use rustc_errors::{Applicability, StashKey}; use rustc_hir as hir; use rustc_hir::def_id::{DefId, LocalDefId}; use rustc_hir::HirId; use rustc_middle::query::plumbing::CyclePlaceholder; use rustc_middle::ty::print::with_forced_trimmed_paths; use rustc_middle::ty::util::IntTypeExt; use rustc_middle::ty::{self, ImplTraitInTraitData, IsSuggestable, Ty, TyCtxt, TypeVisitableExt}; use rustc_span::symbol::Ident; use rustc_span::{Span, DUMMY_SP}; use super::ItemCtxt; use super::{bad_placeholder, is_suggestable_infer_ty}; pub use opaque::test_opaque_hidden_types; mod opaque; fn anon_const_type_of<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> Ty<'tcx> { use hir::*; use rustc_middle::ty::Ty; let hir_id = tcx.hir().local_def_id_to_hir_id(def_id); let Node::AnonConst(_) = tcx.hir().get(hir_id) else { panic!() }; let parent_node_id = tcx.hir().parent_id(hir_id); let parent_node = tcx.hir().get(parent_node_id); let (generics, arg_idx) = match parent_node { // Easy case: arrays repeat expressions. Node::Ty(&hir::Ty { kind: TyKind::Array(_, ref constant), .. }) | Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. }) if constant.hir_id() == hir_id => { return tcx.types.usize; } Node::Ty(&hir::Ty { kind: TyKind::Typeof(ref e), .. }) if e.hir_id == hir_id => { return tcx.typeck(def_id).node_type(e.hir_id); } Node::Expr(&Expr { kind: ExprKind::InlineAsm(asm), .. }) | Node::Item(&Item { kind: ItemKind::GlobalAsm(asm), .. }) if asm.operands.iter().any(|(op, _op_sp)| match op { hir::InlineAsmOperand::Const { anon_const } | hir::InlineAsmOperand::SymFn { anon_const } => anon_const.hir_id == hir_id, _ => false, }) => { return tcx.typeck(def_id).node_type(hir_id); } Node::Variant(Variant { disr_expr: Some(ref e), .. }) if e.hir_id == hir_id => { return tcx.adt_def(tcx.hir().get_parent_item(hir_id)).repr().discr_type().to_ty(tcx); } Node::GenericParam(&GenericParam { def_id: param_def_id, kind: GenericParamKind::Const { default: Some(ct), .. }, .. }) if ct.hir_id == hir_id => { return tcx .type_of(param_def_id) .no_bound_vars() .expect("const parameter types cannot be generic"); } Node::TypeBinding(binding @ &TypeBinding { hir_id: binding_id, .. }) if let Node::TraitRef(trait_ref) = tcx.hir().get(tcx.hir().parent_id(binding_id)) => { let Some(trait_def_id) = trait_ref.trait_def_id() else { return Ty::new_error_with_message( tcx, tcx.def_span(def_id), "Could not find trait", ); }; let assoc_items = tcx.associated_items(trait_def_id); let assoc_item = assoc_items.find_by_name_and_kind( tcx, binding.ident, ty::AssocKind::Const, def_id.to_def_id(), ); return if let Some(assoc_item) = assoc_item { tcx.type_of(assoc_item.def_id) .no_bound_vars() .expect("const parameter types cannot be generic") } else { // FIXME(associated_const_equality): add a useful error message here. Ty::new_error_with_message( tcx, tcx.def_span(def_id), "Could not find associated const on trait", ) }; } // This match arm is for when the def_id appears in a GAT whose // path can't be resolved without typechecking e.g. // // trait Foo { // type Assoc; // fn foo() -> Self::Assoc<3>; // } // // In the above code we would call this query with the def_id of 3 and // the parent_node we match on would be the hir node for Self::Assoc<3> // // `Self::Assoc<3>` cant be resolved without typechecking here as we // didnt write ::Assoc<3>. If we did then another match // arm would handle this. // // I believe this match arm is only needed for GAT but I am not 100% sure - BoxyUwU Node::Ty(hir_ty @ hir::Ty { kind: TyKind::Path(QPath::TypeRelative(_, segment)), .. }) => { // Find the Item containing the associated type so we can create an ItemCtxt. // Using the ItemCtxt convert the HIR for the unresolved assoc type into a // ty which is a fully resolved projection. // For the code example above, this would mean converting Self::Assoc<3> // into a ty::Alias(ty::Projection, ::Assoc<3>) let item_def_id = tcx .hir() .parent_owner_iter(hir_id) .find(|(_, node)| matches!(node, OwnerNode::Item(_))) .unwrap() .0 .def_id; let item_ctxt = &ItemCtxt::new(tcx, item_def_id) as &dyn crate::astconv::AstConv<'_>; let ty = item_ctxt.ast_ty_to_ty(hir_ty); // Iterate through the generics of the projection to find the one that corresponds to // the def_id that this query was called with. We filter to only type and const args here // as a precaution for if it's ever allowed to elide lifetimes in GAT's. It currently isn't // but it can't hurt to be safe ^^ if let ty::Alias(ty::Projection | ty::Inherent, projection) = ty.kind() { let generics = tcx.generics_of(projection.def_id); let arg_index = segment .args .and_then(|args| { args.args .iter() .filter(|arg| arg.is_ty_or_const()) .position(|arg| arg.hir_id() == hir_id) }) .unwrap_or_else(|| { bug!("no arg matching AnonConst in segment"); }); (generics, arg_index) } else { // I dont think it's possible to reach this but I'm not 100% sure - BoxyUwU return Ty::new_error_with_message( tcx, tcx.def_span(def_id), "unexpected non-GAT usage of an anon const", ); } } Node::Expr(&Expr { kind: ExprKind::MethodCall(segment, ..) | ExprKind::Path(QPath::TypeRelative(_, segment)), .. }) => { let body_owner = tcx.hir().enclosing_body_owner(hir_id); let tables = tcx.typeck(body_owner); // This may fail in case the method/path does not actually exist. // As there is no relevant param for `def_id`, we simply return // `None` here. let Some(type_dependent_def) = tables.type_dependent_def_id(parent_node_id) else { return Ty::new_error_with_message( tcx, tcx.def_span(def_id), format!("unable to find type-dependent def for {parent_node_id:?}"), ); }; let idx = segment .args .and_then(|args| { args.args .iter() .filter(|arg| arg.is_ty_or_const()) .position(|arg| arg.hir_id() == hir_id) }) .unwrap_or_else(|| { bug!("no arg matching AnonConst in segment"); }); (tcx.generics_of(type_dependent_def), idx) } Node::Ty(&hir::Ty { kind: TyKind::Path(_), .. }) | Node::Expr(&Expr { kind: ExprKind::Path(_) | ExprKind::Struct(..), .. }) | Node::TraitRef(..) | Node::Pat(_) => { let path = match parent_node { Node::Ty(&hir::Ty { kind: TyKind::Path(QPath::Resolved(_, path)), .. }) | Node::TraitRef(&TraitRef { path, .. }) => &*path, Node::Expr(&Expr { kind: ExprKind::Path(QPath::Resolved(_, path)) | ExprKind::Struct(&QPath::Resolved(_, path), ..), .. }) => { let body_owner = tcx.hir().enclosing_body_owner(hir_id); let _tables = tcx.typeck(body_owner); &*path } Node::Pat(pat) => { if let Some(path) = get_path_containing_arg_in_pat(pat, hir_id) { path } else { return Ty::new_error_with_message( tcx, tcx.def_span(def_id), format!("unable to find const parent for {hir_id} in pat {pat:?}"), ); } } _ => { return Ty::new_error_with_message( tcx, tcx.def_span(def_id), format!("unexpected const parent path {parent_node:?}"), ); } }; // We've encountered an `AnonConst` in some path, so we need to // figure out which generic parameter it corresponds to and return // the relevant type. let Some((arg_index, segment)) = path.segments.iter().find_map(|seg| { let args = seg.args?; args.args .iter() .filter(|arg| arg.is_ty_or_const()) .position(|arg| arg.hir_id() == hir_id) .map(|index| (index, seg)) .or_else(|| { args.bindings .iter() .filter_map(TypeBinding::opt_const) .position(|ct| ct.hir_id == hir_id) .map(|idx| (idx, seg)) }) }) else { return Ty::new_error_with_message( tcx, tcx.def_span(def_id), "no arg matching AnonConst in path", ); }; let generics = match tcx.res_generics_def_id(segment.res) { Some(def_id) => tcx.generics_of(def_id), None => { return Ty::new_error_with_message( tcx, tcx.def_span(def_id), format!("unexpected anon const res {:?} in path: {:?}", segment.res, path), ); } }; (generics, arg_index) } _ => { return Ty::new_error_with_message( tcx, tcx.def_span(def_id), format!("unexpected const parent in type_of(): {parent_node:?}"), ); } }; debug!(?parent_node); debug!(?generics, ?arg_idx); if let Some(param_def_id) = generics .params .iter() .filter(|param| param.kind.is_ty_or_const()) .nth(match generics.has_self && generics.parent.is_none() { true => arg_idx + 1, false => arg_idx, }) .and_then(|param| match param.kind { ty::GenericParamDefKind::Const { .. } => { debug!(?param); Some(param.def_id) } _ => None, }) { tcx.type_of(param_def_id).no_bound_vars().expect("const parameter types cannot be generic") } else { return Ty::new_error_with_message( tcx, tcx.def_span(def_id), format!("const generic parameter not found in {generics:?} at position {arg_idx:?}"), ); } } fn get_path_containing_arg_in_pat<'hir>( pat: &'hir hir::Pat<'hir>, arg_id: HirId, ) -> Option<&'hir hir::Path<'hir>> { use hir::*; let is_arg_in_path = |p: &hir::Path<'_>| { p.segments .iter() .filter_map(|seg| seg.args) .flat_map(|args| args.args) .any(|arg| arg.hir_id() == arg_id) }; let mut arg_path = None; pat.walk(|pat| match pat.kind { PatKind::Struct(QPath::Resolved(_, path), _, _) | PatKind::TupleStruct(QPath::Resolved(_, path), _, _) | PatKind::Path(QPath::Resolved(_, path)) if is_arg_in_path(path) => { arg_path = Some(path); false } _ => true, }); arg_path } pub(super) fn type_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::EarlyBinder> { use rustc_hir::*; use rustc_middle::ty::Ty; // If we are computing `type_of` the synthesized associated type for an RPITIT in the impl // side, use `collect_return_position_impl_trait_in_trait_tys` to infer the value of the // associated type in the impl. if let Some(ImplTraitInTraitData::Impl { fn_def_id, .. }) = tcx.opt_rpitit_info(def_id.to_def_id()) { match tcx.collect_return_position_impl_trait_in_trait_tys(fn_def_id) { Ok(map) => { let assoc_item = tcx.associated_item(def_id); return map[&assoc_item.trait_item_def_id.unwrap()]; } Err(_) => { return ty::EarlyBinder::bind(Ty::new_error_with_message( tcx, DUMMY_SP, "Could not collect return position impl trait in trait tys", )); } } } let hir_id = tcx.hir().local_def_id_to_hir_id(def_id); let icx = ItemCtxt::new(tcx, def_id); let output = match tcx.hir().get(hir_id) { Node::TraitItem(item) => match item.kind { TraitItemKind::Fn(..) => { let args = ty::GenericArgs::identity_for_item(tcx, def_id); Ty::new_fn_def(tcx, def_id.to_def_id(), args) } TraitItemKind::Const(ty, body_id) => body_id .and_then(|body_id| { is_suggestable_infer_ty(ty).then(|| { infer_placeholder_type( tcx, def_id, body_id, ty.span, item.ident, "associated constant", ) }) }) .unwrap_or_else(|| icx.to_ty(ty)), TraitItemKind::Type(_, Some(ty)) => icx.to_ty(ty), TraitItemKind::Type(_, None) => { span_bug!(item.span, "associated type missing default"); } }, Node::ImplItem(item) => match item.kind { ImplItemKind::Fn(..) => { let args = ty::GenericArgs::identity_for_item(tcx, def_id); Ty::new_fn_def(tcx, def_id.to_def_id(), args) } ImplItemKind::Const(ty, body_id) => { if is_suggestable_infer_ty(ty) { infer_placeholder_type( tcx, def_id, body_id, ty.span, item.ident, "associated constant", ) } else { icx.to_ty(ty) } } ImplItemKind::Type(ty) => { if tcx.impl_trait_ref(tcx.hir().get_parent_item(hir_id)).is_none() { check_feature_inherent_assoc_ty(tcx, item.span); } icx.to_ty(ty) } }, Node::Item(item) => match item.kind { ItemKind::Static(ty, .., body_id) => { if is_suggestable_infer_ty(ty) { infer_placeholder_type( tcx, def_id, body_id, ty.span, item.ident, "static variable", ) } else { icx.to_ty(ty) } } ItemKind::Const(ty, _, body_id) => { if is_suggestable_infer_ty(ty) { infer_placeholder_type(tcx, def_id, body_id, ty.span, item.ident, "constant") } else { icx.to_ty(ty) } } ItemKind::TyAlias(self_ty, _) => icx.to_ty(self_ty), ItemKind::Impl(hir::Impl { self_ty, .. }) => match self_ty.find_self_aliases() { spans if spans.len() > 0 => { let guar = tcx .sess .emit_err(crate::errors::SelfInImplSelf { span: spans.into(), note: () }); Ty::new_error(tcx, guar) } _ => icx.to_ty(*self_ty), }, ItemKind::Fn(..) => { let args = ty::GenericArgs::identity_for_item(tcx, def_id); Ty::new_fn_def(tcx, def_id.to_def_id(), args) } ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => { let def = tcx.adt_def(def_id); let args = ty::GenericArgs::identity_for_item(tcx, def_id); Ty::new_adt(tcx, def, args) } ItemKind::OpaqueTy(..) => tcx.type_of_opaque(def_id).map_or_else( |CyclePlaceholder(guar)| Ty::new_error(tcx, guar), |ty| ty.instantiate_identity(), ), ItemKind::Trait(..) | ItemKind::TraitAlias(..) | ItemKind::Macro(..) | ItemKind::Mod(..) | ItemKind::ForeignMod { .. } | ItemKind::GlobalAsm(..) | ItemKind::ExternCrate(..) | ItemKind::Use(..) => { span_bug!(item.span, "compute_type_of_item: unexpected item type: {:?}", item.kind); } }, Node::ForeignItem(foreign_item) => match foreign_item.kind { ForeignItemKind::Fn(..) => { let args = ty::GenericArgs::identity_for_item(tcx, def_id); Ty::new_fn_def(tcx, def_id.to_def_id(), args) } ForeignItemKind::Static(t, _) => icx.to_ty(t), ForeignItemKind::Type => Ty::new_foreign(tcx, def_id.to_def_id()), }, Node::Ctor(def) | Node::Variant(Variant { data: def, .. }) => match def { VariantData::Unit(..) | VariantData::Struct(..) => { tcx.type_of(tcx.hir().get_parent_item(hir_id)).instantiate_identity() } VariantData::Tuple(..) => { let args = ty::GenericArgs::identity_for_item(tcx, def_id); Ty::new_fn_def(tcx, def_id.to_def_id(), args) } }, Node::Field(field) => icx.to_ty(field.ty), Node::Expr(&Expr { kind: ExprKind::Closure { .. }, .. }) => { tcx.typeck(def_id).node_type(hir_id) } Node::AnonConst(_) => anon_const_type_of(tcx, def_id), Node::ConstBlock(_) => { let args = ty::GenericArgs::identity_for_item(tcx, def_id.to_def_id()); args.as_inline_const().ty() } Node::GenericParam(param) => match ¶m.kind { GenericParamKind::Type { default: Some(ty), .. } | GenericParamKind::Const { ty, .. } => icx.to_ty(ty), x => bug!("unexpected non-type Node::GenericParam: {:?}", x), }, x => { bug!("unexpected sort of node in type_of(): {:?}", x); } }; ty::EarlyBinder::bind(output) } pub(super) fn type_of_opaque( tcx: TyCtxt<'_>, def_id: DefId, ) -> Result>, CyclePlaceholder> { if let Some(def_id) = def_id.as_local() { use rustc_hir::*; let hir_id = tcx.hir().local_def_id_to_hir_id(def_id); Ok(ty::EarlyBinder::bind(match tcx.hir().get(hir_id) { Node::Item(item) => match item.kind { ItemKind::OpaqueTy(OpaqueTy { origin: hir::OpaqueTyOrigin::TyAlias { .. }, .. }) => opaque::find_opaque_ty_constraints_for_tait(tcx, def_id), // Opaque types desugared from `impl Trait`. ItemKind::OpaqueTy(&OpaqueTy { origin: hir::OpaqueTyOrigin::FnReturn(owner) | hir::OpaqueTyOrigin::AsyncFn(owner), in_trait, .. }) => { if in_trait && !tcx.defaultness(owner).has_value() { span_bug!( tcx.def_span(def_id), "tried to get type of this RPITIT with no definition" ); } opaque::find_opaque_ty_constraints_for_rpit(tcx, def_id, owner) } _ => { span_bug!(item.span, "type_of_opaque: unexpected item type: {:?}", item.kind); } }, x => { bug!("unexpected sort of node in type_of_opaque(): {:?}", x); } })) } else { // Foreign opaque type will go through the foreign provider // and load the type from metadata. Ok(tcx.type_of(def_id)) } } fn infer_placeholder_type<'a>( tcx: TyCtxt<'a>, def_id: LocalDefId, body_id: hir::BodyId, span: Span, item_ident: Ident, kind: &'static str, ) -> Ty<'a> { let ty = tcx.diagnostic_only_typeck(def_id).node_type(body_id.hir_id); // If this came from a free `const` or `static mut?` item, // then the user may have written e.g. `const A = 42;`. // In this case, the parser has stashed a diagnostic for // us to improve in typeck so we do that now. match tcx.sess.diagnostic().steal_diagnostic(span, StashKey::ItemNoType) { Some(mut err) => { if !ty.references_error() { // Only suggest adding `:` if it was missing (and suggested by parsing diagnostic) let colon = if span == item_ident.span.shrink_to_hi() { ":" } else { "" }; // The parser provided a sub-optimal `HasPlaceholders` suggestion for the type. // We are typeck and have the real type, so remove that and suggest the actual type. // FIXME(eddyb) this looks like it should be functionality on `Diagnostic`. if let Ok(suggestions) = &mut err.suggestions { suggestions.clear(); } if let Some(ty) = ty.make_suggestable(tcx, false) { err.span_suggestion( span, format!("provide a type for the {kind}"), format!("{colon} {ty}"), Applicability::MachineApplicable, ); } else { with_forced_trimmed_paths!(err.span_note( tcx.hir().body(body_id).value.span, format!("however, the inferred type `{ty}` cannot be named"), )); } } err.emit(); } None => { let mut diag = bad_placeholder(tcx, vec![span], kind); if !ty.references_error() { if let Some(ty) = ty.make_suggestable(tcx, false) { diag.span_suggestion( span, "replace with the correct type", ty, Applicability::MachineApplicable, ); } else { with_forced_trimmed_paths!(diag.span_note( tcx.hir().body(body_id).value.span, format!("however, the inferred type `{ty}` cannot be named"), )); } } diag.emit(); } } // Typeck doesn't expect erased regions to be returned from `type_of`. tcx.fold_regions(ty, |r, _| match *r { ty::ReErased => tcx.lifetimes.re_static, _ => r, }) } fn check_feature_inherent_assoc_ty(tcx: TyCtxt<'_>, span: Span) { if !tcx.features().inherent_associated_types { use rustc_session::parse::feature_err; use rustc_span::symbol::sym; feature_err( &tcx.sess.parse_sess, sym::inherent_associated_types, span, "inherent associated types are unstable", ) .emit(); } } pub fn type_alias_is_lazy<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> bool { use hir::intravisit::Visitor; if tcx.features().lazy_type_alias { return true; } struct HasTait { has_type_alias_impl_trait: bool, } impl<'tcx> Visitor<'tcx> for HasTait { fn visit_ty(&mut self, t: &'tcx hir::Ty<'tcx>) { if let hir::TyKind::OpaqueDef(..) = t.kind { self.has_type_alias_impl_trait = true; } else { hir::intravisit::walk_ty(self, t); } } } let mut has_tait = HasTait { has_type_alias_impl_trait: false }; has_tait.visit_ty(tcx.hir().expect_item(def_id).expect_ty_alias().0); has_tait.has_type_alias_impl_trait }