//! This pass is only used for the UNIT TESTS and DEBUGGING NEEDS //! around dependency graph construction. It serves two purposes; it //! will dump graphs in graphviz form to disk, and it searches for //! `#[rustc_if_this_changed]` and `#[rustc_then_this_would_need]` //! annotations. These annotations can be used to test whether paths //! exist in the graph. These checks run after codegen, so they view the //! the final state of the dependency graph. Note that there are //! similar assertions found in `persist::dirty_clean` which check the //! **initial** state of the dependency graph, just after it has been //! loaded from disk. //! //! In this code, we report errors on each `rustc_if_this_changed` //! annotation. If a path exists in all cases, then we would report //! "all path(s) exist". Otherwise, we report: "no path to `foo`" for //! each case where no path exists. `ui` tests can then be //! used to check when paths exist or do not. //! //! The full form of the `rustc_if_this_changed` annotation is //! `#[rustc_if_this_changed("foo")]`, which will report a //! source node of `foo(def_id)`. The `"foo"` is optional and //! defaults to `"Hir"` if omitted. //! //! Example: //! //! ```ignore (needs flags) //! #[rustc_if_this_changed(Hir)] //! fn foo() { } //! //! #[rustc_then_this_would_need(codegen)] //~ ERROR no path from `foo` //! fn bar() { } //! //! #[rustc_then_this_would_need(codegen)] //~ ERROR OK //! fn baz() { foo(); } //! ``` use rustc_ast as ast; use rustc_data_structures::fx::FxHashSet; use rustc_data_structures::graph::implementation::{Direction, NodeIndex, INCOMING, OUTGOING}; use rustc_graphviz as dot; use rustc_hir as hir; use rustc_hir::def_id::DefId; use rustc_hir::intravisit::{self, Visitor}; use rustc_middle::dep_graph::{ DepGraphQuery, DepKind, DepNode, DepNodeExt, DepNodeFilter, EdgeFilter, }; use rustc_middle::hir::nested_filter; use rustc_middle::ty::TyCtxt; use rustc_span::symbol::{sym, Symbol}; use rustc_span::Span; use std::env; use std::fs::{self, File}; use std::io::{BufWriter, Write}; #[allow(missing_docs)] pub fn assert_dep_graph(tcx: TyCtxt<'_>) { tcx.dep_graph.with_ignore(|| { if tcx.sess.opts.unstable_opts.dump_dep_graph { tcx.dep_graph.with_query(dump_graph); } if !tcx.sess.opts.unstable_opts.query_dep_graph { return; } // if the `rustc_attrs` feature is not enabled, then the // attributes we are interested in cannot be present anyway, so // skip the walk. if !tcx.features().rustc_attrs { return; } // Find annotations supplied by user (if any). let (if_this_changed, then_this_would_need) = { let mut visitor = IfThisChanged { tcx, if_this_changed: vec![], then_this_would_need: vec![] }; visitor.process_attrs(hir::CRATE_HIR_ID); tcx.hir().visit_all_item_likes_in_crate(&mut visitor); (visitor.if_this_changed, visitor.then_this_would_need) }; if !if_this_changed.is_empty() || !then_this_would_need.is_empty() { assert!( tcx.sess.opts.unstable_opts.query_dep_graph, "cannot use the `#[{}]` or `#[{}]` annotations \ without supplying `-Z query-dep-graph`", sym::rustc_if_this_changed, sym::rustc_then_this_would_need ); } // Check paths. check_paths(tcx, &if_this_changed, &then_this_would_need); }) } type Sources = Vec<(Span, DefId, DepNode)>; type Targets = Vec<(Span, Symbol, hir::HirId, DepNode)>; struct IfThisChanged<'tcx> { tcx: TyCtxt<'tcx>, if_this_changed: Sources, then_this_would_need: Targets, } impl<'tcx> IfThisChanged<'tcx> { fn argument(&self, attr: &ast::Attribute) -> Option { let mut value = None; for list_item in attr.meta_item_list().unwrap_or_default() { match list_item.ident() { Some(ident) if list_item.is_word() && value.is_none() => value = Some(ident.name), _ => // FIXME better-encapsulate meta_item (don't directly access `node`) { span_bug!(list_item.span(), "unexpected meta-item {:?}", list_item) } } } value } fn process_attrs(&mut self, hir_id: hir::HirId) { let def_id = self.tcx.hir().local_def_id(hir_id); let def_path_hash = self.tcx.def_path_hash(def_id.to_def_id()); let attrs = self.tcx.hir().attrs(hir_id); for attr in attrs { if attr.has_name(sym::rustc_if_this_changed) { let dep_node_interned = self.argument(attr); let dep_node = match dep_node_interned { None => { DepNode::from_def_path_hash(self.tcx, def_path_hash, DepKind::hir_owner) } Some(n) => { match DepNode::from_label_string(self.tcx, n.as_str(), def_path_hash) { Ok(n) => n, Err(()) => { self.tcx.sess.span_fatal( attr.span, &format!("unrecognized DepNode variant {:?}", n), ); } } } }; self.if_this_changed.push((attr.span, def_id.to_def_id(), dep_node)); } else if attr.has_name(sym::rustc_then_this_would_need) { let dep_node_interned = self.argument(attr); let dep_node = match dep_node_interned { Some(n) => { match DepNode::from_label_string(self.tcx, n.as_str(), def_path_hash) { Ok(n) => n, Err(()) => { self.tcx.sess.span_fatal( attr.span, &format!("unrecognized DepNode variant {:?}", n), ); } } } None => { self.tcx.sess.span_fatal(attr.span, "missing DepNode variant"); } }; self.then_this_would_need.push(( attr.span, dep_node_interned.unwrap(), hir_id, dep_node, )); } } } } impl<'tcx> Visitor<'tcx> for IfThisChanged<'tcx> { type NestedFilter = nested_filter::OnlyBodies; fn nested_visit_map(&mut self) -> Self::Map { self.tcx.hir() } fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { self.process_attrs(item.hir_id()); intravisit::walk_item(self, item); } fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) { self.process_attrs(trait_item.hir_id()); intravisit::walk_trait_item(self, trait_item); } fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) { self.process_attrs(impl_item.hir_id()); intravisit::walk_impl_item(self, impl_item); } fn visit_field_def(&mut self, s: &'tcx hir::FieldDef<'tcx>) { self.process_attrs(s.hir_id); intravisit::walk_field_def(self, s); } } fn check_paths<'tcx>(tcx: TyCtxt<'tcx>, if_this_changed: &Sources, then_this_would_need: &Targets) { // Return early here so as not to construct the query, which is not cheap. if if_this_changed.is_empty() { for &(target_span, _, _, _) in then_this_would_need { tcx.sess.span_err(target_span, "no `#[rustc_if_this_changed]` annotation detected"); } return; } tcx.dep_graph.with_query(|query| { for &(_, source_def_id, ref source_dep_node) in if_this_changed { let dependents = query.transitive_predecessors(source_dep_node); for &(target_span, ref target_pass, _, ref target_dep_node) in then_this_would_need { if !dependents.contains(&target_dep_node) { tcx.sess.span_err( target_span, &format!( "no path from `{}` to `{}`", tcx.def_path_str(source_def_id), target_pass ), ); } else { tcx.sess.span_err(target_span, "OK"); } } } }); } fn dump_graph(query: &DepGraphQuery) { let path: String = env::var("RUST_DEP_GRAPH").unwrap_or_else(|_| "dep_graph".to_string()); let nodes = match env::var("RUST_DEP_GRAPH_FILTER") { Ok(string) => { // Expect one of: "-> target", "source -> target", or "source ->". let edge_filter = EdgeFilter::new(&string).unwrap_or_else(|e| bug!("invalid filter: {}", e)); let sources = node_set(&query, &edge_filter.source); let targets = node_set(&query, &edge_filter.target); filter_nodes(&query, &sources, &targets) } Err(_) => query.nodes().into_iter().map(|n| n.kind).collect(), }; let edges = filter_edges(&query, &nodes); { // dump a .txt file with just the edges: let txt_path = format!("{}.txt", path); let mut file = BufWriter::new(File::create(&txt_path).unwrap()); for (source, target) in &edges { write!(file, "{:?} -> {:?}\n", source, target).unwrap(); } } { // dump a .dot file in graphviz format: let dot_path = format!("{}.dot", path); let mut v = Vec::new(); dot::render(&GraphvizDepGraph(nodes, edges), &mut v).unwrap(); fs::write(dot_path, v).unwrap(); } } #[allow(missing_docs)] pub struct GraphvizDepGraph(FxHashSet, Vec<(DepKind, DepKind)>); impl<'a> dot::GraphWalk<'a> for GraphvizDepGraph { type Node = DepKind; type Edge = (DepKind, DepKind); fn nodes(&self) -> dot::Nodes<'_, DepKind> { let nodes: Vec<_> = self.0.iter().cloned().collect(); nodes.into() } fn edges(&self) -> dot::Edges<'_, (DepKind, DepKind)> { self.1[..].into() } fn source(&self, edge: &(DepKind, DepKind)) -> DepKind { edge.0 } fn target(&self, edge: &(DepKind, DepKind)) -> DepKind { edge.1 } } impl<'a> dot::Labeller<'a> for GraphvizDepGraph { type Node = DepKind; type Edge = (DepKind, DepKind); fn graph_id(&self) -> dot::Id<'_> { dot::Id::new("DependencyGraph").unwrap() } fn node_id(&self, n: &DepKind) -> dot::Id<'_> { let s: String = format!("{:?}", n) .chars() .map(|c| if c == '_' || c.is_alphanumeric() { c } else { '_' }) .collect(); debug!("n={:?} s={:?}", n, s); dot::Id::new(s).unwrap() } fn node_label(&self, n: &DepKind) -> dot::LabelText<'_> { dot::LabelText::label(format!("{:?}", n)) } } // Given an optional filter like `"x,y,z"`, returns either `None` (no // filter) or the set of nodes whose labels contain all of those // substrings. fn node_set<'q>( query: &'q DepGraphQuery, filter: &DepNodeFilter, ) -> Option> { debug!("node_set(filter={:?})", filter); if filter.accepts_all() { return None; } Some(query.nodes().into_iter().filter(|n| filter.test(n)).collect()) } fn filter_nodes<'q>( query: &'q DepGraphQuery, sources: &Option>, targets: &Option>, ) -> FxHashSet { if let Some(sources) = sources { if let Some(targets) = targets { walk_between(query, sources, targets) } else { walk_nodes(query, sources, OUTGOING) } } else if let Some(targets) = targets { walk_nodes(query, targets, INCOMING) } else { query.nodes().into_iter().map(|n| n.kind).collect() } } fn walk_nodes<'q>( query: &'q DepGraphQuery, starts: &FxHashSet<&'q DepNode>, direction: Direction, ) -> FxHashSet { let mut set = FxHashSet::default(); for &start in starts { debug!("walk_nodes: start={:?} outgoing?={:?}", start, direction == OUTGOING); if set.insert(start.kind) { let mut stack = vec![query.indices[start]]; while let Some(index) = stack.pop() { for (_, edge) in query.graph.adjacent_edges(index, direction) { let neighbor_index = edge.source_or_target(direction); let neighbor = query.graph.node_data(neighbor_index); if set.insert(neighbor.kind) { stack.push(neighbor_index); } } } } } set } fn walk_between<'q>( query: &'q DepGraphQuery, sources: &FxHashSet<&'q DepNode>, targets: &FxHashSet<&'q DepNode>, ) -> FxHashSet { // This is a bit tricky. We want to include a node only if it is: // (a) reachable from a source and (b) will reach a target. And we // have to be careful about cycles etc. Luckily efficiency is not // a big concern! #[derive(Copy, Clone, PartialEq)] enum State { Undecided, Deciding, Included, Excluded, } let mut node_states = vec![State::Undecided; query.graph.len_nodes()]; for &target in targets { node_states[query.indices[target].0] = State::Included; } for source in sources.iter().map(|&n| query.indices[n]) { recurse(query, &mut node_states, source); } return query .nodes() .into_iter() .filter(|&n| { let index = query.indices[n]; node_states[index.0] == State::Included }) .map(|n| n.kind) .collect(); fn recurse(query: &DepGraphQuery, node_states: &mut [State], node: NodeIndex) -> bool { match node_states[node.0] { // known to reach a target State::Included => return true, // known not to reach a target State::Excluded => return false, // backedge, not yet known, say false State::Deciding => return false, State::Undecided => {} } node_states[node.0] = State::Deciding; for neighbor_index in query.graph.successor_nodes(node) { if recurse(query, node_states, neighbor_index) { node_states[node.0] = State::Included; } } // if we didn't find a path to target, then set to excluded if node_states[node.0] == State::Deciding { node_states[node.0] = State::Excluded; false } else { assert!(node_states[node.0] == State::Included); true } } } fn filter_edges(query: &DepGraphQuery, nodes: &FxHashSet) -> Vec<(DepKind, DepKind)> { let uniq: FxHashSet<_> = query .edges() .into_iter() .map(|(s, t)| (s.kind, t.kind)) .filter(|(source, target)| nodes.contains(source) && nodes.contains(target)) .collect(); uniq.into_iter().collect() }