_regions.is_some() { return; } match ty.kind { hir::TyKind::BareFn(..) => { self.outer_index.shift_in(1); intravisit::walk_ty(self, ty); self.outer_index.shift_out(1); } _ => intravisit::walk_ty(self, ty), } } fn visit_poly_trait_ref(&mut self, tr: &'tcx hir::PolyTraitRef<'tcx>) { if self.has_late_bound_regions.is_some() { return; } self.outer_index.shift_in(1); intravisit::walk_poly_trait_ref(self, tr); self.outer_index.shift_out(1); } fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) { if self.has_late_bound_regions.is_some() { return; } match self.tcx.named_bound_var(lt.hir_id) { Some(rbv::ResolvedArg::StaticLifetime | rbv::ResolvedArg::EarlyBound(..)) => {} Some(rbv::ResolvedArg::LateBound(debruijn, _, _)) if debruijn < self.outer_index => {} Some( rbv::ResolvedArg::LateBound(..) | rbv::ResolvedArg::Free(..) | rbv::ResolvedArg::Error(_), ) | None => { self.has_late_bound_regions = Some(lt.ident.span); } } } } fn has_late_bound_regions<'tcx>( tcx: TyCtxt<'tcx>, generics: &'tcx hir::Generics<'tcx>, decl: &'tcx hir::FnDecl<'tcx>, ) -> Option { let mut visitor = LateBoundRegionsDetector { tcx, outer_index: ty::INNERMOST, has_late_bound_regions: None, }; for param in generics.params { if let GenericParamKind::Lifetime { .. } = param.kind { if tcx.is_late_bound(param.hir_id) { return Some(param.span); } } } visitor.visit_fn_decl(decl); visitor.has_late_bound_regions } match node { Node::TraitItem(item) => match &item.kind { hir::TraitItemKind::Fn(sig, _) => has_late_bound_regions(tcx, &item.generics, sig.decl), _ => None, }, Node::ImplItem(item) => match &item.kind { hir::ImplItemKind::Fn(sig, _) => has_late_bound_regions(tcx, &item.generics, sig.decl), _ => None, }, Node::ForeignItem(item) => match item.kind { hir::ForeignItemKind::Fn(fn_decl, _, generics) => { has_late_bound_regions(tcx, generics, fn_decl) } _ => None, }, Node::Item(item) => match &item.kind { hir::ItemKind::Fn(sig, .., generics, _) => { has_late_bound_regions(tcx, generics, sig.decl) } _ => None, }, _ => None, } } struct AnonConstInParamTyDetector { in_param_ty: bool, found_anon_const_in_param_ty: bool, ct: HirId, } impl<'v> Visitor<'v> for AnonConstInParamTyDetector { fn visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>) { if let GenericParamKind::Const { ty, default: _ } = p.kind { let prev = self.in_param_ty; self.in_param_ty = true; self.visit_ty(ty); self.in_param_ty = prev; } } fn visit_anon_const(&mut self, c: &'v hir::AnonConst) { if self.in_param_ty && self.ct == c.hir_id { self.found_anon_const_in_param_ty = true; } else { intravisit::walk_anon_const(self, c) } } }