use rustc_data_structures::fx::FxHashSet; use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor}; use rustc_middle::ty::{self, Ty, TyCtxt}; use rustc_span::source_map::Span; use std::ops::ControlFlow; #[derive(Clone, PartialEq, Eq, Hash, Debug)] pub struct Parameter(pub u32); impl From for Parameter { fn from(param: ty::ParamTy) -> Self { Parameter(param.index) } } impl From for Parameter { fn from(param: ty::EarlyBoundRegion) -> Self { Parameter(param.index) } } impl From for Parameter { fn from(param: ty::ParamConst) -> Self { Parameter(param.index) } } /// Returns the set of parameters constrained by the impl header. pub fn parameters_for_impl<'tcx>( impl_self_ty: Ty<'tcx>, impl_trait_ref: Option>, ) -> FxHashSet { let vec = match impl_trait_ref { Some(tr) => parameters_for(&tr, false), None => parameters_for(&impl_self_ty, false), }; vec.into_iter().collect() } /// If `include_nonconstraining` is false, returns the list of parameters that are /// constrained by `t` - i.e., the value of each parameter in the list is /// uniquely determined by `t` (see RFC 447). If it is true, return the list /// of parameters whose values are needed in order to constrain `ty` - these /// differ, with the latter being a superset, in the presence of projections. pub fn parameters_for<'tcx>( t: &impl TypeVisitable>, include_nonconstraining: bool, ) -> Vec { let mut collector = ParameterCollector { parameters: vec![], include_nonconstraining }; t.visit_with(&mut collector); collector.parameters } struct ParameterCollector { parameters: Vec, include_nonconstraining: bool, } impl<'tcx> TypeVisitor> for ParameterCollector { fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow { match *t.kind() { ty::Alias(ty::Projection, ..) if !self.include_nonconstraining => { // projections are not injective return ControlFlow::Continue(()); } ty::Param(data) => { self.parameters.push(Parameter::from(data)); } _ => {} } t.super_visit_with(self) } fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow { if let ty::ReEarlyBound(data) = *r { self.parameters.push(Parameter::from(data)); } ControlFlow::Continue(()) } fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow { match c.kind() { ty::ConstKind::Unevaluated(..) if !self.include_nonconstraining => { // Constant expressions are not injective return c.ty().visit_with(self); } ty::ConstKind::Param(data) => { self.parameters.push(Parameter::from(data)); } _ => {} } c.super_visit_with(self) } } pub fn identify_constrained_generic_params<'tcx>( tcx: TyCtxt<'tcx>, predicates: ty::GenericPredicates<'tcx>, impl_trait_ref: Option>, input_parameters: &mut FxHashSet, ) { let mut predicates = predicates.predicates.to_vec(); setup_constraining_predicates(tcx, &mut predicates, impl_trait_ref, input_parameters); } /// Order the predicates in `predicates` such that each parameter is /// constrained before it is used, if that is possible, and add the /// parameters so constrained to `input_parameters`. For example, /// imagine the following impl: /// ```ignore (illustrative) /// impl> Trait for U /// ``` /// The impl's predicates are collected from left to right. Ignoring /// the implicit `Sized` bounds, these are /// * `T: Debug` /// * `U: Iterator` /// * `::Item = T` -- a desugared ProjectionPredicate /// /// When we, for example, try to go over the trait-reference /// `IntoIter as Trait`, we substitute the impl parameters with fresh /// variables and match them with the impl trait-ref, so we know that /// `$U = IntoIter`. /// /// However, in order to process the `$T: Debug` predicate, we must first /// know the value of `$T` - which is only given by processing the /// projection. As we occasionally want to process predicates in a single /// pass, we want the projection to come first. In fact, as projections /// can (acyclically) depend on one another - see RFC447 for details - we /// need to topologically sort them. /// /// We *do* have to be somewhat careful when projection targets contain /// projections themselves, for example in /// /// ```ignore (illustrative) /// impl Trait for U where /// /* 0 */ S: Iterator, /// /* - */ U: Iterator, /// /* 1 */ ::Item: ToOwned::Item)> /// /* 2 */ W: Iterator /// /* 3 */ V: Debug /// ``` /// /// we have to evaluate the projections in the order I wrote them: /// `V: Debug` requires `V` to be evaluated. The only projection that /// *determines* `V` is 2 (1 contains it, but *does not determine it*, /// as it is only contained within a projection), but that requires `W` /// which is determined by 1, which requires `U`, that is determined /// by 0. I should probably pick a less tangled example, but I can't /// think of any. pub fn setup_constraining_predicates<'tcx>( tcx: TyCtxt<'tcx>, predicates: &mut [(ty::Predicate<'tcx>, Span)], impl_trait_ref: Option>, input_parameters: &mut FxHashSet, ) { // The canonical way of doing the needed topological sort // would be a DFS, but getting the graph and its ownership // right is annoying, so I am using an in-place fixed-point iteration, // which is `O(nt)` where `t` is the depth of type-parameter constraints, // remembering that `t` should be less than 7 in practice. // // Basically, I iterate over all projections and swap every // "ready" projection to the start of the list, such that // all of the projections before `i` are topologically sorted // and constrain all the parameters in `input_parameters`. // // In the example, `input_parameters` starts by containing `U` - which // is constrained by the trait-ref - and so on the first pass we // observe that `::Item = T` is a "ready" projection that // constrains `T` and swap it to front. As it is the sole projection, // no more swaps can take place afterwards, with the result being // * ::Item = T // * T: Debug // * U: Iterator debug!( "setup_constraining_predicates: predicates={:?} \ impl_trait_ref={:?} input_parameters={:?}", predicates, impl_trait_ref, input_parameters ); let mut i = 0; let mut changed = true; while changed { changed = false; for j in i..predicates.len() { // Note that we don't have to care about binders here, // as the impl trait ref never contains any late-bound regions. if let ty::PredicateKind::Clause(ty::Clause::Projection(projection)) = predicates[j].0.kind().skip_binder() { // Special case: watch out for some kind of sneaky attempt // to project out an associated type defined by this very // trait. let unbound_trait_ref = projection.projection_ty.trait_ref(tcx); if Some(unbound_trait_ref) == impl_trait_ref { continue; } // A projection depends on its input types and determines its output // type. For example, if we have // `<::Baz as Iterator>::Output = ::Output` // Then the projection only applies if `T` is known, but it still // does not determine `U`. let inputs = parameters_for(&projection.projection_ty, true); let relies_only_on_inputs = inputs.iter().all(|p| input_parameters.contains(p)); if !relies_only_on_inputs { continue; } input_parameters.extend(parameters_for(&projection.term, false)); } else { continue; } // fancy control flow to bypass borrow checker predicates.swap(i, j); i += 1; changed = true; } debug!( "setup_constraining_predicates: predicates={:?} \ i={} impl_trait_ref={:?} input_parameters={:?}", predicates, i, impl_trait_ref, input_parameters ); } }