// Type resolution: the phase that finds all the types in the AST with // unresolved type variables and replaces "ty_var" types with their // substitutions. use crate::FnCtxt; use hir::def_id::LocalDefId; use rustc_data_structures::fx::FxHashMap; use rustc_errors::ErrorGuaranteed; use rustc_hir as hir; use rustc_hir::intravisit::{self, Visitor}; use rustc_infer::infer::error_reporting::TypeAnnotationNeeded::E0282; use rustc_infer::infer::InferCtxt; use rustc_middle::hir::place::Place as HirPlace; use rustc_middle::mir::FakeReadCause; use rustc_middle::ty::adjustment::{Adjust, Adjustment, PointerCast}; use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable}; use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable}; use rustc_middle::ty::TypeckResults; use rustc_middle::ty::{self, ClosureSizeProfileData, Ty, TyCtxt}; use rustc_span::symbol::sym; use rustc_span::Span; use std::mem; use std::ops::ControlFlow; /////////////////////////////////////////////////////////////////////////// // Entry point // During type inference, partially inferred types are // represented using Type variables (ty::Infer). These don't appear in // the final TypeckResults since all of the types should have been // inferred once typeck is done. // When type inference is running however, having to update the typeck // typeck results every time a new type is inferred would be unreasonably slow, // so instead all of the replacement happens at the end in // resolve_type_vars_in_body, which creates a new TypeTables which // doesn't contain any inference types. impl<'a, 'tcx> FnCtxt<'a, 'tcx> { pub fn resolve_type_vars_in_body( &self, body: &'tcx hir::Body<'tcx>, ) -> &'tcx ty::TypeckResults<'tcx> { let item_id = self.tcx.hir().body_owner(body.id()); let item_def_id = self.tcx.hir().local_def_id(item_id); // This attribute causes us to dump some writeback information // in the form of errors, which is used for unit tests. let rustc_dump_user_substs = self.tcx.has_attr(item_def_id.to_def_id(), sym::rustc_dump_user_substs); let mut wbcx = WritebackCx::new(self, body, rustc_dump_user_substs); for param in body.params { wbcx.visit_node_id(param.pat.span, param.hir_id); } // Type only exists for constants and statics, not functions. match self.tcx.hir().body_owner_kind(item_def_id) { hir::BodyOwnerKind::Const | hir::BodyOwnerKind::Static(_) => { wbcx.visit_node_id(body.value.span, item_id); } hir::BodyOwnerKind::Closure | hir::BodyOwnerKind::Fn => (), } wbcx.visit_body(body); wbcx.visit_min_capture_map(); wbcx.eval_closure_size(); wbcx.visit_fake_reads_map(); wbcx.visit_closures(); wbcx.visit_liberated_fn_sigs(); wbcx.visit_fru_field_types(); wbcx.visit_opaque_types(); wbcx.visit_coercion_casts(); wbcx.visit_user_provided_tys(); wbcx.visit_user_provided_sigs(); wbcx.visit_generator_interior_types(); wbcx.typeck_results.rvalue_scopes = mem::take(&mut self.typeck_results.borrow_mut().rvalue_scopes); let used_trait_imports = mem::take(&mut self.typeck_results.borrow_mut().used_trait_imports); debug!("used_trait_imports({:?}) = {:?}", item_def_id, used_trait_imports); wbcx.typeck_results.used_trait_imports = used_trait_imports; wbcx.typeck_results.treat_byte_string_as_slice = mem::take(&mut self.typeck_results.borrow_mut().treat_byte_string_as_slice); if let Some(e) = self.tainted_by_errors() { wbcx.typeck_results.tainted_by_errors = Some(e); } debug!("writeback: typeck results for {:?} are {:#?}", item_def_id, wbcx.typeck_results); self.tcx.arena.alloc(wbcx.typeck_results) } } /////////////////////////////////////////////////////////////////////////// // The Writeback context. This visitor walks the HIR, checking the // fn-specific typeck results to find references to types or regions. It // resolves those regions to remove inference variables and writes the // final result back into the master typeck results in the tcx. Here and // there, it applies a few ad-hoc checks that were not convenient to // do elsewhere. struct WritebackCx<'cx, 'tcx> { fcx: &'cx FnCtxt<'cx, 'tcx>, typeck_results: ty::TypeckResults<'tcx>, body: &'tcx hir::Body<'tcx>, rustc_dump_user_substs: bool, } impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> { fn new( fcx: &'cx FnCtxt<'cx, 'tcx>, body: &'tcx hir::Body<'tcx>, rustc_dump_user_substs: bool, ) -> WritebackCx<'cx, 'tcx> { let owner = body.id().hir_id.owner; WritebackCx { fcx, typeck_results: ty::TypeckResults::new(owner), body, rustc_dump_user_substs, } } fn tcx(&self) -> TyCtxt<'tcx> { self.fcx.tcx } fn write_ty_to_typeck_results(&mut self, hir_id: hir::HirId, ty: Ty<'tcx>) { debug!("write_ty_to_typeck_results({:?}, {:?})", hir_id, ty); assert!(!ty.needs_infer() && !ty.has_placeholders() && !ty.has_free_regions()); self.typeck_results.node_types_mut().insert(hir_id, ty); } // Hacky hack: During type-checking, we treat *all* operators // as potentially overloaded. But then, during writeback, if // we observe that something like `a+b` is (known to be) // operating on scalars, we clear the overload. fn fix_scalar_builtin_expr(&mut self, e: &hir::Expr<'_>) { match e.kind { hir::ExprKind::Unary(hir::UnOp::Neg | hir::UnOp::Not, inner) => { let inner_ty = self.fcx.node_ty(inner.hir_id); let inner_ty = self.fcx.resolve_vars_if_possible(inner_ty); if inner_ty.is_scalar() { let mut typeck_results = self.fcx.typeck_results.borrow_mut(); typeck_results.type_dependent_defs_mut().remove(e.hir_id); typeck_results.node_substs_mut().remove(e.hir_id); } } hir::ExprKind::Binary(ref op, lhs, rhs) | hir::ExprKind::AssignOp(ref op, lhs, rhs) => { let lhs_ty = self.fcx.node_ty(lhs.hir_id); let lhs_ty = self.fcx.resolve_vars_if_possible(lhs_ty); let rhs_ty = self.fcx.node_ty(rhs.hir_id); let rhs_ty = self.fcx.resolve_vars_if_possible(rhs_ty); if lhs_ty.is_scalar() && rhs_ty.is_scalar() { let mut typeck_results = self.fcx.typeck_results.borrow_mut(); typeck_results.type_dependent_defs_mut().remove(e.hir_id); typeck_results.node_substs_mut().remove(e.hir_id); match e.kind { hir::ExprKind::Binary(..) => { if !op.node.is_by_value() { let mut adjustments = typeck_results.adjustments_mut(); if let Some(a) = adjustments.get_mut(lhs.hir_id) { a.pop(); } if let Some(a) = adjustments.get_mut(rhs.hir_id) { a.pop(); } } } hir::ExprKind::AssignOp(..) if let Some(a) = typeck_results.adjustments_mut().get_mut(lhs.hir_id) => { a.pop(); } _ => {} } } } _ => {} } } // (ouz-a 1005988): Normally `[T] : std::ops::Index` should be normalized // into [T] but currently `Where` clause stops the normalization process for it, // here we compare types of expr and base in a code without `Where` clause they would be equal // if they are not we don't modify the expr, hence we bypass the ICE fn is_builtin_index( &mut self, typeck_results: &TypeckResults<'tcx>, e: &hir::Expr<'_>, base_ty: Ty<'tcx>, index_ty: Ty<'tcx>, ) -> bool { if let Some(elem_ty) = base_ty.builtin_index() { let Some(exp_ty) = typeck_results.expr_ty_opt(e) else {return false;}; let resolved_exp_ty = self.resolve(exp_ty, &e.span); elem_ty == resolved_exp_ty && index_ty == self.fcx.tcx.types.usize } else { false } } // Similar to operators, indexing is always assumed to be overloaded // Here, correct cases where an indexing expression can be simplified // to use builtin indexing because the index type is known to be // usize-ish fn fix_index_builtin_expr(&mut self, e: &hir::Expr<'_>) { if let hir::ExprKind::Index(ref base, ref index) = e.kind { let mut typeck_results = self.fcx.typeck_results.borrow_mut(); // All valid indexing looks like this; might encounter non-valid indexes at this point. let base_ty = typeck_results .expr_ty_adjusted_opt(base) .map(|t| self.fcx.resolve_vars_if_possible(t).kind()); if base_ty.is_none() { // When encountering `return [0][0]` outside of a `fn` body we can encounter a base // that isn't in the type table. We assume more relevant errors have already been // emitted, so we delay an ICE if none have. (#64638) self.tcx().sess.delay_span_bug(e.span, &format!("bad base: `{:?}`", base)); } if let Some(ty::Ref(_, base_ty, _)) = base_ty { let index_ty = typeck_results.expr_ty_adjusted_opt(index).unwrap_or_else(|| { // When encountering `return [0][0]` outside of a `fn` body we would attempt // to access an nonexistent index. We assume that more relevant errors will // already have been emitted, so we only gate on this with an ICE if no // error has been emitted. (#64638) self.fcx.tcx.ty_error_with_message( e.span, &format!("bad index {:?} for base: `{:?}`", index, base), ) }); let index_ty = self.fcx.resolve_vars_if_possible(index_ty); let resolved_base_ty = self.resolve(*base_ty, &base.span); if self.is_builtin_index(&typeck_results, e, resolved_base_ty, index_ty) { // Remove the method call record typeck_results.type_dependent_defs_mut().remove(e.hir_id); typeck_results.node_substs_mut().remove(e.hir_id); if let Some(a) = typeck_results.adjustments_mut().get_mut(base.hir_id) { // Discard the need for a mutable borrow // Extra adjustment made when indexing causes a drop // of size information - we need to get rid of it // Since this is "after" the other adjustment to be // discarded, we do an extra `pop()` if let Some(Adjustment { kind: Adjust::Pointer(PointerCast::Unsize), .. }) = a.pop() { // So the borrow discard actually happens here a.pop(); } } } } } } } /////////////////////////////////////////////////////////////////////////// // Impl of Visitor for Resolver // // This is the master code which walks the AST. It delegates most of // the heavy lifting to the generic visit and resolve functions // below. In general, a function is made into a `visitor` if it must // traffic in node-ids or update typeck results in the type context etc. impl<'cx, 'tcx> Visitor<'tcx> for WritebackCx<'cx, 'tcx> { fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) { self.fix_scalar_builtin_expr(e); self.fix_index_builtin_expr(e); match e.kind { hir::ExprKind::Closure(&hir::Closure { body, .. }) => { let body = self.fcx.tcx.hir().body(body); for param in body.params { self.visit_node_id(e.span, param.hir_id); } self.visit_body(body); } hir::ExprKind::Struct(_, fields, _) => { for field in fields { self.visit_field_id(field.hir_id); } } hir::ExprKind::Field(..) => { self.visit_field_id(e.hir_id); } hir::ExprKind::ConstBlock(anon_const) => { self.visit_node_id(e.span, anon_const.hir_id); let body = self.tcx().hir().body(anon_const.body); self.visit_body(body); } _ => {} } self.visit_node_id(e.span, e.hir_id); intravisit::walk_expr(self, e); } fn visit_generic_param(&mut self, p: &'tcx hir::GenericParam<'tcx>) { match &p.kind { hir::GenericParamKind::Lifetime { .. } => { // Nothing to write back here } hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => { self.tcx().sess.delay_span_bug(p.span, format!("unexpected generic param: {p:?}")); } } } fn visit_block(&mut self, b: &'tcx hir::Block<'tcx>) { self.visit_node_id(b.span, b.hir_id); intravisit::walk_block(self, b); } fn visit_pat(&mut self, p: &'tcx hir::Pat<'tcx>) { match p.kind { hir::PatKind::Binding(..) => { let typeck_results = self.fcx.typeck_results.borrow(); if let Some(bm) = typeck_results.extract_binding_mode(self.tcx().sess, p.hir_id, p.span) { self.typeck_results.pat_binding_modes_mut().insert(p.hir_id, bm); } } hir::PatKind::Struct(_, fields, _) => { for field in fields { self.visit_field_id(field.hir_id); } } _ => {} }; self.visit_pat_adjustments(p.span, p.hir_id); self.visit_node_id(p.span, p.hir_id); intravisit::walk_pat(self, p); } fn visit_local(&mut self, l: &'tcx hir::Local<'tcx>) { intravisit::walk_local(self, l); let var_ty = self.fcx.local_ty(l.span, l.hir_id).decl_ty; let var_ty = self.resolve(var_ty, &l.span); self.write_ty_to_typeck_results(l.hir_id, var_ty); } fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx>) { intravisit::walk_ty(self, hir_ty); // If there are type checking errors, Type privacy pass will stop, // so we may not get the type from hid_id, see #104513 if let Some(ty) = self.fcx.node_ty_opt(hir_ty.hir_id) { let ty = self.resolve(ty, &hir_ty.span); self.write_ty_to_typeck_results(hir_ty.hir_id, ty); } } fn visit_infer(&mut self, inf: &'tcx hir::InferArg) { intravisit::walk_inf(self, inf); // Ignore cases where the inference is a const. if let Some(ty) = self.fcx.node_ty_opt(inf.hir_id) { let ty = self.resolve(ty, &inf.span); self.write_ty_to_typeck_results(inf.hir_id, ty); } } } impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> { fn eval_closure_size(&mut self) { let mut res: FxHashMap> = Default::default(); for (&closure_def_id, data) in self.fcx.typeck_results.borrow().closure_size_eval.iter() { let closure_hir_id = self.tcx().hir().local_def_id_to_hir_id(closure_def_id); let data = self.resolve(*data, &closure_hir_id); res.insert(closure_def_id, data); } self.typeck_results.closure_size_eval = res; } fn visit_min_capture_map(&mut self) { let mut min_captures_wb = ty::MinCaptureInformationMap::with_capacity_and_hasher( self.fcx.typeck_results.borrow().closure_min_captures.len(), Default::default(), ); for (&closure_def_id, root_min_captures) in self.fcx.typeck_results.borrow().closure_min_captures.iter() { let mut root_var_map_wb = ty::RootVariableMinCaptureList::with_capacity_and_hasher( root_min_captures.len(), Default::default(), ); for (var_hir_id, min_list) in root_min_captures.iter() { let min_list_wb = min_list .iter() .map(|captured_place| { let locatable = captured_place.info.path_expr_id.unwrap_or_else(|| { self.tcx().hir().local_def_id_to_hir_id(closure_def_id) }); self.resolve(captured_place.clone(), &locatable) }) .collect(); root_var_map_wb.insert(*var_hir_id, min_list_wb); } min_captures_wb.insert(closure_def_id, root_var_map_wb); } self.typeck_results.closure_min_captures = min_captures_wb; } fn visit_fake_reads_map(&mut self) { let mut resolved_closure_fake_reads: FxHashMap< LocalDefId, Vec<(HirPlace<'tcx>, FakeReadCause, hir::HirId)>, > = Default::default(); for (&closure_def_id, fake_reads) in self.fcx.typeck_results.borrow().closure_fake_reads.iter() { let mut resolved_fake_reads = Vec::<(HirPlace<'tcx>, FakeReadCause, hir::HirId)>::new(); for (place, cause, hir_id) in fake_reads.iter() { let locatable = self.tcx().hir().local_def_id_to_hir_id(closure_def_id); let resolved_fake_read = self.resolve(place.clone(), &locatable); resolved_fake_reads.push((resolved_fake_read, *cause, *hir_id)); } resolved_closure_fake_reads.insert(closure_def_id, resolved_fake_reads); } self.typeck_results.closure_fake_reads = resolved_closure_fake_reads; } fn visit_closures(&mut self) { let fcx_typeck_results = self.fcx.typeck_results.borrow(); assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner); let common_hir_owner = fcx_typeck_results.hir_owner; let fcx_closure_kind_origins = fcx_typeck_results.closure_kind_origins().items_in_stable_order(); for (local_id, origin) in fcx_closure_kind_origins { let hir_id = hir::HirId { owner: common_hir_owner, local_id }; let place_span = origin.0; let place = self.resolve(origin.1.clone(), &place_span); self.typeck_results.closure_kind_origins_mut().insert(hir_id, (place_span, place)); } } fn visit_coercion_casts(&mut self) { let fcx_typeck_results = self.fcx.typeck_results.borrow(); assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner); let fcx_coercion_casts = fcx_typeck_results.coercion_casts().to_sorted_stable_ord(); for local_id in fcx_coercion_casts { self.typeck_results.set_coercion_cast(local_id); } } fn visit_user_provided_tys(&mut self) { let fcx_typeck_results = self.fcx.typeck_results.borrow(); assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner); let common_hir_owner = fcx_typeck_results.hir_owner; if self.rustc_dump_user_substs { let sorted_user_provided_types = fcx_typeck_results.user_provided_types().items_in_stable_order(); let mut errors_buffer = Vec::new(); for (local_id, c_ty) in sorted_user_provided_types { let hir_id = hir::HirId { owner: common_hir_owner, local_id }; if let ty::UserType::TypeOf(_, user_substs) = c_ty.value { // This is a unit-testing mechanism. let span = self.tcx().hir().span(hir_id); // We need to buffer the errors in order to guarantee a consistent // order when emitting them. let err = self .tcx() .sess .struct_span_err(span, &format!("user substs: {:?}", user_substs)); err.buffer(&mut errors_buffer); } } if !errors_buffer.is_empty() { errors_buffer.sort_by_key(|diag| diag.span.primary_span()); for mut diag in errors_buffer { self.tcx().sess.diagnostic().emit_diagnostic(&mut diag); } } } self.typeck_results.user_provided_types_mut().extend( fcx_typeck_results.user_provided_types().items().map(|(local_id, c_ty)| { let hir_id = hir::HirId { owner: common_hir_owner, local_id }; if cfg!(debug_assertions) && c_ty.needs_infer() { span_bug!( hir_id.to_span(self.fcx.tcx), "writeback: `{:?}` has inference variables", c_ty ); }; (hir_id, *c_ty) }), ); } fn visit_user_provided_sigs(&mut self) { let fcx_typeck_results = self.fcx.typeck_results.borrow(); assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner); self.typeck_results.user_provided_sigs.extend( fcx_typeck_results.user_provided_sigs.items().map(|(&def_id, c_sig)| { if cfg!(debug_assertions) && c_sig.needs_infer() { span_bug!( self.fcx.tcx.def_span(def_id), "writeback: `{:?}` has inference variables", c_sig ); }; (def_id, *c_sig) }), ); } fn visit_generator_interior_types(&mut self) { let fcx_typeck_results = self.fcx.typeck_results.borrow(); assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner); self.typeck_results.generator_interior_types = fcx_typeck_results.generator_interior_types.clone(); } #[instrument(skip(self), level = "debug")] fn visit_opaque_types(&mut self) { let opaque_types = self.fcx.infcx.take_opaque_types(); for (opaque_type_key, decl) in opaque_types { let hidden_type = self.resolve(decl.hidden_type, &decl.hidden_type.span); let opaque_type_key = self.resolve(opaque_type_key, &decl.hidden_type.span); struct RecursionChecker { def_id: LocalDefId, } impl<'tcx> ty::TypeVisitor<'tcx> for RecursionChecker { type BreakTy = (); fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow { if let ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) = *t.kind() { if def_id == self.def_id.to_def_id() { return ControlFlow::Break(()); } } t.super_visit_with(self) } } if hidden_type .visit_with(&mut RecursionChecker { def_id: opaque_type_key.def_id }) .is_break() { continue; } let hidden_type = hidden_type.remap_generic_params_to_declaration_params( opaque_type_key, self.fcx.infcx.tcx, true, ); self.typeck_results.concrete_opaque_types.insert(opaque_type_key.def_id, hidden_type); } } fn visit_field_id(&mut self, hir_id: hir::HirId) { if let Some(index) = self.fcx.typeck_results.borrow_mut().field_indices_mut().remove(hir_id) { self.typeck_results.field_indices_mut().insert(hir_id, index); } } #[instrument(skip(self, span), level = "debug")] fn visit_node_id(&mut self, span: Span, hir_id: hir::HirId) { // Export associated path extensions and method resolutions. if let Some(def) = self.fcx.typeck_results.borrow_mut().type_dependent_defs_mut().remove(hir_id) { self.typeck_results.type_dependent_defs_mut().insert(hir_id, def); } // Resolve any borrowings for the node with id `node_id` self.visit_adjustments(span, hir_id); // Resolve the type of the node with id `node_id` let n_ty = self.fcx.node_ty(hir_id); let n_ty = self.resolve(n_ty, &span); self.write_ty_to_typeck_results(hir_id, n_ty); debug!(?n_ty); // Resolve any substitutions if let Some(substs) = self.fcx.typeck_results.borrow().node_substs_opt(hir_id) { let substs = self.resolve(substs, &span); debug!("write_substs_to_tcx({:?}, {:?})", hir_id, substs); assert!(!substs.needs_infer() && !substs.has_placeholders()); self.typeck_results.node_substs_mut().insert(hir_id, substs); } } #[instrument(skip(self, span), level = "debug")] fn visit_adjustments(&mut self, span: Span, hir_id: hir::HirId) { let adjustment = self.fcx.typeck_results.borrow_mut().adjustments_mut().remove(hir_id); match adjustment { None => { debug!("no adjustments for node"); } Some(adjustment) => { let resolved_adjustment = self.resolve(adjustment, &span); debug!(?resolved_adjustment); self.typeck_results.adjustments_mut().insert(hir_id, resolved_adjustment); } } } #[instrument(skip(self, span), level = "debug")] fn visit_pat_adjustments(&mut self, span: Span, hir_id: hir::HirId) { let adjustment = self.fcx.typeck_results.borrow_mut().pat_adjustments_mut().remove(hir_id); match adjustment { None => { debug!("no pat_adjustments for node"); } Some(adjustment) => { let resolved_adjustment = self.resolve(adjustment, &span); debug!(?resolved_adjustment); self.typeck_results.pat_adjustments_mut().insert(hir_id, resolved_adjustment); } } } fn visit_liberated_fn_sigs(&mut self) { let fcx_typeck_results = self.fcx.typeck_results.borrow(); assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner); let common_hir_owner = fcx_typeck_results.hir_owner; let fcx_liberated_fn_sigs = fcx_typeck_results.liberated_fn_sigs().items_in_stable_order(); for (local_id, &fn_sig) in fcx_liberated_fn_sigs { let hir_id = hir::HirId { owner: common_hir_owner, local_id }; let fn_sig = self.resolve(fn_sig, &hir_id); self.typeck_results.liberated_fn_sigs_mut().insert(hir_id, fn_sig); } } fn visit_fru_field_types(&mut self) { let fcx_typeck_results = self.fcx.typeck_results.borrow(); assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner); let common_hir_owner = fcx_typeck_results.hir_owner; let fcx_fru_field_types = fcx_typeck_results.fru_field_types().items_in_stable_order(); for (local_id, ftys) in fcx_fru_field_types { let hir_id = hir::HirId { owner: common_hir_owner, local_id }; let ftys = self.resolve(ftys.clone(), &hir_id); self.typeck_results.fru_field_types_mut().insert(hir_id, ftys); } } fn resolve(&mut self, x: T, span: &dyn Locatable) -> T where T: TypeFoldable<'tcx>, { let mut resolver = Resolver::new(self.fcx, span, self.body); let x = x.fold_with(&mut resolver); if cfg!(debug_assertions) && x.needs_infer() { span_bug!(span.to_span(self.fcx.tcx), "writeback: `{:?}` has inference variables", x); } // We may have introduced e.g. `ty::Error`, if inference failed, make sure // to mark the `TypeckResults` as tainted in that case, so that downstream // users of the typeck results don't produce extra errors, or worse, ICEs. if let Some(e) = resolver.replaced_with_error { self.typeck_results.tainted_by_errors = Some(e); } x } } pub(crate) trait Locatable { fn to_span(&self, tcx: TyCtxt<'_>) -> Span; } impl Locatable for Span { fn to_span(&self, _: TyCtxt<'_>) -> Span { *self } } impl Locatable for hir::HirId { fn to_span(&self, tcx: TyCtxt<'_>) -> Span { tcx.hir().span(*self) } } /// The Resolver. This is the type folding engine that detects /// unresolved types and so forth. struct Resolver<'cx, 'tcx> { tcx: TyCtxt<'tcx>, infcx: &'cx InferCtxt<'tcx>, span: &'cx dyn Locatable, body: &'tcx hir::Body<'tcx>, /// Set to `Some` if any `Ty` or `ty::Const` had to be replaced with an `Error`. replaced_with_error: Option, } impl<'cx, 'tcx> Resolver<'cx, 'tcx> { fn new( fcx: &'cx FnCtxt<'cx, 'tcx>, span: &'cx dyn Locatable, body: &'tcx hir::Body<'tcx>, ) -> Resolver<'cx, 'tcx> { Resolver { tcx: fcx.tcx, infcx: fcx, span, body, replaced_with_error: None } } fn report_error(&self, p: impl Into>) -> ErrorGuaranteed { match self.tcx.sess.has_errors() { Some(e) => e, None => self .infcx .err_ctxt() .emit_inference_failure_err( Some(self.body.id()), self.span.to_span(self.tcx), p.into(), E0282, false, ) .emit(), } } } struct EraseEarlyRegions<'tcx> { tcx: TyCtxt<'tcx>, } impl<'tcx> TypeFolder<'tcx> for EraseEarlyRegions<'tcx> { fn tcx<'b>(&'b self) -> TyCtxt<'tcx> { self.tcx } fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> { if ty.has_type_flags(ty::TypeFlags::HAS_FREE_REGIONS) { ty.super_fold_with(self) } else { ty } } fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> { if r.is_late_bound() { r } else { self.tcx.lifetimes.re_erased } } } impl<'cx, 'tcx> TypeFolder<'tcx> for Resolver<'cx, 'tcx> { fn tcx<'a>(&'a self) -> TyCtxt<'tcx> { self.tcx } fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> { match self.infcx.fully_resolve(t) { Ok(t) => { // Do not anonymize late-bound regions // (e.g. keep `for<'a>` named `for<'a>`). // This allows NLL to generate error messages that // refer to the higher-ranked lifetime names written by the user. EraseEarlyRegions { tcx: self.tcx }.fold_ty(t) } Err(_) => { debug!("Resolver::fold_ty: input type `{:?}` not fully resolvable", t); let e = self.report_error(t); self.replaced_with_error = Some(e); self.tcx().ty_error_with_guaranteed(e) } } } fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> { debug_assert!(!r.is_late_bound(), "Should not be resolving bound region."); self.tcx.lifetimes.re_erased } fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> { match self.infcx.fully_resolve(ct) { Ok(ct) => self.tcx.erase_regions(ct), Err(_) => { debug!("Resolver::fold_const: input const `{:?}` not fully resolvable", ct); let e = self.report_error(ct); self.replaced_with_error = Some(e); self.tcx().const_error_with_guaranteed(ct.ty(), e) } } } } /////////////////////////////////////////////////////////////////////////// // During type check, we store promises with the result of trait // lookup rather than the actual results (because the results are not // necessarily available immediately). These routines unwind the // promises. It is expected that we will have already reported any // errors that may be encountered, so if the promises store an error, // a dummy result is returned.