//! This pass enforces various "well-formedness constraints" on impls. //! Logically, it is part of wfcheck -- but we do it early so that we //! can stop compilation afterwards, since part of the trait matching //! infrastructure gets very grumpy if these conditions don't hold. In //! particular, if there are type parameters that are not part of the //! impl, then coherence will report strange inference ambiguity //! errors; if impls have duplicate items, we get misleading //! specialization errors. These things can (and probably should) be //! fixed, but for the moment it's easier to do these checks early. use crate::constrained_generic_params as cgp; use min_specialization::check_min_specialization; use rustc_data_structures::fx::FxHashSet; use rustc_errors::struct_span_err; use rustc_hir::def::DefKind; use rustc_hir::def_id::LocalDefId; use rustc_middle::ty::query::Providers; use rustc_middle::ty::{self, TyCtxt, TypeVisitable}; use rustc_span::{Span, Symbol}; mod min_specialization; /// Checks that all the type/lifetime parameters on an impl also /// appear in the trait ref or self type (or are constrained by a /// where-clause). These rules are needed to ensure that, given a /// trait ref like `>`, we can derive the values of all /// parameters on the impl (which is needed to make specialization /// possible). /// /// However, in the case of lifetimes, we only enforce these rules if /// the lifetime parameter is used in an associated type. This is a /// concession to backwards compatibility; see comment at the end of /// the fn for details. /// /// Example: /// /// ```rust,ignore (pseudo-Rust) /// impl Trait for Bar { ... } /// // ^ T does not appear in `Foo` or `Bar`, error! /// /// impl Trait> for Bar { ... } /// // ^ T appears in `Foo`, ok. /// /// impl Trait for Bar where Bar: Iterator { ... } /// // ^ T is bound to `::Item`, ok. /// /// impl<'a> Trait for Bar { } /// // ^ 'a is unused, but for back-compat we allow it /// /// impl<'a> Trait for Bar { type X = &'a i32; } /// // ^ 'a is unused and appears in assoc type, error /// ``` fn check_mod_impl_wf(tcx: TyCtxt<'_>, module_def_id: LocalDefId) { let min_specialization = tcx.features().min_specialization; let module = tcx.hir_module_items(module_def_id); for id in module.items() { if matches!(tcx.def_kind(id.owner_id), DefKind::Impl) { enforce_impl_params_are_constrained(tcx, id.owner_id.def_id); if min_specialization { check_min_specialization(tcx, id.owner_id.def_id); } } } } pub fn provide(providers: &mut Providers) { *providers = Providers { check_mod_impl_wf, ..*providers }; } fn enforce_impl_params_are_constrained(tcx: TyCtxt<'_>, impl_def_id: LocalDefId) { // Every lifetime used in an associated type must be constrained. let impl_self_ty = tcx.type_of(impl_def_id); if impl_self_ty.references_error() { // Don't complain about unconstrained type params when self ty isn't known due to errors. // (#36836) tcx.sess.delay_span_bug( tcx.def_span(impl_def_id), &format!( "potentially unconstrained type parameters weren't evaluated: {:?}", impl_self_ty, ), ); return; } let impl_generics = tcx.generics_of(impl_def_id); let impl_predicates = tcx.predicates_of(impl_def_id); let impl_trait_ref = tcx.impl_trait_ref(impl_def_id).map(ty::EarlyBinder::subst_identity); let mut input_parameters = cgp::parameters_for_impl(impl_self_ty, impl_trait_ref); cgp::identify_constrained_generic_params( tcx, impl_predicates, impl_trait_ref, &mut input_parameters, ); // Disallow unconstrained lifetimes, but only if they appear in assoc types. let lifetimes_in_associated_types: FxHashSet<_> = tcx .associated_item_def_ids(impl_def_id) .iter() .flat_map(|def_id| { let item = tcx.associated_item(def_id); match item.kind { ty::AssocKind::Type => { if item.defaultness(tcx).has_value() { cgp::parameters_for(&tcx.type_of(def_id), true) } else { Vec::new() } } ty::AssocKind::Fn | ty::AssocKind::Const => Vec::new(), } }) .collect(); for param in &impl_generics.params { match param.kind { // Disallow ANY unconstrained type parameters. ty::GenericParamDefKind::Type { .. } => { let param_ty = ty::ParamTy::for_def(param); if !input_parameters.contains(&cgp::Parameter::from(param_ty)) { report_unused_parameter(tcx, tcx.def_span(param.def_id), "type", param_ty.name); } } ty::GenericParamDefKind::Lifetime => { let param_lt = cgp::Parameter::from(param.to_early_bound_region_data()); if lifetimes_in_associated_types.contains(¶m_lt) && // (*) !input_parameters.contains(¶m_lt) { report_unused_parameter( tcx, tcx.def_span(param.def_id), "lifetime", param.name, ); } } ty::GenericParamDefKind::Const { .. } => { let param_ct = ty::ParamConst::for_def(param); if !input_parameters.contains(&cgp::Parameter::from(param_ct)) { report_unused_parameter( tcx, tcx.def_span(param.def_id), "const", param_ct.name, ); } } } } // (*) This is a horrible concession to reality. I think it'd be // better to just ban unconstrained lifetimes outright, but in // practice people do non-hygienic macros like: // // ``` // macro_rules! __impl_slice_eq1 { // ($Lhs: ty, $Rhs: ty, $Bound: ident) => { // impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq { // .... // } // } // } // ``` // // In a concession to backwards compatibility, we continue to // permit those, so long as the lifetimes aren't used in // associated types. I believe this is sound, because lifetimes // used elsewhere are not projected back out. } fn report_unused_parameter(tcx: TyCtxt<'_>, span: Span, kind: &str, name: Symbol) { let mut err = struct_span_err!( tcx.sess, span, E0207, "the {} parameter `{}` is not constrained by the \ impl trait, self type, or predicates", kind, name ); err.span_label(span, format!("unconstrained {} parameter", kind)); if kind == "const" { err.note( "expressions using a const parameter must map each value to a distinct output value", ); err.note( "proving the result of expressions other than the parameter are unique is not supported", ); } err.emit(); }