//! Code for type-checking closure expressions. use super::{check_fn, Expectation, FnCtxt, GeneratorTypes}; use hir::def::DefKind; use rustc_errors::ErrorGuaranteed; use rustc_hir as hir; use rustc_hir::lang_items::LangItem; use rustc_hir_analysis::astconv::AstConv; use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind}; use rustc_infer::infer::LateBoundRegionConversionTime; use rustc_infer::infer::{InferOk, InferResult}; use rustc_macros::{TypeFoldable, TypeVisitable}; use rustc_middle::ty::subst::InternalSubsts; use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt}; use rustc_middle::ty::{self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitor}; use rustc_span::def_id::LocalDefId; use rustc_span::source_map::Span; use rustc_span::sym; use rustc_target::spec::abi::Abi; use rustc_trait_selection::traits; use rustc_trait_selection::traits::error_reporting::ArgKind; use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _; use std::cmp; use std::iter; use std::ops::ControlFlow; /// What signature do we *expect* the closure to have from context? #[derive(Debug, Clone, TypeFoldable, TypeVisitable)] struct ExpectedSig<'tcx> { /// Span that gave us this expectation, if we know that. cause_span: Option, sig: ty::PolyFnSig<'tcx>, } struct ClosureSignatures<'tcx> { /// The signature users of the closure see. bound_sig: ty::PolyFnSig<'tcx>, /// The signature within the function body. /// This mostly differs in the sense that lifetimes are now early bound and any /// opaque types from the signature expectation are overridden in case there are /// explicit hidden types written by the user in the closure signature. liberated_sig: ty::FnSig<'tcx>, } impl<'a, 'tcx> FnCtxt<'a, 'tcx> { #[instrument(skip(self, closure), level = "debug")] pub fn check_expr_closure( &self, closure: &hir::Closure<'tcx>, expr_span: Span, expected: Expectation<'tcx>, ) -> Ty<'tcx> { trace!("decl = {:#?}", closure.fn_decl); // It's always helpful for inference if we know the kind of // closure sooner rather than later, so first examine the expected // type, and see if can glean a closure kind from there. let (expected_sig, expected_kind) = match expected.to_option(self) { Some(ty) => self.deduce_closure_signature(ty), None => (None, None), }; let body = self.tcx.hir().body(closure.body); self.check_closure(closure, expr_span, expected_kind, body, expected_sig) } #[instrument(skip(self, closure, body), level = "debug", ret)] fn check_closure( &self, closure: &hir::Closure<'tcx>, expr_span: Span, opt_kind: Option, body: &'tcx hir::Body<'tcx>, expected_sig: Option>, ) -> Ty<'tcx> { trace!("decl = {:#?}", closure.fn_decl); let expr_def_id = closure.def_id; debug!(?expr_def_id); let ClosureSignatures { bound_sig, liberated_sig } = self.sig_of_closure(expr_def_id, closure.fn_decl, body, expected_sig); debug!(?bound_sig, ?liberated_sig); let mut fcx = FnCtxt::new(self, self.param_env.without_const(), closure.def_id); let generator_types = check_fn( &mut fcx, liberated_sig, closure.fn_decl, expr_def_id, body, closure.movability, ); let parent_substs = InternalSubsts::identity_for_item( self.tcx, self.tcx.typeck_root_def_id(expr_def_id.to_def_id()), ); let tupled_upvars_ty = self.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::ClosureSynthetic, span: self.tcx.def_span(expr_def_id), }); if let Some(GeneratorTypes { resume_ty, yield_ty, interior, movability }) = generator_types { let generator_substs = ty::GeneratorSubsts::new( self.tcx, ty::GeneratorSubstsParts { parent_substs, resume_ty, yield_ty, return_ty: liberated_sig.output(), witness: interior, tupled_upvars_ty, }, ); return self.tcx.mk_generator( expr_def_id.to_def_id(), generator_substs.substs, movability, ); } // Tuple up the arguments and insert the resulting function type into // the `closures` table. let sig = bound_sig.map_bound(|sig| { self.tcx.mk_fn_sig( [self.tcx.mk_tup(sig.inputs())], sig.output(), sig.c_variadic, sig.unsafety, sig.abi, ) }); debug!(?sig, ?opt_kind); let closure_kind_ty = match opt_kind { Some(kind) => kind.to_ty(self.tcx), // Create a type variable (for now) to represent the closure kind. // It will be unified during the upvar inference phase (`upvar.rs`) None => self.next_ty_var(TypeVariableOrigin { // FIXME(eddyb) distinguish closure kind inference variables from the rest. kind: TypeVariableOriginKind::ClosureSynthetic, span: expr_span, }), }; let closure_substs = ty::ClosureSubsts::new( self.tcx, ty::ClosureSubstsParts { parent_substs, closure_kind_ty, closure_sig_as_fn_ptr_ty: self.tcx.mk_fn_ptr(sig), tupled_upvars_ty, }, ); self.tcx.mk_closure(expr_def_id.to_def_id(), closure_substs.substs) } /// Given the expected type, figures out what it can about this closure we /// are about to type check: #[instrument(skip(self), level = "debug")] fn deduce_closure_signature( &self, expected_ty: Ty<'tcx>, ) -> (Option>, Option) { match *expected_ty.kind() { ty::Alias(ty::Opaque, ty::AliasTy { def_id, substs, .. }) => self .deduce_closure_signature_from_predicates( expected_ty, self.tcx.bound_explicit_item_bounds(def_id).subst_iter_copied(self.tcx, substs), ), ty::Dynamic(ref object_type, ..) => { let sig = object_type.projection_bounds().find_map(|pb| { let pb = pb.with_self_ty(self.tcx, self.tcx.types.trait_object_dummy_self); self.deduce_sig_from_projection(None, pb) }); let kind = object_type .principal_def_id() .and_then(|did| self.tcx.fn_trait_kind_from_def_id(did)); (sig, kind) } ty::Infer(ty::TyVar(vid)) => self.deduce_closure_signature_from_predicates( self.tcx.mk_ty_var(self.root_var(vid)), self.obligations_for_self_ty(vid).map(|obl| (obl.predicate, obl.cause.span)), ), ty::FnPtr(sig) => { let expected_sig = ExpectedSig { cause_span: None, sig }; (Some(expected_sig), Some(ty::ClosureKind::Fn)) } _ => (None, None), } } fn deduce_closure_signature_from_predicates( &self, expected_ty: Ty<'tcx>, predicates: impl DoubleEndedIterator, Span)>, ) -> (Option>, Option) { let mut expected_sig = None; let mut expected_kind = None; for obligation in traits::elaborate_predicates_with_span( self.tcx, // Reverse the obligations here, since `elaborate_*` uses a stack, // and we want to keep inference generally in the same order of // the registered obligations. predicates.rev(), ) { debug!(?obligation.predicate); let bound_predicate = obligation.predicate.kind(); // Given a Projection predicate, we can potentially infer // the complete signature. if expected_sig.is_none() && let ty::PredicateKind::Clause(ty::Clause::Projection(proj_predicate)) = bound_predicate.skip_binder() { let inferred_sig = self.normalize( obligation.cause.span, self.deduce_sig_from_projection( Some(obligation.cause.span), bound_predicate.rebind(proj_predicate), ), ); // Make sure that we didn't infer a signature that mentions itself. // This can happen when we elaborate certain supertrait bounds that // mention projections containing the `Self` type. See #105401. struct MentionsTy<'tcx> { expected_ty: Ty<'tcx>, } impl<'tcx> TypeVisitor> for MentionsTy<'tcx> { type BreakTy = (); fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow { if t == self.expected_ty { ControlFlow::Break(()) } else { t.super_visit_with(self) } } } if inferred_sig.visit_with(&mut MentionsTy { expected_ty }).is_continue() { expected_sig = inferred_sig; } } // Even if we can't infer the full signature, we may be able to // infer the kind. This can occur when we elaborate a predicate // like `F : Fn`. Note that due to subtyping we could encounter // many viable options, so pick the most restrictive. let trait_def_id = match bound_predicate.skip_binder() { ty::PredicateKind::Clause(ty::Clause::Projection(data)) => { Some(data.projection_ty.trait_def_id(self.tcx)) } ty::PredicateKind::Clause(ty::Clause::Trait(data)) => Some(data.def_id()), _ => None, }; if let Some(closure_kind) = trait_def_id.and_then(|def_id| self.tcx.fn_trait_kind_from_def_id(def_id)) { expected_kind = Some( expected_kind .map_or_else(|| closure_kind, |current| cmp::min(current, closure_kind)), ); } } (expected_sig, expected_kind) } /// Given a projection like "::Result == Y", we can deduce /// everything we need to know about a closure or generator. /// /// The `cause_span` should be the span that caused us to /// have this expected signature, or `None` if we can't readily /// know that. #[instrument(level = "debug", skip(self, cause_span), ret)] fn deduce_sig_from_projection( &self, cause_span: Option, projection: ty::PolyProjectionPredicate<'tcx>, ) -> Option> { let tcx = self.tcx; let trait_def_id = projection.trait_def_id(tcx); let is_fn = tcx.is_fn_trait(trait_def_id); let gen_trait = tcx.lang_items().gen_trait(); let is_gen = gen_trait == Some(trait_def_id); if !is_fn && !is_gen { debug!("not fn or generator"); return None; } // Check that we deduce the signature from the `<_ as std::ops::Generator>::Return` // associated item and not yield. if is_gen && self.tcx.associated_item(projection.projection_def_id()).name != sym::Return { debug!("not `Return` assoc item of `Generator`"); return None; } let input_tys = if is_fn { let arg_param_ty = projection.skip_binder().projection_ty.substs.type_at(1); let arg_param_ty = self.resolve_vars_if_possible(arg_param_ty); debug!(?arg_param_ty); match arg_param_ty.kind() { &ty::Tuple(tys) => tys, _ => return None, } } else { // Generators with a `()` resume type may be defined with 0 or 1 explicit arguments, // else they must have exactly 1 argument. For now though, just give up in this case. return None; }; // Since this is a return parameter type it is safe to unwrap. let ret_param_ty = projection.skip_binder().term.ty().unwrap(); let ret_param_ty = self.resolve_vars_if_possible(ret_param_ty); debug!(?ret_param_ty); let sig = projection.rebind(self.tcx.mk_fn_sig( input_tys, ret_param_ty, false, hir::Unsafety::Normal, Abi::Rust, )); Some(ExpectedSig { cause_span, sig }) } fn sig_of_closure( &self, expr_def_id: LocalDefId, decl: &hir::FnDecl<'_>, body: &hir::Body<'_>, expected_sig: Option>, ) -> ClosureSignatures<'tcx> { if let Some(e) = expected_sig { self.sig_of_closure_with_expectation(expr_def_id, decl, body, e) } else { self.sig_of_closure_no_expectation(expr_def_id, decl, body) } } /// If there is no expected signature, then we will convert the /// types that the user gave into a signature. #[instrument(skip(self, expr_def_id, decl, body), level = "debug")] fn sig_of_closure_no_expectation( &self, expr_def_id: LocalDefId, decl: &hir::FnDecl<'_>, body: &hir::Body<'_>, ) -> ClosureSignatures<'tcx> { let bound_sig = self.supplied_sig_of_closure(expr_def_id, decl, body); self.closure_sigs(expr_def_id, body, bound_sig) } /// Invoked to compute the signature of a closure expression. This /// combines any user-provided type annotations (e.g., `|x: u32| /// -> u32 { .. }`) with the expected signature. /// /// The approach is as follows: /// /// - Let `S` be the (higher-ranked) signature that we derive from the user's annotations. /// - Let `E` be the (higher-ranked) signature that we derive from the expectations, if any. /// - If we have no expectation `E`, then the signature of the closure is `S`. /// - Otherwise, the signature of the closure is E. Moreover: /// - Skolemize the late-bound regions in `E`, yielding `E'`. /// - Instantiate all the late-bound regions bound in the closure within `S` /// with fresh (existential) variables, yielding `S'` /// - Require that `E' = S'` /// - We could use some kind of subtyping relationship here, /// I imagine, but equality is easier and works fine for /// our purposes. /// /// The key intuition here is that the user's types must be valid /// from "the inside" of the closure, but the expectation /// ultimately drives the overall signature. /// /// # Examples /// /// ```ignore (illustrative) /// fn with_closure(_: F) /// where F: Fn(&u32) -> &u32 { .. } /// /// with_closure(|x: &u32| { ... }) /// ``` /// /// Here: /// - E would be `fn(&u32) -> &u32`. /// - S would be `fn(&u32) -> /// - E' is `&'!0 u32 -> &'!0 u32` /// - S' is `&'?0 u32 -> ?T` /// /// S' can be unified with E' with `['?0 = '!0, ?T = &'!10 u32]`. /// /// # Arguments /// /// - `expr_def_id`: the `LocalDefId` of the closure expression /// - `decl`: the HIR declaration of the closure /// - `body`: the body of the closure /// - `expected_sig`: the expected signature (if any). Note that /// this is missing a binder: that is, there may be late-bound /// regions with depth 1, which are bound then by the closure. #[instrument(skip(self, expr_def_id, decl, body), level = "debug")] fn sig_of_closure_with_expectation( &self, expr_def_id: LocalDefId, decl: &hir::FnDecl<'_>, body: &hir::Body<'_>, expected_sig: ExpectedSig<'tcx>, ) -> ClosureSignatures<'tcx> { // Watch out for some surprises and just ignore the // expectation if things don't see to match up with what we // expect. if expected_sig.sig.c_variadic() != decl.c_variadic { return self.sig_of_closure_no_expectation(expr_def_id, decl, body); } else if expected_sig.sig.skip_binder().inputs_and_output.len() != decl.inputs.len() + 1 { return self.sig_of_closure_with_mismatched_number_of_arguments( expr_def_id, decl, body, expected_sig, ); } // Create a `PolyFnSig`. Note the oddity that late bound // regions appearing free in `expected_sig` are now bound up // in this binder we are creating. assert!(!expected_sig.sig.skip_binder().has_vars_bound_above(ty::INNERMOST)); let bound_sig = expected_sig.sig.map_bound(|sig| { self.tcx.mk_fn_sig( sig.inputs().iter().cloned(), sig.output(), sig.c_variadic, hir::Unsafety::Normal, Abi::RustCall, ) }); // `deduce_expectations_from_expected_type` introduces // late-bound lifetimes defined elsewhere, which we now // anonymize away, so as not to confuse the user. let bound_sig = self.tcx.anonymize_bound_vars(bound_sig); let closure_sigs = self.closure_sigs(expr_def_id, body, bound_sig); // Up till this point, we have ignored the annotations that the user // gave. This function will check that they unify successfully. // Along the way, it also writes out entries for types that the user // wrote into our typeck results, which are then later used by the privacy // check. match self.merge_supplied_sig_with_expectation(expr_def_id, decl, body, closure_sigs) { Ok(infer_ok) => self.register_infer_ok_obligations(infer_ok), Err(_) => self.sig_of_closure_no_expectation(expr_def_id, decl, body), } } fn sig_of_closure_with_mismatched_number_of_arguments( &self, expr_def_id: LocalDefId, decl: &hir::FnDecl<'_>, body: &hir::Body<'_>, expected_sig: ExpectedSig<'tcx>, ) -> ClosureSignatures<'tcx> { let hir = self.tcx.hir(); let expr_map_node = hir.get_by_def_id(expr_def_id); let expected_args: Vec<_> = expected_sig .sig .skip_binder() .inputs() .iter() .map(|ty| ArgKind::from_expected_ty(*ty, None)) .collect(); let (closure_span, closure_arg_span, found_args) = match self.get_fn_like_arguments(expr_map_node) { Some((sp, arg_sp, args)) => (Some(sp), arg_sp, args), None => (None, None, Vec::new()), }; let expected_span = expected_sig.cause_span.unwrap_or_else(|| self.tcx.def_span(expr_def_id)); let guar = self .report_arg_count_mismatch( expected_span, closure_span, expected_args, found_args, true, closure_arg_span, ) .emit(); let error_sig = self.error_sig_of_closure(decl, guar); self.closure_sigs(expr_def_id, body, error_sig) } /// Enforce the user's types against the expectation. See /// `sig_of_closure_with_expectation` for details on the overall /// strategy. #[instrument(level = "debug", skip(self, expr_def_id, decl, body, expected_sigs))] fn merge_supplied_sig_with_expectation( &self, expr_def_id: LocalDefId, decl: &hir::FnDecl<'_>, body: &hir::Body<'_>, mut expected_sigs: ClosureSignatures<'tcx>, ) -> InferResult<'tcx, ClosureSignatures<'tcx>> { // Get the signature S that the user gave. // // (See comment on `sig_of_closure_with_expectation` for the // meaning of these letters.) let supplied_sig = self.supplied_sig_of_closure(expr_def_id, decl, body); debug!(?supplied_sig); // FIXME(#45727): As discussed in [this comment][c1], naively // forcing equality here actually results in suboptimal error // messages in some cases. For now, if there would have been // an obvious error, we fallback to declaring the type of the // closure to be the one the user gave, which allows other // error message code to trigger. // // However, I think [there is potential to do even better // here][c2], since in *this* code we have the precise span of // the type parameter in question in hand when we report the // error. // // [c1]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341089706 // [c2]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341096796 self.commit_if_ok(|_| { let mut all_obligations = vec![]; let inputs: Vec<_> = iter::zip( decl.inputs, supplied_sig.inputs().skip_binder(), // binder moved to (*) below ) .map(|(hir_ty, &supplied_ty)| { // Instantiate (this part of..) S to S', i.e., with fresh variables. self.instantiate_binder_with_fresh_vars( hir_ty.span, LateBoundRegionConversionTime::FnCall, // (*) binder moved to here supplied_sig.inputs().rebind(supplied_ty), ) }) .collect(); // The liberated version of this signature should be a subtype // of the liberated form of the expectation. for ((hir_ty, &supplied_ty), expected_ty) in iter::zip( iter::zip(decl.inputs, &inputs), expected_sigs.liberated_sig.inputs(), // `liberated_sig` is E'. ) { // Check that E' = S'. let cause = self.misc(hir_ty.span); let InferOk { value: (), obligations } = self .at(&cause, self.param_env) .define_opaque_types(true) .eq(*expected_ty, supplied_ty)?; all_obligations.extend(obligations); } let supplied_output_ty = self.instantiate_binder_with_fresh_vars( decl.output.span(), LateBoundRegionConversionTime::FnCall, supplied_sig.output(), ); let cause = &self.misc(decl.output.span()); let InferOk { value: (), obligations } = self .at(cause, self.param_env) .define_opaque_types(true) .eq(expected_sigs.liberated_sig.output(), supplied_output_ty)?; all_obligations.extend(obligations); let inputs = inputs.into_iter().map(|ty| self.resolve_vars_if_possible(ty)); expected_sigs.liberated_sig = self.tcx.mk_fn_sig( inputs, supplied_output_ty, expected_sigs.liberated_sig.c_variadic, hir::Unsafety::Normal, Abi::RustCall, ); Ok(InferOk { value: expected_sigs, obligations: all_obligations }) }) } /// If there is no expected signature, then we will convert the /// types that the user gave into a signature. /// /// Also, record this closure signature for later. #[instrument(skip(self, decl, body), level = "debug", ret)] fn supplied_sig_of_closure( &self, expr_def_id: LocalDefId, decl: &hir::FnDecl<'_>, body: &hir::Body<'_>, ) -> ty::PolyFnSig<'tcx> { let astconv: &dyn AstConv<'_> = self; trace!("decl = {:#?}", decl); debug!(?body.generator_kind); let hir_id = self.tcx.hir().local_def_id_to_hir_id(expr_def_id); let bound_vars = self.tcx.late_bound_vars(hir_id); // First, convert the types that the user supplied (if any). let supplied_arguments = decl.inputs.iter().map(|a| astconv.ast_ty_to_ty(a)); let supplied_return = match decl.output { hir::FnRetTy::Return(ref output) => astconv.ast_ty_to_ty(&output), hir::FnRetTy::DefaultReturn(_) => match body.generator_kind { // In the case of the async block that we create for a function body, // we expect the return type of the block to match that of the enclosing // function. Some(hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn)) => { debug!("closure is async fn body"); let def_id = self.tcx.hir().body_owner_def_id(body.id()); self.deduce_future_output_from_obligations(expr_def_id, def_id).unwrap_or_else( || { // AFAIK, deducing the future output // always succeeds *except* in error cases // like #65159. I'd like to return Error // here, but I can't because I can't // easily (and locally) prove that we // *have* reported an // error. --nikomatsakis astconv.ty_infer(None, decl.output.span()) }, ) } _ => astconv.ty_infer(None, decl.output.span()), }, }; let result = ty::Binder::bind_with_vars( self.tcx.mk_fn_sig( supplied_arguments, supplied_return, decl.c_variadic, hir::Unsafety::Normal, Abi::RustCall, ), bound_vars, ); let c_result = self.inh.infcx.canonicalize_response(result); self.typeck_results.borrow_mut().user_provided_sigs.insert(expr_def_id, c_result); // Normalize only after registering in `user_provided_sigs`. self.normalize(self.tcx.hir().span(hir_id), result) } /// Invoked when we are translating the generator that results /// from desugaring an `async fn`. Returns the "sugared" return /// type of the `async fn` -- that is, the return type that the /// user specified. The "desugared" return type is an `impl /// Future`, so we do this by searching through the /// obligations to extract the `T`. #[instrument(skip(self), level = "debug", ret)] fn deduce_future_output_from_obligations( &self, expr_def_id: LocalDefId, body_def_id: LocalDefId, ) -> Option> { let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| { span_bug!(self.tcx.def_span(expr_def_id), "async fn generator outside of a fn") }); let ret_ty = ret_coercion.borrow().expected_ty(); let ret_ty = self.inh.infcx.shallow_resolve(ret_ty); let get_future_output = |predicate: ty::Predicate<'tcx>, span| { // Search for a pending obligation like // // `::Output = T` // // where R is the return type we are expecting. This type `T` // will be our output. let bound_predicate = predicate.kind(); if let ty::PredicateKind::Clause(ty::Clause::Projection(proj_predicate)) = bound_predicate.skip_binder() { self.deduce_future_output_from_projection( span, bound_predicate.rebind(proj_predicate), ) } else { None } }; let output_ty = match *ret_ty.kind() { ty::Infer(ty::TyVar(ret_vid)) => { self.obligations_for_self_ty(ret_vid).find_map(|obligation| { get_future_output(obligation.predicate, obligation.cause.span) })? } ty::Alias(ty::Opaque, ty::AliasTy { def_id, substs, .. }) => self .tcx .bound_explicit_item_bounds(def_id) .subst_iter_copied(self.tcx, substs) .find_map(|(p, s)| get_future_output(p, s))?, ty::Error(_) => return None, ty::Alias(ty::Projection, proj) if self.tcx.def_kind(proj.def_id) == DefKind::ImplTraitPlaceholder => { self.tcx .bound_explicit_item_bounds(proj.def_id) .subst_iter_copied(self.tcx, proj.substs) .find_map(|(p, s)| get_future_output(p, s))? } _ => span_bug!( self.tcx.def_span(expr_def_id), "async fn generator return type not an inference variable: {ret_ty}" ), }; // async fn that have opaque types in their return type need to redo the conversion to inference variables // as they fetch the still opaque version from the signature. let InferOk { value: output_ty, obligations } = self .replace_opaque_types_with_inference_vars( output_ty, body_def_id, self.tcx.def_span(expr_def_id), self.param_env, ); self.register_predicates(obligations); Some(output_ty) } /// Given a projection like /// /// `::Output = T` /// /// where `X` is some type that has no late-bound regions, returns /// `Some(T)`. If the projection is for some other trait, returns /// `None`. fn deduce_future_output_from_projection( &self, cause_span: Span, predicate: ty::PolyProjectionPredicate<'tcx>, ) -> Option> { debug!("deduce_future_output_from_projection(predicate={:?})", predicate); // We do not expect any bound regions in our predicate, so // skip past the bound vars. let Some(predicate) = predicate.no_bound_vars() else { debug!("deduce_future_output_from_projection: has late-bound regions"); return None; }; // Check that this is a projection from the `Future` trait. let trait_def_id = predicate.projection_ty.trait_def_id(self.tcx); let future_trait = self.tcx.require_lang_item(LangItem::Future, Some(cause_span)); if trait_def_id != future_trait { debug!("deduce_future_output_from_projection: not a future"); return None; } // The `Future` trait has only one associated item, `Output`, // so check that this is what we see. let output_assoc_item = self.tcx.associated_item_def_ids(future_trait)[0]; if output_assoc_item != predicate.projection_ty.def_id { span_bug!( cause_span, "projecting associated item `{:?}` from future, which is not Output `{:?}`", predicate.projection_ty.def_id, output_assoc_item, ); } // Extract the type from the projection. Note that there can // be no bound variables in this type because the "self type" // does not have any regions in it. let output_ty = self.resolve_vars_if_possible(predicate.term); debug!("deduce_future_output_from_projection: output_ty={:?}", output_ty); // This is a projection on a Fn trait so will always be a type. Some(output_ty.ty().unwrap()) } /// Converts the types that the user supplied, in case that doing /// so should yield an error, but returns back a signature where /// all parameters are of type `TyErr`. fn error_sig_of_closure( &self, decl: &hir::FnDecl<'_>, guar: ErrorGuaranteed, ) -> ty::PolyFnSig<'tcx> { let astconv: &dyn AstConv<'_> = self; let err_ty = self.tcx.ty_error(guar); let supplied_arguments = decl.inputs.iter().map(|a| { // Convert the types that the user supplied (if any), but ignore them. astconv.ast_ty_to_ty(a); err_ty }); if let hir::FnRetTy::Return(ref output) = decl.output { astconv.ast_ty_to_ty(&output); } let result = ty::Binder::dummy(self.tcx.mk_fn_sig( supplied_arguments, err_ty, decl.c_variadic, hir::Unsafety::Normal, Abi::RustCall, )); debug!("supplied_sig_of_closure: result={:?}", result); result } fn closure_sigs( &self, expr_def_id: LocalDefId, body: &hir::Body<'_>, bound_sig: ty::PolyFnSig<'tcx>, ) -> ClosureSignatures<'tcx> { let liberated_sig = self.tcx().liberate_late_bound_regions(expr_def_id.to_def_id(), bound_sig); let liberated_sig = self.normalize(body.value.span, liberated_sig); ClosureSignatures { bound_sig, liberated_sig } } }