use std::cell::RefCell; use crate::coercion::CoerceMany; use crate::gather_locals::GatherLocalsVisitor; use crate::CoroutineTypes; use crate::FnCtxt; use rustc_hir as hir; use rustc_hir::def::DefKind; use rustc_hir::intravisit::Visitor; use rustc_hir::lang_items::LangItem; use rustc_hir_analysis::check::{check_function_signature, forbid_intrinsic_abi}; use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind}; use rustc_infer::infer::RegionVariableOrigin; use rustc_middle::ty::{self, Binder, Ty, TyCtxt}; use rustc_span::def_id::LocalDefId; use rustc_span::symbol::sym; use rustc_target::spec::abi::Abi; use rustc_trait_selection::traits; use rustc_trait_selection::traits::{ObligationCause, ObligationCauseCode}; /// Helper used for fns and closures. Does the grungy work of checking a function /// body and returns the function context used for that purpose, since in the case of a fn item /// there is still a bit more to do. /// /// * ... /// * inherited: other fields inherited from the enclosing fn (if any) #[instrument(skip(fcx, body), level = "debug")] pub(super) fn check_fn<'a, 'tcx>( fcx: &mut FnCtxt<'a, 'tcx>, fn_sig: ty::FnSig<'tcx>, decl: &'tcx hir::FnDecl<'tcx>, fn_def_id: LocalDefId, body: &'tcx hir::Body<'tcx>, can_be_coroutine: Option, params_can_be_unsized: bool, ) -> Option> { let fn_id = fcx.tcx.local_def_id_to_hir_id(fn_def_id); let tcx = fcx.tcx; let hir = tcx.hir(); let declared_ret_ty = fn_sig.output(); let ret_ty = fcx.register_infer_ok_obligations(fcx.infcx.replace_opaque_types_with_inference_vars( declared_ret_ty, fn_def_id, decl.output.span(), fcx.param_env, )); fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty))); let span = body.value.span; forbid_intrinsic_abi(tcx, span, fn_sig.abi); if let Some(kind) = body.coroutine_kind && can_be_coroutine.is_some() { let yield_ty = match kind { hir::CoroutineKind::Gen(..) | hir::CoroutineKind::Coroutine => { let yield_ty = fcx.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::TypeInference, span, }); fcx.require_type_is_sized(yield_ty, span, traits::SizedYieldType); yield_ty } // HACK(-Ztrait-solver=next): In the *old* trait solver, we must eagerly // guide inference on the yield type so that we can handle `AsyncIterator` // in this block in projection correctly. In the new trait solver, it is // not a problem. hir::CoroutineKind::AsyncGen(..) => { let yield_ty = fcx.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::TypeInference, span, }); fcx.require_type_is_sized(yield_ty, span, traits::SizedYieldType); Ty::new_adt( tcx, tcx.adt_def(tcx.require_lang_item(hir::LangItem::Poll, Some(span))), tcx.mk_args(&[Ty::new_adt( tcx, tcx.adt_def(tcx.require_lang_item(hir::LangItem::Option, Some(span))), tcx.mk_args(&[yield_ty.into()]), ) .into()]), ) } hir::CoroutineKind::Async(..) => Ty::new_unit(tcx), }; // Resume type defaults to `()` if the coroutine has no argument. let resume_ty = fn_sig.inputs().get(0).copied().unwrap_or_else(|| Ty::new_unit(tcx)); fcx.resume_yield_tys = Some((resume_ty, yield_ty)); } GatherLocalsVisitor::new(fcx).visit_body(body); // C-variadic fns also have a `VaList` input that's not listed in `fn_sig` // (as it's created inside the body itself, not passed in from outside). let maybe_va_list = fn_sig.c_variadic.then(|| { let span = body.params.last().unwrap().span; let va_list_did = tcx.require_lang_item(LangItem::VaList, Some(span)); let region = fcx.next_region_var(RegionVariableOrigin::MiscVariable(span)); tcx.type_of(va_list_did).instantiate(tcx, &[region.into()]) }); // Add formal parameters. let inputs_hir = hir.fn_decl_by_hir_id(fn_id).map(|decl| &decl.inputs); let inputs_fn = fn_sig.inputs().iter().copied(); for (idx, (param_ty, param)) in inputs_fn.chain(maybe_va_list).zip(body.params).enumerate() { // Check the pattern. let ty_span = try { inputs_hir?.get(idx)?.span }; fcx.check_pat_top(param.pat, param_ty, ty_span, None, None); // Check that argument is Sized. if !params_can_be_unsized { fcx.require_type_is_sized( param_ty, param.pat.span, // ty_span == binding_span iff this is a closure parameter with no type ascription, // or if it's an implicit `self` parameter traits::SizedArgumentType( if ty_span == Some(param.span) && tcx.is_closure(fn_def_id.into()) { None } else { ty_span }, ), ); } fcx.write_ty(param.hir_id, param_ty); } fcx.typeck_results.borrow_mut().liberated_fn_sigs_mut().insert(fn_id, fn_sig); let return_or_body_span = match decl.output { hir::FnRetTy::DefaultReturn(_) => body.value.span, hir::FnRetTy::Return(ty) => ty.span, }; fcx.require_type_is_sized(declared_ret_ty, return_or_body_span, traits::SizedReturnType); fcx.check_return_expr(body.value, false); // We insert the deferred_coroutine_interiors entry after visiting the body. // This ensures that all nested coroutines appear before the entry of this coroutine. // resolve_coroutine_interiors relies on this property. let coroutine_ty = if let (Some(_), Some(coroutine_kind)) = (can_be_coroutine, body.coroutine_kind) { let interior = fcx .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span }); fcx.deferred_coroutine_interiors.borrow_mut().push(( fn_def_id, body.id(), interior, coroutine_kind, )); let (resume_ty, yield_ty) = fcx.resume_yield_tys.unwrap(); Some(CoroutineTypes { resume_ty, yield_ty, interior, movability: can_be_coroutine.unwrap(), }) } else { None }; // Finalize the return check by taking the LUB of the return types // we saw and assigning it to the expected return type. This isn't // really expected to fail, since the coercions would have failed // earlier when trying to find a LUB. let coercion = fcx.ret_coercion.take().unwrap().into_inner(); let mut actual_return_ty = coercion.complete(fcx); debug!("actual_return_ty = {:?}", actual_return_ty); if let ty::Dynamic(..) = declared_ret_ty.kind() { // We have special-cased the case where the function is declared // `-> dyn Foo` and we don't actually relate it to the // `fcx.ret_coercion`, so just substitute a type variable. actual_return_ty = fcx.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::DynReturnFn, span }); debug!("actual_return_ty replaced with {:?}", actual_return_ty); } // HACK(oli-obk, compiler-errors): We should be comparing this against // `declared_ret_ty`, but then anything uninferred would be inferred to // the opaque type itself. That again would cause writeback to assume // we have a recursive call site and do the sadly stabilized fallback to `()`. fcx.demand_suptype(span, ret_ty, actual_return_ty); // Check that a function marked as `#[panic_handler]` has signature `fn(&PanicInfo) -> !` if let Some(panic_impl_did) = tcx.lang_items().panic_impl() && panic_impl_did == fn_def_id.to_def_id() { check_panic_info_fn(tcx, panic_impl_did.expect_local(), fn_sig); } if let Some(lang_start_defid) = tcx.lang_items().start_fn() && lang_start_defid == fn_def_id.to_def_id() { check_lang_start_fn(tcx, fn_sig, fn_def_id); } coroutine_ty } fn check_panic_info_fn(tcx: TyCtxt<'_>, fn_id: LocalDefId, fn_sig: ty::FnSig<'_>) { let DefKind::Fn = tcx.def_kind(fn_id) else { let span = tcx.def_span(fn_id); tcx.sess.span_err(span, "should be a function"); return; }; let generic_counts = tcx.generics_of(fn_id).own_counts(); if generic_counts.types != 0 { let span = tcx.def_span(fn_id); tcx.sess.span_err(span, "should have no type parameters"); } if generic_counts.consts != 0 { let span = tcx.def_span(fn_id); tcx.sess.span_err(span, "should have no const parameters"); } let Some(panic_info_did) = tcx.lang_items().panic_info() else { tcx.sess.err("language item required, but not found: `panic_info`"); return; }; // build type `for<'a, 'b> fn(&'a PanicInfo<'b>) -> !` let panic_info_ty = tcx.type_of(panic_info_did).instantiate( tcx, &[ty::GenericArg::from(ty::Region::new_bound( tcx, ty::INNERMOST, ty::BoundRegion { var: ty::BoundVar::from_u32(1), kind: ty::BrAnon }, ))], ); let panic_info_ref_ty = Ty::new_imm_ref( tcx, ty::Region::new_bound( tcx, ty::INNERMOST, ty::BoundRegion { var: ty::BoundVar::from_u32(0), kind: ty::BrAnon }, ), panic_info_ty, ); let bounds = tcx.mk_bound_variable_kinds(&[ ty::BoundVariableKind::Region(ty::BrAnon), ty::BoundVariableKind::Region(ty::BrAnon), ]); let expected_sig = ty::Binder::bind_with_vars( tcx.mk_fn_sig([panic_info_ref_ty], tcx.types.never, false, fn_sig.unsafety, Abi::Rust), bounds, ); let _ = check_function_signature( tcx, ObligationCause::new( tcx.def_span(fn_id), fn_id, ObligationCauseCode::LangFunctionType(sym::panic_impl), ), fn_id.into(), expected_sig, ); } fn check_lang_start_fn<'tcx>(tcx: TyCtxt<'tcx>, fn_sig: ty::FnSig<'tcx>, def_id: LocalDefId) { // build type `fn(main: fn() -> T, argc: isize, argv: *const *const u8, sigpipe: u8)` // make a Ty for the generic on the fn for diagnostics // FIXME: make the lang item generic checks check for the right generic *kind* // for example `start`'s generic should be a type parameter let generics = tcx.generics_of(def_id); let fn_generic = generics.param_at(0, tcx); let generic_ty = Ty::new_param(tcx, fn_generic.index, fn_generic.name); let main_fn_ty = Ty::new_fn_ptr( tcx, Binder::dummy(tcx.mk_fn_sig([], generic_ty, false, hir::Unsafety::Normal, Abi::Rust)), ); let expected_sig = ty::Binder::dummy(tcx.mk_fn_sig( [ main_fn_ty, tcx.types.isize, Ty::new_imm_ptr(tcx, Ty::new_imm_ptr(tcx, tcx.types.u8)), tcx.types.u8, ], tcx.types.isize, false, fn_sig.unsafety, Abi::Rust, )); let _ = check_function_signature( tcx, ObligationCause::new( tcx.def_span(def_id), def_id, ObligationCauseCode::LangFunctionType(sym::start), ), def_id.into(), expected_sig, ); }